1
|
Lushchekina S, Weiner L, Ashani Y, Emrizal R, Firdaus‐Raih M, Silman I, Sussman JL. Why is binding of a divalent metal cation to a structural motif containing four carboxylate residues not accompanied by a conformational change? Protein Sci 2024; 33:e5206. [PMID: 39548604 PMCID: PMC11567836 DOI: 10.1002/pro.5206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024]
Abstract
We earlier showed that Torpedo californica acetylcholinesterase (AChE) contains a cluster of four conserved aspartates that can strongly bind divalent cations, which we named the 4D motif. Binding of the divalent metal cations greatly increases its thermal stability. Here we systematically examined all available crystallographic structures of T. californica AChE. Two additional metal-binding sites were identified, both composed of acidic and histidine residues. Relative binding to the 4D and additional sites was studied using metadynamics simulations. It was observed that in crystal structures devoid of metal ions in the 4D site, the conformation of T. californica AChE is almost identical to that in structures in which it is occupied by a divalent metal ion. Closer examination of the 4D motif reveals that three of the four acidic residues form ion pairs with conserved basic residues surrounding them. We named this new motif the 4A/3B motif. Molecular dynamics with quantum potential simulations was used to quantify the 4D motif's binding strength compared with that of the metal-binding site in the protein fXIIIa, which consists of four aspartates, but is devoid of adjacent cationic residues. Whereas fXIIIa's 4D site, in the absence of a metal cation, expanded significantly in the simulation, that of Torpedo AChE displayed only minor periodic changes in size. Furthermore, the energy of metal ion unbinding from the two sites differs by ca. 10 kcal/mol. We identified several other proteins in the PDB that contain the 4A/3B motif, whose conformations are identical in the presence or absence of a metal ion. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:Protein_Science:4.
Collapse
Affiliation(s)
- Sofya Lushchekina
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Lev Weiner
- Department of Brain SciencesWeizmann Institute of ScienceRehovotIsrael
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Yacov Ashani
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Reeki Emrizal
- Department of Applied Physics, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
| | - Mohd Firdaus‐Raih
- Department of Applied Physics, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
- Institute of Systems BiologyUniversiti Kebangsaan MalaysiaBangiMalaysia
| | - Israel Silman
- Department of Brain SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Joel L. Sussman
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
- Structural Proteomics Unit, Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
2
|
Jiang S, Gu Q, Yu X. Detection of insecticides by Tetronarce californica acetylcholinesterase via expression and in silico analysis. Appl Microbiol Biotechnol 2023; 107:7657-7671. [PMID: 37831186 DOI: 10.1007/s00253-023-12780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
The acetylcholinesterase (AChE) is involved in termination of synaptic transmission at cholinergic synapses and plays a vital role in the insecticide detection and inhibitor screening. Here, we report the heterologous expression of an AChE from Tetronarce californica (TcA) in Escherichia coli (E. coli) as a soluble active protein. TcA was immobilized in calcium alginate beads; the morphology, biochemical properties, and insecticide detection performance of free and immobilized TcA were characterized. Moreover, we used sequence, structure-based approaches, and molecular docking to investigate structural and functional characterization of TcA. The results showed that TcA exhibited a specific activity of 102 U/mg, with optimal activity at pH 8.0 and 30 °C. Immobilized TcA demonstrated superior thermal stability, pH stability, and storage stability compared to the free enzyme. The highest sensitivity of free TcA was observed with trichlorfon, whereas immobilized TcA showed reduced IC50 values towards tested insecticides by 3 to 180-fold. Molecular docking analysis revealed the interaction of trichlorfon, acephate, isoprocarb, λ-cyhalothrin, and fenpropathrin in the active site gorge of TcA, particularly mediated through the formation of hydrogen bonds and π-π stacking. Therefore, TcA expressed heterologously in E. coli is a promising candidate for applications in food safety and environmental analysis. KEY POINTS: • T. californica AChE was expressed solubly in prokaryotic system. • The biochemical properties of free/immobilized enzyme were characterized. • The sensitivity of enzyme to insecticides was evaluated in vitro and in silico.
