1
|
Bourgeois B, Madl T. Methods to Study Structure and Dynamics of FOXO Proteins. Methods Mol Biol 2025; 2871:85-98. [PMID: 39565580 DOI: 10.1007/978-1-0716-4217-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
FOXOs are highly dynamic transcription factors consisting of one conserved DNA-binding domain (forkhead domain) as well as intrinsically disordered regions (IDRs) at the N- and C-termini. These IDRs are essential and regulate transcriptional activity of FOXOs by serving as interaction platform for cofactors. Furthermore, the IDRs are involved in intra- and intermolecular homeotypic and heterotypic interactions between FOXOs and in turn mediate FOXO auto-inhibition and condensate formation. Here, we describe generalizable methods to study the structure and dynamics of FOXO proteins in vitro using a combination of biophysical techniques, in particular nuclear magnetic resonance spectroscopy. These methods can serve as a blueprint for the investigation of other IDR-containing transcription factors.
Collapse
Affiliation(s)
- Benjamin Bourgeois
- Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
2
|
Guo X, Peng K, He Y, Xue L. Mechanistic regulation of FOXO transcription factors in the nucleus. Biochim Biophys Acta Rev Cancer 2024; 1879:189083. [PMID: 38309444 DOI: 10.1016/j.bbcan.2024.189083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
FOXO proteins represent evolutionarily conserved transcription factors (TFs) that play critical roles in responding to various physiological signals or pathological stimuli, either through transcription-dependent or -independent mechanisms. Dysfunction of these proteins have been implicated in numerous diseases, including cancer. Although the regulation of FOXO TFs shuttling between the cytoplasm and the nucleus has been extensively studied and reviewed, there's still a lack of a comprehensive review focusing on the intricate interactions between FOXO, DNA, and cofactors in the regulation of gene expression. In this review, we aim to summarize recent advances and provide a detailed understanding of the mechanism underlying FOXO proteins binding to target DNA. Additionally, we will discuss the challenges associated with pharmacological approaches in modulating FOXO function, and explore the dynamic association between TF, DNA, and RNA on chromatin. This review will contribute to a better understanding of mechanistic regulations of eukaryotic TFs within the nucleus.
Collapse
Affiliation(s)
- Xiaowei Guo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China.
| | - Kai Peng
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yanwen He
- Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Bakker M, Sørensen HV, Skepö M. Exploring the Role of Globular Domain Locations on an Intrinsically Disordered Region of p53: A Molecular Dynamics Investigation. J Chem Theory Comput 2024; 20:1423-1433. [PMID: 38230670 PMCID: PMC10867847 DOI: 10.1021/acs.jctc.3c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
The pre-tetramerization loop (PTL) of the human tumor suppressor protein p53 is an intrinsically disordered region (IDR) necessary for the tetramerization process, and its flexibility contributes to the essential conformational changes needed. Although the IDR can be accurately simulated in the traditional manner of molecular dynamics (MD) with the end-to-end distance (EEdist) unhindered, we sought to explore the effects of restraining the EEdist to the values predicted by electron microscopy (EM) and other distances. Simulating the PTL trajectory with a restrained EEdist , we found an increased agreement of nuclear magnetic resonance (NMR) chemical shifts with experiments. Additionally, we observed a plethora of secondary structures and contacts that only appear when the trajectory is restrained. Our findings expand the understanding of the tetramerization of p53 and provide insight into how mutations could make the protein impotent. In particular, our findings demonstrate the importance of restraining the EEdist in studying IDRs and how their conformations change under different conditions. Our results provide a better understanding of the PTL and the conformational dynamics of IDRs in general, which are useful for further studies regarding mutations and their effects on the activity of p53.
Collapse
Affiliation(s)
- Michael
J. Bakker
- Faculty
of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Henrik V. Sørensen
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
- MAX
IV Laboratory, Lund Institute of Advanced
Neutron and X-ray Science, Scheelevägen 19, SE-223 770 Lund, Sweden
| | - Marie Skepö
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
- LINXS
- Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-233 70 Lund, Sweden
| |
Collapse
|
4
|
Sebák F, Ecsédi P, Nyitray L, Bodor A. Assignment of the disordered, proline-rich N-terminal domain of the tumour suppressor p53 protein using 1H N and 1H α-detected NMR measurements. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:309-314. [PMID: 37861971 PMCID: PMC10630184 DOI: 10.1007/s12104-023-10160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Protein p53 is mostly known for playing a key role in tumour suppression, and mutations in the p53 gene are amongst the most frequent genomic events accompanying oncogenic transformation. Continuous research is conducted to target disordered proteins/protein regions for cancer therapy, for which atomic level information is also necessary. The disordered N-terminal part of p53 contains the transactivation and the proline-rich domains-which besides being abundant in proline residues-contains repetitive Pro-Ala motifs. NMR assignment of such repetitive, proline-rich regions is challenging due to the lack of amide protons in the 1HN-detected approaches, as well as due to the small chemical shift dispersion. In the present study we perform the full assignment of the p531-100 region by applying a combination of 1HN- and 1Hα-detected NMR experiments. We also show the increased information content when using real-time homo- and heteronuclear decoupled acquisition schemes. On the other hand, we highlight the presence of minor proline species, and using Pro-selective experiments we determine the corresponding cis or trans conformation. Secondary chemical shifts for (Cα-Cβ) atoms indicate the disordered nature of this region, with expected helical tendency for the TAD1 region. As the role of the proline-rich domain is yet not well understood our results can contribute to further successful investigations.
