1
|
Hsueh YP. Signaling in autism: Relevance to nutrients and sex. Curr Opin Neurobiol 2024; 90:102962. [PMID: 39731919 DOI: 10.1016/j.conb.2024.102962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/11/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024]
Abstract
Autism spectrum disorders (ASD) are substantially heterogeneous neuropsychiatric conditions with over a thousand associated genetic factors and various environmental influences, such as infection and nutrition. Additionally, males are four times more likely than females to be affected. This heterogeneity underscores the need to uncover common molecular features within ASD. Recent studies have revealed interactions among genetic predispositions, environmental factors, and sex that may be critical to ASD etiology. This review focuses on emerging evidence for the impact of nutrients-particularly zinc and amino acids-on ASD, as demonstrated in mouse models and human studies. These nutrients have been shown to influence synaptic signaling, dendritic spine formation, and behaviors linked to autism. Furthermore, sex-based differences in nutritional requirements, especially for zinc and amino acids, may contribute to the observed male bias in autism, indicating that interactions between nutrients and genetic factors could be integral to understanding and potentially mitigating ASD symptoms.
Collapse
Affiliation(s)
- Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC.
| |
Collapse
|
2
|
De Los Reyes DA, Karkoutly MY, Zhang Y. Synapse-associated protein 102 - a highly mobile MAGUK predominate in early synaptogenesis. Front Mol Neurosci 2023; 16:1286134. [PMID: 37928066 PMCID: PMC10620527 DOI: 10.3389/fnmol.2023.1286134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Neurodevelopmental and neurodegenerative disorders are primarily characterized by serious structural and functional changes in excitatory glutamatergic synapses in the brain, resulting in many synaptic deficits and aberrant synapse loss. It is a big challenge to reverse these synaptic impairments as a treatment for neurological diseases in the field. Extensive research on glutamate receptors as therapeutic targets has been done but with little success shown in human trials. PSD-95-like MAGUK proteins perform a pivotal role in regulating the trafficking and stability of glutamate receptors that are important to postsynaptic structure and function. MAGUK and MAGUK-modulated synaptic pathways are becoming promising candidates for developing therapeutic targets. As a MAGUK protein, SAP102 is not understood well compared to PSD-95. Here, we review the current research on SAP102 including its synaptic functions and regulation, especially its expression and functions in the early stage of synaptogenesis and the association with neurodevelopmental disorders. This review presents valuable information for future structural and functional studies of SAP102 to reveal its roles in young and mature neurons. It provides clues for developing potential remedies to reverse synaptic impairments and strategies to grow new neurons.
Collapse
Affiliation(s)
| | | | - Yonghong Zhang
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
3
|
Zhang Y, Fang X, Ascota L, Li L, Guerra L, Vega A, Salinas A, Gonzalez A, Garza C, Tsin A, Hell JW, Ames JB. Zinc-chelating postsynaptic density-95 N-terminus impairs its palmitoyl modification. Protein Sci 2021; 30:2246-2257. [PMID: 34538002 DOI: 10.1002/pro.4187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
Chemical synaptic transmission represents the most sophisticated dynamic process and is highly regulated with optimized neurotransmitter balance. Imbalanced transmitters can lead to transmission impairments, for example, intracellular zinc accumulation is a hallmark of degenerating neurons. However, the underlying mechanisms remain elusive. Postsynaptic density protein-95 (PSD-95) is a primary postsynaptic membrane-associated protein and the major scaffolding component in the excitatory postsynaptic densities, which performs substantial functions in synaptic development and maturation. Its membrane association induced by palmitoylation contributes largely to its regulatory functions at postsynaptic sites. Unlike other structural domains in PSD-95, the N-terminal region (PSD-95NT) is flexible and interacts with various targets, which modulates its palmitoylation of two cysteines (C3/C5) and glutamate receptor distributions in postsynaptic densities. PSD-95NT contains a putative zinc-binding motif (C2H2) with undiscovered functions. This study is the first effort to investigate the interaction between Zn2+ and PSD-95NT. The NMR titration of 15 N-labeled PSD-95NT by ZnCl2 was performed and demonstrated Zn2+ binds to PSD-95NT with a binding affinity (Kd ) in the micromolar range. The zinc binding was confirmed by fluorescence and mutagenesis assays, indicating two cysteines and two histidines (H24, H28) are critical residues for the binding. These results suggested the concentration-dependent zinc binding is likely to influence PSD-95 palmitoylation since the binding site overlaps the palmitoylation sites, which was verified by the mimic PSD-95 palmitoyl modification and intact cell palmitoylation assays. This study reveals zinc as a novel modulator for PSD-95 postsynaptic membrane association by chelating its N-terminal region, indicative of its importance in postsynaptic signaling.
Collapse
Affiliation(s)
- Yonghong Zhang
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Xiaoqian Fang
- Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Luis Ascota
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA.,Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Libo Li
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA.,Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, China
| | - Lili Guerra
- Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Audrey Vega
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Amanda Salinas
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Andrea Gonzalez
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Claudia Garza
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Andrew Tsin
- Department of Molecular Science, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, California, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, California, USA
| |
Collapse
|