Collapse
Affiliation(s)
- Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China.
| |
Collapse
|
3
|
Mu X, Yuan S, Zhang D, Lai R, Liao C, Li G. Selective modulation of alkali metal ions on acetylcholinesterase. Phys Chem Chem Phys 2023; 25:30308-30318. [PMID: 37934509 DOI: 10.1039/d3cp02887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Acetylcholinesterase (AChE) is an important hydrolase in cholinergic synapses and a candidate target in the treatment of Alzheimer's disease. The lithium treatment widely used in neurological disorders can alter the AChE activity, yet the underlying mechanism of how the ion species regulate the enzymatic activity remains unclear. In this work, we performed combined quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations and well-tempered metadynamics to understand the modulation of human AChE (hAChE) activity using three alkali metal ions (Li+, Na+, and K+) in different concentrations. Our simulations show that the binding affinity and catalytic activity are affected by different ion species through allosteric ion coordination geometries on the hAChE complex and distant electrostatic screening effect. A Li+ cluster involving D330, E393, and D397 residues and three Li+ ions was found to be highly conserved and can be critical to the enzyme activity. Binding energy calculations indicate that the electrostatic screening from allosterically bound cations can affect the key residues at the catalytic site and active-site gorge, including E199. Furthermore, an increase in ion concentration can lead to lower reactivity, especially for Li+ ions, which exhibit more cation-hAChE contacts than Na+ and K+. The selective ion binding and their preferred modulation on hAChE are highly related to ion species. This work provides a molecular perspective on selective modulation by different ion species of the enzyme catalytic processes.
Collapse
Affiliation(s)
- Xia Mu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Shengwei Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Dinglin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Rui Lai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chenyi Liao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
4
|
Faris A, Edder Y, Louchachha I, Lahcen IA, Azzaoui K, Hammouti B, Merzouki M, Challioui A, Boualy B, Karim A, Hanbali G, Jodeh S. From himachalenes to trans-himachalol: unveiling bioactivity through hemisynthesis and molecular docking analysis. Sci Rep 2023; 13:17653. [PMID: 37848506 PMCID: PMC10582069 DOI: 10.1038/s41598-023-44652-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
In this study, we report the first total hemisynthesis of trans-himachalol sesquiterpene, a stereoisomer of the natural cis-himachalol isolated from Cedrus atlantica essential oils, from himachalenes mixture in five steps. Reactions conditions were optimized and structures of the obtained compounds were confirmed by IR, mass spectra, 1H, and 13C NMR. The synthesized compounds were investigated for potential activities on various isolated smooth muscles and against different neurotransmitters using molecular docking. The results show that the synthesized compounds display high affinities towards the active site of the protein 7B2W and the compounds exhibit promising activities on various isolated smooth muscles and against different neurotransmitters.
Collapse
Affiliation(s)
- A Faris
- Equipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40001, Marrakech, Morocco.
| | - Y Edder
- Equipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40001, Marrakech, Morocco
| | - I Louchachha
- Equipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40001, Marrakech, Morocco
| | - I Ait Lahcen
- Equipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40001, Marrakech, Morocco
| | - K Azzaoui
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
| | - B Hammouti
- Euro-Mediterranean University of Fes, B.P. 15, 30070, Fez, Morocco
| | - M Merzouki
- Laboratoire de Chimie Appliquée et Environnement - Equipe Chimie Organique Macromoléculaire et Phytochimie, Faculté des Sciences, Université Mohammed Ier, 60000, Oujda, Morocco
| | - A Challioui
- Laboratoire de Chimie Appliquée et Environnement - Equipe Chimie Organique Macromoléculaire et Phytochimie, Faculté des Sciences, Université Mohammed Ier, 60000, Oujda, Morocco
| | - B Boualy
- Environmental Sciences and Applied Materials Research Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P. 145, 25000, Khouribga, Morocco
| | - A Karim
- Equipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40001, Marrakech, Morocco
| | - G Hanbali
- Equipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40001, Marrakech, Morocco
| | - S Jodeh
- Department of Chemistry, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| |
Collapse
|
