1
|
Pistofidis A, Ma P, Li Z, Munro K, Houk KN, Schmeing TM. Structures and mechanism of condensation in non-ribosomal peptide synthesis. Nature 2025; 638:270-278. [PMID: 39662504 DOI: 10.1038/s41586-024-08417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are megaenzymes responsible for the biosynthesis of many clinically important natural products, from early modern medicines (penicillin, bacitracin) to current blockbuster drugs (cubicin, vancomycin) and newly approved therapeutics (rezafungin)1,2. The key chemical step in these biosyntheses is amide bond formation between aminoacyl building blocks, catalysed by the condensation (C) domain3. There has been much debate over the mechanism of this reaction3-12. NRPS condensation has been difficult to fully characterize because it is one of many successive reactions in the NRPS synthetic cycle and because the canonical substrates are each attached transiently as thioesters to mobile carrier domains, which are often both contained in the same very flexible protein as the C domain. Here we have produced a dimodular NRPS protein in two parts, modified each with appropriate non-hydrolysable substrate analogues13,14, assembled the two parts with protein ligation15, and solved the structures of the substrate- and product-bound states. The structures show the precise orientation of the megaenzyme preparing the nucleophilic attack of its key chemical step, and enable biochemical assays and quantum mechanical simulations to precisely interrogate the reaction. These data suggest that NRPS C domains use a concerted reaction mechanism, whereby the active-site histidine likely functions not as a general base, but as a crucial stabilizing hydrogen bond acceptor for the developing ammonium.
Collapse
Affiliation(s)
- Angelos Pistofidis
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Zihao Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kim Munro
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
2
|
Sun J, Boyle AL, Brünle S, Ubbink M. A low-barrier proton shared between two aspartates acts as a conformational switch that changes the substrate specificity of the β-lactamase BlaC. Int J Biol Macromol 2024; 278:134665. [PMID: 39134195 DOI: 10.1016/j.ijbiomac.2024.134665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Serine β-lactamases inactivate β-lactam antibiotics in a two-step mechanism comprising acylation and deacylation. For the deacylation step, a water molecule is activated by a conserved glutamate residue to release the adduct from the enzyme. The third-generation cephalosporin ceftazidime is a poor substrate for the class A β-lactamase BlaC from Mycobacterium tuberculosis but it can be hydrolyzed faster when the active site pocket is enlarged, as was reported for mutant BlaC P167S. The conformational change in the Ω-loop of the P167S mutant displaces the conserved glutamate (Glu166), suggesting it is not required for deacylation of the ceftazidime adduct. Here, we report the characterization of wild type BlaC and BlaC E166A at various pH values. The presence of Glu166 strongly enhances activity against nitrocefin but not ceftazidime, indicating it is indeed not required for deacylation of the adduct of the latter substrate. At high pH wild type BlaC was found to exist in two states, one of which converts ceftazidime much faster, resembling the open state previously reported for the BlaC mutant P167S. The pH-dependent switch between the closed and open states is caused by the loss at high pH of a low-barrier hydrogen bond, a proton shared between Asp172 and Asp179. These results illustrate how readily shifts in substrate specificity can occur as a consequence of subtle changes in protein structure.
Collapse
Affiliation(s)
- Jing Sun
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Steffen Brünle
- Biophysical Structure Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
3
|
Qin Z, Yuan B, Qu G, Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem Commun (Camb) 2024; 60:10451-10463. [PMID: 39210728 DOI: 10.1039/d4cc01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biocatalysts that are eco-friendly, sustainable, and highly specific have great potential for applications in the production of fine chemicals, food, detergents, biofuels, pharmaceuticals, and more. However, due to factors such as low activity, narrow substrate scope, poor thermostability, or incorrect selectivity, most natural enzymes cannot be directly used for large-scale production of the desired products. To overcome these obstacles, protein engineering methods have been developed over decades and have become powerful and versatile tools for adapting enzymes with improved catalytic properties or new functions. The vastness of the protein sequence space makes screening a bottleneck in obtaining advantageous mutated enzymes in traditional directed evolution. In the realm of mathematics, there are two major constraints in the protein sequence space: (1) the number of residue substitutions (M); and (2) the number of codons encoding amino acids as building blocks (N). This feature review highlights protein engineering strategies to reduce screening efforts from two dimensions by reducing the numbers M and N, and also discusses representative seminal studies of rationally engineered natural enzymes to deliver new catalytic functions.
