1
|
Atsavapranee B, Stark CD, Sunden F, Thompson S, Fordyce PM. Fundamentals to function: Quantitative and scalable approaches for measuring protein stability. Cell Syst 2021; 12:547-560. [PMID: 34139165 DOI: 10.1016/j.cels.2021.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Folding a linear chain of amino acids into a three-dimensional protein is a complex physical process that ultimately confers an impressive range of diverse functions. Although recent advances have driven significant progress in predicting three-dimensional protein structures from sequence, proteins are not static molecules. Rather, they exist as complex conformational ensembles defined by energy landscapes spanning the space of sequence and conditions. Quantitatively mapping the physical parameters that dictate these landscapes and protein stability is therefore critical to develop models that are capable of predicting how mutations alter function of proteins in disease and informing the design of proteins with desired functions. Here, we review the approaches that are used to quantify protein stability at a variety of scales, from returning multiple thermodynamic and kinetic measurements for a single protein sequence to yielding indirect insights into folding across a vast sequence space. The physical parameters derived from these approaches will provide a foundation for models that extend beyond the structural prediction to capture the complexity of conformational ensembles and, ultimately, their function.
Collapse
Affiliation(s)
| | - Catherine D Stark
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Fanny Sunden
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Samuel Thompson
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA.
| |
Collapse
|
2
|
Chakraborty T, Polley S, Sinha D, Seal S, Sinha D, Mitra SK, Hazra J, Sau K, Pal M, Sau S. Structurally distinct unfolding intermediates formed from a staphylococcal capsule-producing enzyme retained NADPH binding activity. J Biomol Struct Dyn 2021; 40:9126-9143. [PMID: 33977860 DOI: 10.1080/07391102.2021.1924269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CapF, a capsule-producing enzyme expressed by Staphylococcus aureus, binds NADPH and exists as a dimer in the aqueous solution. Many other capsule-producing virulent bacteria also express CapF orthologs. To understand the folding-unfolding mechanism of S. aureus CapF, herein a recombinant CapF (rCapF) was individually investigated using urea and guanidine hydrochloride (GdnCl). Unfolding of rCapF by both the denaturants was reversible but proceeded via the synthesis of a different number of intermediates. While two dimeric intermediates (rCapF4 and rCapF5) were formed at 0.5 M and 1.5 M GdnCl, three dimeric intermediates (rCapF1, rCapF2, and rCapF3) were produced at 1 M, 2 M, and 3 M urea, respectively. rCapF5 showed 3.6 fold less NADPH binding activity, whereas other intermediates retained full NADPH binding activity. Compared to rCapF, all of the intermediates (except rCapF3) had a compressed shape. Conversely, rCapF3 possessed a native protein-like shape. The maximum shape loss was in rCapF4 though its secondary structure remained unperturbed. Additionally, the tertiary structure and hydrophobic surface area of the intermediates neither matched with each other nor with those of the native rCapF. Of the four Trp residues in rCapF, one or more Trp residues in the intermediates may have higher solvent accessibility. Using sequence alignment and a tertiary structural model of CapF, we have demonstrated that the region around Trp 137 of CapF may be most sensitive to unfolding, whereas the NADPH binding motif carrying region at the N-terminal end of this protein may be resistant to unfolding, particularly at the low denaturant concentrations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Sudip K Mitra
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Joyita Hazra
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Sinha D, Sinha D, Dutta A, Chakraborty T, Mondal R, Seal S, Poddar A, Chatterjee S, Sau S. Alternative Sigma Factor of Staphylococcus aureus Interacts with the Cognate Antisigma Factor Primarily Using Its Domain 3. Biochemistry 2021; 60:135-151. [PMID: 33406357 DOI: 10.1021/acs.biochem.0c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