5
|
Wang JQ, He ZC, Peng W, Han TH, Mei Q, Wang QZ, Ding F. Dissecting the Enantioselective Neurotoxicity of Isocarbophos: Chiral Insight from Cellular, Molecular, and Computational Investigations. Chem Res Toxicol 2023; 36:535-551. [PMID: 36799861 DOI: 10.1021/acs.chemrestox.2c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Chiral organophosphorus pollutants are found abundantly in the environment, but the neurotoxicity risks of these asymmetric chemicals to human health have not been fully assessed. Using cellular, molecular, and computational toxicology methods, this story is to explore the static and dynamic toxic actions and its stereoselective differences of chiral isocarbophos toward SH-SY5Y nerve cells mediated by acetylcholinesterase (AChE) and further dissect the microscopic basis of enantioselective neurotoxicity. Cell-based assays indicate that chiral isocarbophos exhibits strong enantioselectivity in the inhibition of the survival rates of SH-SY5Y cells and the intracellular AChE activity, and the cytotoxicity of (S)-isocarbophos is significantly greater than that of (R)-isocarbophos. The inhibitory effects of isocarbophos enantiomers on the intracellular AChE activity are dose-dependent, and the half-maximal inhibitory concentrations (IC50) of (R)-/(S)-isocarbophos are 6.179/1.753 μM, respectively. Molecular experiments explain the results of cellular assays, namely, the stereoselective toxic actions of isocarbophos enantiomers on SH-SY5Y cells are stemmed from the differences in bioaffinities between isocarbophos enantiomers and neuronal AChE. In the meantime, the modes of neurotoxic actions display that the key amino acid residues formed strong noncovalent interactions are obviously different, which are related closely to the molecular structural rigidity of chiral isocarbophos and the conformational dynamics and flexibility of the substrate binding domain in neuronal AChE. Still, we observed that the stable "sandwich-type π-π stacking" fashioned between isocarbophos enantiomers and aromatic Trp-86 and Tyr-337 residues is crucial, which notably reduces the van der Waals' contribution (ΔGvdW) in the AChE-(S)-isocarbophos complexes and induces the disparities in free energies during the enantioselective neurotoxic conjugations and thus elucidating that (S)-isocarbophos mediated by synaptic AChE has a strong toxic effect on SH-SY5Y neuronal cells. Clearly, this effort can provide experimental insights for evaluating the neurotoxicity risks of human exposure to chiral organophosphates from macroscopic to microscopic levels.
Collapse
Affiliation(s)
- Jia-Qi Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Zhi-Cong He
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tian-Hao Han
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- School of Environment, Nanjing University, Nanjing 210023, China
| | - Qiong Mei
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
- School of Land Engineering, Chang'an University, Xi'an 710054, China
| | - Qi-Zhao Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Fei Ding
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| |
Collapse
|
6
|
Ghani NSA, Emrizal R, Moffit SM, Hamdani HY, Ramlan EI, Firdaus-Raih M. GrAfSS: a webserver for substructure similarity searching and comparisons in the structures of proteins and RNA. Nucleic Acids Res 2022; 50:W375-W383. [PMID: 35639505 PMCID: PMC9252811 DOI: 10.1093/nar/gkac402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 12/03/2022] Open
Abstract
The GrAfSS (Graph theoretical Applications for Substructure Searching) webserver is a platform to search for three-dimensional substructures of: (i) amino acid side chains in protein structures; and (ii) base arrangements in RNA structures. The webserver interfaces the functions of five different graph theoretical algorithms – ASSAM, SPRITE, IMAAAGINE, NASSAM and COGNAC – into a single substructure searching suite. Users will be able to identify whether a three-dimensional (3D) arrangement of interest, such as a ligand binding site or 3D motif, observed in a protein or RNA structure can be found in other structures available in the Protein Data Bank (PDB). The webserver also allows users to determine whether a protein or RNA structure of interest contains substructural arrangements that are similar to known motifs or 3D arrangements. These capabilities allow for the functional annotation of new structures that were either experimentally determined or computationally generated (such as the coordinates generated by AlphaFold2) and can provide further insights into the diversity or conservation of functional mechanisms of structures in the PDB. The computed substructural superpositions are visualized using integrated NGL viewers. The GrAfSS server is available at http://mfrlab.org/grafss/.