Collapse
Affiliation(s)
- Zongmin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| |
Collapse
|
4
|
Lanza L, Rabe von Pappenheim F, Bjarnesen D, Leogrande C, Paul A, Krug L, Tittmann K, Müller M. Identification and Characterization of Thiamine Diphosphate-Dependent Lyases with an Unusual CDG Motif. Angew Chem Int Ed Engl 2024; 63:e202404045. [PMID: 38874074 DOI: 10.1002/anie.202404045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
The thiamine diphosphate (ThDP)-binding motif, characterized by the canonical GDG(X)24-27N sequence, is highly conserved among ThDP-dependent enzymes. We investigated a ThDP-dependent lyase (JanthE from Janthinobacterium sp. HH01) with an unusual cysteine (C458) replacing the first glycine of this motif. JanthE exhibits a high substrate promiscuity and accepts long aliphatic α-keto acids as donors. Sterically hindered aromatic aldehydes or non-activated ketones are acceptor substrates, giving access to a variety of secondary and tertiary alcohols as carboligation products. The crystal structure solved at a resolution of 1.9 Å reveals that C458 is not primarily involved in cofactor binding as previously thought for the canonical glycine. Instead, it coordinates methionine 406, thus ensuring the integrity of the active site and the enzyme activity. In addition, we have determined the long-sought genuine tetrahedral intermediates formed with pyruvate and 2-oxobutyrate in the pre-decarboxylation states and deciphered the atomic details for their stabilization in the active site. Collectively, we unravel an unexpected role for the first residue of the ThDP-binding motif and unlock a family of lyases that can perform valuable carboligation reactions.
Collapse
Affiliation(s)
- Lucrezia Lanza
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg im Breisgau, Germany
| | - Fabian Rabe von Pappenheim
- Department of Molecular Enzymology, Georg-August Universität Göttingen, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Daniela Bjarnesen
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg im Breisgau, Germany
| | - Camilla Leogrande
- Department of Molecular Enzymology, Georg-August Universität Göttingen, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandra Paul
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg im Breisgau, Germany
| | - Leonhard Krug
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg im Breisgau, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, Georg-August Universität Göttingen, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
Chikunova A, Manley MP, Heijjer CN, Drenth CS, Cramer-Blok AJ, Ahmad MUD, Perrakis A, Ubbink M. Conserved proline residues prevent dimerization and aggregation in the β-lactamase BlaC. Protein Sci 2024; 33:e4972. [PMID: 38533527 DOI: 10.1002/pro.4972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Evolution leads to conservation of amino acid residues in protein families. Conserved proline residues are usually considered to ensure the correct folding and to stabilize the three-dimensional structure. Surprisingly, proline residues that are highly conserved in class A β-lactamases were found to tolerate various substitutions without large losses in enzyme activity. We investigated the roles of three conserved prolines at positions 107, 226, and 258 in the β-lactamase BlaC from Mycobacterium tuberculosis and found that mutations can lead to dimerization of the enzyme and an overall less stable protein that is prone to aggregate over time. For the variant Pro107Thr, the crystal structure shows dimer formation resembling domain swapping. It is concluded that the proline substitutions loosen the structure, enhancing multimerization. Even though the enzyme does not lose its properties without the conserved proline residues, the prolines ensure the long-term structural integrity of the enzyme.
Collapse
Affiliation(s)
- A Chikunova
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - M P Manley
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - C N Heijjer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - C S Drenth
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - A J Cramer-Blok
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - M Ud Din Ahmad
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M Ubbink
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Department of Infectious Diseases, Imperial College, London, UK
- Zocdoc, New York City, New York, USA
- ZoBio BV, Leiden, The Netherlands
| |
Collapse
|
6
|
Blake KS, Kumar H, Loganathan A, Williford EE, Diorio-Toth L, Xue YP, Tang WK, Campbell TP, Chong DD, Angtuaco S, Wencewicz TA, Tolia NH, Dantas G. Sequence-structure-function characterization of the emerging tetracycline destructase family of antibiotic resistance enzymes. Commun Biol 2024; 7:336. [PMID: 38493211 PMCID: PMC10944477 DOI: 10.1038/s42003-024-06023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Tetracycline destructases (TDases) are flavin monooxygenases which can confer resistance to all generations of tetracycline antibiotics. The recent increase in the number and diversity of reported TDase sequences enables a deep investigation of the TDase sequence-structure-function landscape. Here, we evaluate the sequence determinants of TDase function through two complementary approaches: (1) constructing profile hidden Markov models to predict new TDases, and (2) using multiple sequence alignments to identify conserved positions important to protein function. Using the HMM-based approach we screened 50 high-scoring candidate sequences in Escherichia coli, leading to the discovery of 13 new TDases. The X-ray crystal structures of two new enzymes from Legionella species were determined, and the ability of anhydrotetracycline to inhibit their tetracycline-inactivating activity was confirmed. Using the MSA-based approach we identified 31 amino acid positions 100% conserved across all known TDase sequences. The roles of these positions were analyzed by alanine-scanning mutagenesis in two TDases, to study the impact on cell and in vitro activity, structure, and stability. These results expand the diversity of TDase sequences and provide valuable insights into the roles of important residues in TDases, and flavin monooxygenases more broadly.