Collapse
Affiliation(s)
- Fanni Sebák
- Analytical and BioNMR Laboratory, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest, 1117, Hungary
| | - Péter Ecsédi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary
| | - Andrea Bodor
- Analytical and BioNMR Laboratory, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest, 1117, Hungary.
| |
Collapse
|
5
|
Guo M, Xiong Y. Sex-biased genome-editing effects of CRISPR-Cas9 across cancer cells dependent on p53 status. iScience 2023; 26:107529. [PMID: 37636042 PMCID: PMC10448110 DOI: 10.1016/j.isci.2023.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/12/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
The CRISPR-Cas9 system has emerged as the dominant technology for gene editing and clinical applications. One major concern is its off-target effect after the introduction of exogenous CRISPR-Cas9 into cells. Several previous studies have investigated either Cas9 alone or CRISPR-Cas9 interactions with p53. Here, we reanalyzed previously reported data of p53-associated Cas9 activities and observed large significant sex differences between p53-wildtype and p53-mutant cells. To expand the impact of this finding, we further examined all protein-coding genes for sex-specific dependencies in a large-scale CRISPR-Cas9 screening dataset from the DepMap project. We highlighted the p53-dependent sex bias of gene knockouts (including MYC, PIK3CA, KAT2B, KDM4E, SUV39H1, FANCB, TLR7, and APC2) across cancer types and potential mechanisms (mediated by transcriptional factors, including SOX9, FOXO4, LEF1, and RYBP) underlying this phenomenon. Our results suggest that the p53-dependent sex bias may need to be considered in future clinical applications of CRISPR-Cas9, especially in cancer.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Kohoutova K, Dočekal V, Ausserlechner MJ, Kaiser N, Tekel A, Mandal R, Horvath M, Obsilova V, Vesely J, Hagenbuchner J, Obsil T. Lengthening the Guanidine-Aryl Linker of Phenylpyrimidinylguanidines Increases Their Potency as Inhibitors of FOXO3-Induced Gene Transcription. ACS OMEGA 2022; 7:34632-34646. [PMID: 36188303 PMCID: PMC9521028 DOI: 10.1021/acsomega.2c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Increased FOXO3 nuclear localization is involved in neuroblastoma chemoresistance and tumor angiogenesis. Accordingly, FOXO3 inhibition is a promising strategy for boosting antitumor immune responses and suppressing FOXO3-mediated therapy resistance in cancer cells. However, no FOXO3 inhibitors are currently available for clinical use. Nevertheless, we have recently identified (4-propoxy)phenylpyrimidinylguanidine as a FOXO3 inhibitor in cancer cells in the low micromolar range. Here, we report the synthesis and structure-activity relationship study of a small library of its derivatives, some of which inhibit FOXO3-induced gene transcription in cancer cells in a submicromolar range and are thus 1 order of magnitude more potent than their parent compound. By NMR and molecular docking, we showed that these compounds differ in their interactions with the DNA-binding domain of FOXO3. These results may provide a foundation for further optimizing (4-propoxy)phenylpyrimidinylguanidine and developing therapeutics for inhibiting the activity of forkhead box (FOX) transcription factors and their interactions with other binding partners.
Collapse
Affiliation(s)
- Klara Kohoutova
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Vojtěch Dočekal
- Department
of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | | | - Nora Kaiser
- Department
of Pediatrics I, Medical University Innsbruck, Innrain 66, Innsbruck 6020, Austria
| | - Andrej Tekel
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Raju Mandal
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Matej Horvath
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Veronika Obsilova
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Jan Vesely
- Department
of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Judith Hagenbuchner
- Department
of Pediatrics II, Medical University Innsbruck, Innrain 66, Innsbruck 6020, Austria
| | - Tomas Obsil
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| |
Collapse
|