1
|
Ruan L, Huang L, Wu L, Gu J, Liang Y, Liang X, Shang C. Identification and characterization of interacting proteins of transcription factor DpWRI1-like related to lipid biosynthesis from microalga Dunaliella parva. Heliyon 2025; 11:e41165. [PMID: 39758396 PMCID: PMC11699323 DOI: 10.1016/j.heliyon.2024.e41165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Our previous study found that Dunaliella parva WRINKLED1-like (DpWRI1-like) was a key regulatory factor of lipid biosynthesis in D. parva. DpWRI1-like gene and target genes of DpWRI1-like have been obtained in our previous study, but the interacting proteins of DpWRI1-like are unclear now, which has limited a deep understanding of the function of DpWRI1-like. Yeast two-hybrid was widely used to identify protein-protein interaction. In this study, the interacting proteins of DpWRI1-like were obtained using yeast two-hybrid technique to further realize the role of DpWRI1-like. Three important interacting proteins have the following predicted activities: acyl-CoA-binding domain-containing protein 6 (interacting protein 1, ACBD6), duplicated carbonic anhydrase (interacting protein 2, DCA) and DNA-binding transcription factor (interacting protein 3, TF). Bimolecular fluorescence complementation assay further validated the interaction between DpWRI1-like and interacting proteins ACBD6 and DCA. The further bioinformatics analyses of interacting proteins were conducted. Protein-protein docking indicated the strong affinity between DpWRI1-like and three interacting proteins. Since interacting proteins have been found to be related to lipid biosynthesis in other organisms, this study contributes to a deeper understanding of the role of DpWRI1-like in lipid synthesis. In conclusion, this study firstly reported three interacting proteins (ACBD6, DCA and TF) of DpWRI1-like related to lipid biosynthesis, and conducted their bioinformatics analyses, which would be conducive to a deep understanding of the function of DpWRI1-like in lipid biosynthesis.
Collapse
Affiliation(s)
- Lingru Ruan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| | - Limei Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| | - Lina Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| | - Jinghui Gu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| | - Yanyan Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| | - Xiuli Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| | - Changhua Shang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| |
Collapse
|
2
|
Xu H, Wang S, Wang X, Zhang P, Zheng Q, Qi C, Liu X, Li M, Liu Y, Liu J. Role of Rab GTPases in Bacteria Escaping from Vesicle Trafficking of Host Cells. J Microbiol 2024; 62:581-590. [PMID: 39212865 DOI: 10.1007/s12275-024-00162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Most bacteria will use their toxins to interact with the host cell, causing damage to the cell and then escaping from it. When bacteria enter the cell, they will be transported via the endosomal pathway. Rab GTPases are involved in bacterial transport as major components of endosomes that bind to their downstream effector proteins. The bacteria manipulate some Rab GTPases, escape the cell, and get to survive. In this review, we will focus on summarizing the many processes of how bacteria manipulate Rab GTPases to control their escape.
Collapse
Affiliation(s)
- Huiling Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - Shengnan Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
- The ShangHai Hanvet Bio-Pharm Co. Ltd., Shanghai, 200135, People's Republic of China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - Pu Zhang
- The Affiliated Taian City Central Hospital of Qingdao University, Tai`an, 271000, Shandong, People's Republic of China
| | - Qi Zheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - ChangXi Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xiaoting Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Muzi Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China.
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Lehman SS, Williamson CD, Tucholski T, Ellis NA, Bouchard S, Jarnik M, Allen M, Nita-Lazar A, Machner MP. The Legionella pneumophila effector DenR hijacks the host NRas proto-oncoprotein to downregulate MAPK signaling. Cell Rep 2024; 43:114033. [PMID: 38568811 PMCID: PMC11141579 DOI: 10.1016/j.celrep.2024.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR interference screen identifies a single L. pneumophila effector, DenR (Lpg1909), required for this process. Recruitment is specific for NRas, while its homologs KRas and HRas are excluded from LCVs. The C-terminal hypervariable tail of NRas is sufficient for recruitment, and interference with either NRas farnesylation or S-acylation sites abrogates recruitment. Intriguingly, we detect markers of active NRas signaling on the LCV, suggesting it acts as a signaling platform. Subsequent phosphoproteomics analyses show that DenR rewires the host NRas signaling landscape, including dampening of the canonical mitogen-activated protein kinase pathway. These results provide evidence for L. pneumophila targeting NRas and suggest a link between NRas GTPase signaling and microbial infection.