Collapse
Affiliation(s)
- Kevin S Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hirdesh Kumar
- Host-Pathogen Interactions and Structural Vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Anisha Loganathan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily E Williford
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yao-Peng Xue
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wai Kwan Tang
- Host-Pathogen Interactions and Structural Vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tayte P Campbell
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David D Chong
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Angtuaco
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Radojković M, Ubbink M. Positive epistasis drives clavulanic acid resistance in double mutant libraries of BlaC β-lactamase. Commun Biol 2024; 7:197. [PMID: 38368480 PMCID: PMC10874438 DOI: 10.1038/s42003-024-05868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/19/2024] Open
Abstract
Phenotypic effects of mutations are highly dependent on the genetic backgrounds in which they occur, due to epistatic effects. To test how easily the loss of enzyme activity can be compensated for, we screen mutant libraries of BlaC, a β-lactamase from Mycobacterium tuberculosis, for fitness in the presence of carbenicillin and the inhibitor clavulanic acid. Using a semi-rational approach and deep sequencing, we prepare four double-site saturation libraries and determine the relative fitness effect for 1534/1540 (99.6%) of the unique library members at two temperatures. Each library comprises variants of a residue known to be relevant for clavulanic acid resistance as well as residue 105, which regulates access to the active site. Variants with greatly improved fitness were identified within each library, demonstrating that compensatory mutations for loss of activity can be readily found. In most cases, the fittest variants are a result of positive epistasis, indicating strong synergistic effects between the chosen residue pairs. Our study sheds light on a role of epistasis in the evolution of functional residues and underlines the highly adaptive potential of BlaC.
Collapse
Affiliation(s)
- Marko Radojković
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
8
|
Ma D, Cheng Z, Han L, Guo J, Peplowski L, Zhou Z. Structure-oriented engineering of nitrile hydratase: Reshaping of substrate access tunnel and binding pocket for efficient synthesis of cinnamamide. Int J Biol Macromol 2024; 254:127800. [PMID: 37918589 DOI: 10.1016/j.ijbiomac.2023.127800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Cinnamamide and its derivatives are the most common and important building blocks widely present in natural products. Currently, nitrile hydratase (NHase, EC 4.2.1.84) has been widely used in large-scale industrial production of nicotinamide and acrylamide, while its catalytic activity is extremely low or inactive for bulky nitrile substrates such as cinnamonitrile. Therefore, beneficial variant βF37P/L48P/F51N were obtained from PtNHase of Pseudonocardia thermophila JCM3095 by reshaping of substrate access tunnel and binding pocket, which exhibited 14.88-fold improved catalytic efficiency compared to the wild-type PtNHase. Structure analysis, molecular dynamics simulations and dynamical cross-correlation matrix (DCCM) analysis revealed that the introduced mutations enlarged the substrate access tunnel and binding pocket, enhanced overall anti-correlated movements of enzymes, which would promote product release during the dynamic process of catalysis. In a hydration process, the complete conversion of 5 mM cinnamonitrile was achieved by βF37P/L48P/F51N in a 50 mL reaction, with cinnamamide yield of almost 100 % and productivity of 0.736 g L-1 h-1. The study demonstrates the co-evolution of substrate access tunnel and binding pocket is an effective strategy, and provides a valuable reference for future research. Furthermore, NHases have huge potential for catalyzing bulky nitriles to form corresponding amides in large-scale industrial production.
Collapse
Affiliation(s)
- Dong Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland.