Collapse
Affiliation(s)
- Nur Syatila Ab Ghani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Reeki Emrizal
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Sabrina Mohamed Moffit
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hazrina Yusof Hamdani
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | | | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
7
|
Peng W, Wang T, Liang XR, Yang YS, Wang QZ, Cheng HF, Peng YK, Ding F. Characterizing the potentially neuronal acetylcholinesterase reactivity toward chiral pyraclofos: Enantioselective insights from spectroscopy, in silico docking, molecular dynamics simulation and per-residue energy decomposition studies. J Mol Graph Model 2021; 110:108069. [PMID: 34773872 DOI: 10.1016/j.jmgm.2021.108069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 10/20/2022]
Abstract
Chiral organophosphorus agents are distributed ubiquitously in the environment, but the neuroactivity of these asymmetric chemicals to humans remains uncertain. This scenario was to explore the stereoselective neurobiological response of human acetylcholinesterase (AChE) to chiral pyraclofos at the enantiomeric scale, and then decipher the microscopic basis of enantioselective neurotoxicity of pyraclofos enantiomers. The results indicated that (R)-/(S)-pyraclofos can form the bioconjugates with AChE with a stoichiometric ratio of 1:1, but the neuronal affinity of (R)-pyraclofos (K = 6.31 × 104 M-1) with AChE was larger than that of (S)-pyraclofos (K = 1.86 × 104 M-1), and significant enantioselectivity was existed in the biochemical reaction. The modes of neurobiological action revealed that pyraclofos enantiomers were situated at the substrate binding domain, and the strength of the overall noncovalent bonds between (S)-pyraclofos and the residues was weaker than that of (R)-pyraclofos, resulting in the high inhibitory effect of (R)-pyraclofos toward the activity of AChE. Dynamic enantioselective biointeractions illustrated that the intervention of inherent conformational flexibility in the AChE-(R)-pyraclofos was greater than that of the AChE-(S)-pyraclofos, which arises from the big spatial displacement and the conformational flip of the binding domain composed of the residues Thr-64~Asn-89, Gly-122~Asp-134, and Thr-436~Tyr-449. Energy decomposition exhibited that the Gibbs free energies of the AChE-(R)-/(S)-pyraclofos were ΔG° = -37.4/-30.2 kJ mol-1, respectively, and the disparity comes from the electrostatic energy during the stereoselective neurochemical reactions. Quantitative conformational analysis further confirmed the atomic-scale computational chemistry conclusions, and the perturbation of (S)-pyraclofos on the AChE's ordered conformation was lower than that of (R)-pyraclofos, which is germane to the interaction energies of the crucial residues, e.g. Tyr-124, Tyr-337, Asp-74, Trp-86, and Tyr-119. Evidently, this attempt will contribute mechanistic information to uncovering the neurobiological effects of chiral organophosphates on the body.
Collapse
Affiliation(s)
- Wei Peng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China; State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tao Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Xiang-Rong Liang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Yu-Sen Yang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Qi-Zhao Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Hong-Fei Cheng
- School of Earth Science and Resources, Chang'an University, Xi'an, 710054, China
| | - Yu-Kui Peng
- Xining Center for Agricultural Product Quality and Safety Testing, Xining, 810016, China
| | - Fei Ding
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China; Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Silman I, Shnyrov VL, Ashani Y, Roth E, Nicolas A, Sussman JL, Weiner L. Torpedo californica acetylcholinesterase is stabilized by binding of a divalent metal ion to a novel and versatile 4D motif. Protein Sci 2021; 30:966-981. [PMID: 33686648 PMCID: PMC8040873 DOI: 10.1002/pro.4061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/07/2022]
Abstract
Stabilization of Torpedo californica acetylcholinesterase by the divalent cations Ca+2, Mg+2, and Mn+2 was investigated. All three substantially protect the enzyme from thermal inactivation. Electron paramagnetic resonance revealed one high‐affinity binding site for Mn+2 and several much weaker sites. Differential scanning calorimetry showed a single irreversible thermal transition. All three cations raise both the temperature of the transition and the activation energy, with the transition becoming more cooperative. The crystal structures of the Ca+2 and Mg+2 complexes with Torpedo acetylcholinesterase were solved. A principal binding site was identified. In both cases, it consists of four aspartates (a 4D motif), within which the divalent ion is embedded, together with several water molecules. It makes direct contact with two of the aspartates, and indirect contact, via waters, with the other two. The 4D motif has been identified in 31 acetylcholinesterase sequences and 28 butyrylcholinesterase sequences. Zebrafish acetylcholinesterase also contains the 4D motif; it, too, is stabilized by divalent metal ions. The ASSAM server retrieved 200 other proteins that display the 4D motif, in many of which it is occupied by a divalent cation. It is a very versatile motif, since, even though tightly conserved in terms of RMSD values, it can contain from one to as many as three divalent metal ions, together with a variable number of waters. This novel motif, which binds primarily divalent metal ions, is shared by a broad repertoire of proteins. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Protein_Science:3. PDB‐ID(s): 7B38, 7B8E and 7B2W;
Collapse
Affiliation(s)
- Israel Silman
- Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
| | - Valery L. Shnyrov
- Department of Biochemistry and Molecular BiologyUniversidad de SalamancaSalamancaSpain
| | - Yacov Ashani
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Esther Roth
- Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
| | - Anne Nicolas
- Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Joel L. Sussman
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
- Structural Proteomics UnitWeizmann Institute of ScienceRehovotIsrael
| | - Lev Weiner
- Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|