Collapse
Affiliation(s)
- Stephanie S Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad D Williamson
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Trisha Tucholski
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Ellis
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Bouchard
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michal Jarnik
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Morgan Allen
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Yang J, Xin C, Huo J, Li X, Dong H, Liu Q, Li R, Liu Y. Rab Geranylgeranyltransferase Subunit Beta as a Potential Indicator to Assess the Progression of Amyotrophic Lateral Sclerosis. Brain Sci 2023; 13:1531. [PMID: 38002490 PMCID: PMC10670085 DOI: 10.3390/brainsci13111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Currently, there is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disorder. Many biomarkers have been proposed, but because ALS is a clinically heterogeneous disease with an unclear etiology, biomarker discovery for ALS has been challenging due to the lack of specificity of these biomarkers. In recent years, the role of autophagy in the development and treatment of ALS has become a research hotspot. In our previous studies, we found that the expression of RabGGTase (low RABGGTB expression and no change in RABGGTA) is lower in the lumbar and thoracic regions of spinal cord motoneurons in SOD1G93A mice compared with WT (wild-type) mice groups, and upregulation of RABGGTB promoted prenylation modification of Rab7, which promoted autophagy to protect neurons by degrading SOD1. Given that RabGGTase is associated with autophagy and autophagy is associated with inflammation, and based on the above findings, since peripheral blood mononuclear cells are readily available from patients with ALS, we proposed to investigate the expression of RabGGTase in peripheral inflammatory cells. METHODS Information and venous blood were collected from 86 patients diagnosed with ALS between January 2021 and August 2023. Flow cytometry was used to detect the expression of RABGGTB in monocytes from peripheral blood samples collected from patients with ALS and healthy controls. Extracted peripheral blood mononuclear cells (PBMCs) were differentiated in vitro into macrophages, and then the expression of RABGGTB was detected by immunofluorescence. RABGGTB levels in patients with ALS were analyzed to determine their impact on disease progression. RESULTS Using flow cytometry in monocytes and immunofluorescence in macrophages, we found that RABGGTB expression in the ALS group was significantly higher than in the control group. Age, sex, original location, disease course, C-reactive protein (CRP), and interleukin-6 (IL-6) did not correlate with the ALS functional rating scale-revised (ALSFRS-R), whereas the RABGGTB level was significantly correlated with the ALSFRS-R. In addition, multivariate analysis revealed a significant correlation between RABGGTB and ALSFRS-R score. Further analysis revealed a significant correlation between RABGGTB expression levels and disease progression levels (ΔFS). CONCLUSIONS The RABGGTB level was significantly increased in patients with ALS compared with healthy controls. An elevated RABGGTB level in patients with ALS is associated with the rate of progression in ALS, suggesting that elevated RABGGTB levels in patients with ALS may serve as an indicator for tracking ALS progression.
Collapse
Affiliation(s)
- Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Cheng Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| |
Collapse
|
5
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
6
|
Chung IYW, Li L, Tyurin O, Gagarinova A, Wibawa R, Li P, Hartland EL, Cygler M. Structural and functional study of Legionella pneumophila effector RavA. Protein Sci 2021; 30:940-955. [PMID: 33660322 DOI: 10.1002/pro.4057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 01/20/2023]
Abstract
Legionella pneumophila is an intracellular pathogen that causes Legionnaire's disease in humans. This bacterium can be found in freshwater environments as a free-living organism, but it is also an intracellular parasite of protozoa. Human infection occurs when inhaled aerosolized pathogen comes into contact with the alveolar mucosa and replicates in alveolar macrophages. Legionella enters the host cell by phagocytosis and redirects the Legionella-containing phagosomes from the phagocytic maturation pathway. These nascent phagosomes fuse with ER-derived secretory vesicles and membranes forming the Legionella-containing vacuole. Legionella subverts many host cellular processes by secreting over 300 effector proteins into the host cell via the Dot/Icm type IV secretion system. The cellular function for many Dot/Icm effectors is still unknown. Here, we present a structural and functional study of L. pneumophila effector RavA (Lpg0008). Structural analysis revealed that the RavA consists of four ~85 residue long α-helical domains with similar folds, which show only a low level of structural similarity to other protein domains. The ~90 residues long C-terminal segment is predicted to be natively unfolded. We show that during L. pneumophila infection of human cells, RavA localizes to the Golgi apparatus and to the plasma membrane. The same localization is observed when RavA is expressed in human cells. The localization signal resides within the C-terminal sequence C409 WTSFCGLF417 . Yeast-two-hybrid screen using RavA as bait identified RAB11A as a potential binding partner. RavA is present in L. pneumophila strains but only distant homologs are found in other Legionella species, where the number of repeats varies.
Collapse
Affiliation(s)
- Ivy Y W Chung
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lei Li
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Oleg Tyurin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Symvivo Corporation, Burnaby, British Columbia, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Raissa Wibawa
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Pengfei Li
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|