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu, China.
| |
Collapse
|
9
|
van Alen I, Chikunova A, van Zanten DB, de Block AA, Timmer M, Brünle S, Ubbink M. Asp179 in the class A β-lactamase from Mycobacterium tuberculosis is a conserved yet not essential residue due to epistasis. FEBS J 2023; 290:4933-4949. [PMID: 37335937 DOI: 10.1111/febs.16892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Conserved residues are often considered essential for function, and substitutions in such residues are expected to have a negative influence on the properties of a protein. However, mutations in a few highly conserved residues of the β-lactamase from Mycobacterium tuberculosis, BlaC, were shown to have no or only limited negative effect on the enzyme. One such mutant, D179N, even conveyed increased ceftazidime resistance upon bacterial cells, while displaying good activity against penicillins. The crystal structures of BlaC D179N in resting state and in complex with sulbactam reveal subtle structural changes in the Ω-loop as compared to the structure of wild-type BlaC. Introducing this mutation in four other β-lactamases, CTX-M-14, KPC-2, NMC-A and TEM-1, resulted in decreased antibiotic resistance for penicillins and meropenem. The results demonstrate that the Asp in position 179 is generally essential for class A β-lactamases but not for BlaC, which can be explained by the importance of the interaction with the side chain of Arg164 that is absent in BlaC. It is concluded that Asp179 though conserved is not essential in BlaC, as a consequence of epistasis.
Collapse
Affiliation(s)
- Ilona van Alen
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Danny B van Zanten
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Amber A de Block
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Steffen Brünle
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
10
|
van Alen I, Aguirre García MA, Maaskant JJ, Kuijl CP, Bitter W, Meijer AH, Ubbink M. Mycobacterium tuberculosis β-lactamase variant reduces sensitivity to ampicillin/avibactam in a zebrafish-Mycobacterium marinum model of tuberculosis. Sci Rep 2023; 13:15406. [PMID: 37717068 PMCID: PMC10505137 DOI: 10.1038/s41598-023-42152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
The β-lactamase of Mycobacterium tuberculosis, BlaC, hydrolyzes β-lactam antibiotics, hindering the use of these antibiotics for the treatment of tuberculosis. Inhibitors, such as avibactam, can reversibly inhibit the enzyme, allowing for the development of combination therapies using both antibiotic and inhibitor. However, laboratory evolution studies using Escherichia coli resulted in the discovery of single amino acid variants of BlaC that reduce the sensitivity for inhibitors or show higher catalytic efficiency against antibiotics. Here, we tested these BlaC variants under more physiological conditions using the M. marinum infection model of zebrafish, which recapitulates hallmark features of tuberculosis, including the intracellular persistence of mycobacteria in macrophages and the induction of granuloma formation. To this end, the M. tuberculosis blaC gene was integrated into the chromosome of a blaC frameshift mutant of M. marinum. Subsequently, the resulting strains were used to infect zebrafish embryos in order to test the combinatorial effect of ampicillin and avibactam. The results show that embryos infected with an M. marinum strain producing BlaC show lower infection levels after treatment than untreated embryos. Additionally, BlaC K234R showed higher infection levels after treatment than those infected with bacteria producing the wild-type enzyme, demonstrating that the zebrafish host is less sensitive to the combinatorial therapy of β-lactam antibiotic and inhibitor. These findings are of interest for future development of combination therapies to treat tuberculosis.
Collapse
Affiliation(s)
- Ilona van Alen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Mayra A Aguirre García
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Janneke J Maaskant
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VUmc, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Coenraad P Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VUmc, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VUmc, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
11
|
Dowling NV, Naumann TA, Price NPJ, Rose DR. Crystal structure of a polyglycine hydrolase determined using a RoseTTAFold model. Acta Crystallogr D Struct Biol 2023; 79:168-176. [PMID: 36762862 PMCID: PMC9912923 DOI: 10.1107/s2059798323000311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Polyglycine hydrolases (PGHs) are secreted fungal proteases that cleave the polyglycine linker of Zea mays ChitA, a defensive chitinase, thus overcoming one mechanism of plant resistance to infection. Despite their importance in agriculture, there has been no previous structural characterization of this family of proteases. The objective of this research was to investigate the proteolytic mechanism and other characteristics by structural and biochemical means. Here, the first atomic structure of a polyglycine hydrolase was identified. It was solved by X-ray crystallography using a RoseTTAFold model, taking advantage of recent technical advances in structure prediction. PGHs are composed of two domains: the N- and C-domains. The N-domain is a novel tertiary fold with an as-yet unknown function that is found across all kingdoms of life. The C-domain shares structural similarities with class C β-lactamases, including a common catalytic nucleophilic serine. In addition to insights into the PGH family and its relationship to β-lactamases, the results demonstrate the power of complementing experimental structure determination with new computational techniques.
Collapse
Affiliation(s)
- Nicole V. Dowling
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Todd A. Naumann
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, IL 61604, USA
| | - Neil P. J. Price
- Renewable Product Technology Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, IL 61604, USA
| | - David R. Rose
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|