σB, an alternative sigma factor, is usually employed to tackle the general stress response in Staphylococcus aureus and other Gram-positive bacteria. This protein, involved in S. aureus-mediated pathogenesis, is typically blocked by RsbW, an antisigma factor having serine kinase activity. σB, a σ70-like sigma factor, harbors three conserved domains designated σB2, σB3, and σB4. To better understand the interaction between RsbW and σB or its domains, we have studied their recombinant forms, rRsbW, rσB, rσB2, rσB3, and rσB4, using different probes. The results show that none of the rσB domains, unlike rσB, showed binding to a cognate DNA in the presence of a core RNA polymerase. However, both rσB2 and rσB3, like rσB, interacted with rRsbW, and the order of their rRsbW binding affinity looks like rσB > rσB3 > rσB2. Furthermore, the reaction between rRsbW and rσB or rσB3 was exothermic and occurred spontaneously. rRsbW and rσB3 also associate with each other at a stoichiometry of 2:1, and different types of noncovalent bonds might be responsible for their interaction. A structural model of the RsbW-σB3 complex that has supported our experimental results indicated the binding of rσB3 at the putative dimeric interface of RsbW. A genetic study shows that the tentative dimer-forming region of RsbW is crucial for preserving its rσB binding ability, serine kinase activity, and dimerization ability. Additionally, a urea-induced equilibrium unfolding study indicated a notable thermodynamic stabilization of σB3 in the presence of RsbW. Possible implications of the stabilization data in drug discovery were discussed at length.
Collapse
Affiliation(s)
- Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal 700054, India
| | - Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal 700054, India
| | - Anindya Dutta
- Department of Biophysics, Bose Institute, Kolkata, West Bengal 700054, India
| | - Tushar Chakraborty
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal 700054, India
| | - Rajkrishna Mondal
- Department of Biotechnology, Nagaland University, Dimapur, Nagaland 797112, India
| | - Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal 700054, India
| | - Asim Poddar
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal 700054, India
| | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal 700054, India
| |
Collapse
|
4
|
Sinha D, Chakraborty T, Sinha D, Poddar A, Chattopadhyaya R, Sau S. Understanding the structure, stability, and anti-sigma factor-binding thermodynamics of an anti-anti-sigma factor from Staphylococcus aureus. J Biomol Struct Dyn 2020; 39:6539-6552. [PMID: 32755297 DOI: 10.1080/07391102.2020.1801511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | | | - Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Asim Poddar
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Moore-Kelly C, Welsh J, Rodger A, Dafforn TR, Thomas ORT. Automated High-Throughput Capillary Circular Dichroism and Intrinsic Fluorescence Spectroscopy for Rapid Determination of Protein Structure. Anal Chem 2019; 91:13794-13802. [PMID: 31584804 PMCID: PMC7006967 DOI: 10.1021/acs.analchem.9b03259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Assessing
the physical stability of proteins is one of the most
important challenges in the development, manufacture, and formulation
of biotherapeutics. Here, we describe a method for combining and automating
circular dichroism and intrinsic protein fluorescence spectroscopy.
By robotically injecting samples from a 96-well plate into an optically
compliant capillary flow cell, complementary information about the
secondary and tertiary structural state of a protein can be collected
in an unattended manner from considerably reduced volumes of sample
compared to conventional techniques. We demonstrate the accuracy and
reproducibility of this method. Furthermore, we show how structural
screening can be used to monitor unfolding of proteins in two case
studies using (i) a chaotropic denaturant (urea) and (ii) low-pH buffers
used for monoclonal antibody (mAb) purification during Protein A chromatography.
Collapse
Affiliation(s)
| | - John Welsh
- Pall Biotech , Southampton Road , Portsmouth , PO6 4BQ , U.K
| | - Alison Rodger
- Department of Molecular Sciences , Macquarie University , Macquarie Park , Sydney , New South Wales 2109 , Australia
| | | | | |
Collapse
|
6
|
Seal S, Polley S, Sau S. A staphylococcal cyclophilin carries a single domain and unfolds via the formation of an intermediate that preserves cyclosporin A binding activity. PLoS One 2019; 14:e0210771. [PMID: 30925148 PMCID: PMC6440624 DOI: 10.1371/journal.pone.0210771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
Cyclophilin (Cyp), a peptidyl-prolyl cis-trans isomerase (PPIase), acts as a virulence factor in many bacteria including Staphylococcus aureus. The enzymatic activity of Cyp is inhibited by cyclosporin A (CsA), an immunosuppressive drug. To precisely determine the unfolding mechanism and the domain structure of Cyp, we have investigated a chimeric S. aureus Cyp (rCyp) using various probes. Our limited proteolysis and the consequent analysis of the proteolytic fragments indicate that rCyp is composed of one domain with a short flexible tail at the C-terminal end. We also show that the urea-induced unfolding of both rCyp and rCyp-CsA is completely reversible and proceeds via the synthesis of at least one stable intermediate. Both the secondary structure and the tertiary structure of each intermediate appears very similar to those of the corresponding native protein. Conversely, the hydrophobic surface areas of the intermediates are comparatively less. Further analyses reveal no loss of CsA binding activity in rCyp intermediate. The thermodynamic stability of rCyp was also significantly increased in the presence of CsA, recommending that this protein could be employed to screen new CsA derivatives in the future.
Collapse
Affiliation(s)
- Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
7
|
Biswas A, Ghosh S, Sinha D, Dutta A, Seal S, Bagchi A, Sau S. Dimerization ability, denaturation mechanism, and the stability of a staphylococcal phage repressor and its two domains. Int J Biol Macromol 2019; 124:903-914. [DOI: 10.1016/j.ijbiomac.2018.11.263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
|
8
|
Sinha D, Mondal R, Mahapa A, Sau K, Chattopadhyaya R, Sau S. A staphylococcal anti-sigma factor possesses a single-domain, carries different denaturant-sensitive regions and unfolds via two intermediates. PLoS One 2018; 13:e0195416. [PMID: 29621342 PMCID: PMC5886543 DOI: 10.1371/journal.pone.0195416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/21/2018] [Indexed: 11/26/2022] Open
Abstract
RsbW, an anti-sigma factor possessing kinase activity, is expressed by many Gram-positive bacteria including Staphylococcus aureus. To obtain clues about the domain structure and the folding-unfolding mechanism of RsbW, we have elaborately studied rRsbW, a recombinant S. aureus RsbW. Sequence analysis of the protein fragments, generated by the limited proteolysis of rRsbW, has proposed it to be a single-domain protein. The unfolding of rRsbW in the presence of GdnCl or urea was completely reversible in nature and occurred through the formation of at least two intermediates. The structure, shape, and the surface hydrophobicity of no intermediate completely matches with those of other intermediates or the native rRsbW. Interestingly, one of the intermediates, formed in the presence of less GdnCl concentrations, has a molten globule-like structure. Conversely, all of the intermediates, like native rRsbW, exist as dimers in aqueous solution. The putative molten globule and the urea-generated intermediates also have retained some kinase activity. Additionally, the putative ATP binding site/catalytic site of rRsbW shows higher denaturant sensitivity than the tentative dimerization region of this enzyme.
Collapse
Affiliation(s)
- Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Rajkrishna Mondal
- Department of Biotechnology, Nagaland University, Dimapur, Nagaland, India
| | - Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
9
|
Mazal H, Aviram H, Riven I, Haran G. Effect of ligand binding on a protein with a complex folding landscape. Phys Chem Chem Phys 2018; 20:3054-3062. [PMID: 28721412 DOI: 10.1039/c7cp03327c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ligand binding to a protein can stabilize it significantly against unfolding. The variation of the folding free energy, ΔΔG0, due to ligand binding can be derived from a simple reaction scheme involving exclusive binding to the native state. One obtains the following expression: , where Kd is the ligand dissociation constant and L is its concentration, R is the universal gas constant and T is the temperature. This expression has been shown to correctly describe experimental results on multiple proteins. In the current work we studied the effect of ligand binding on the stability of the multi-domain protein adenylate kinase from E. coli (AKE). Unfolding experiments were conducted using single-molecule FRET spectroscopy, which allowed us to directly obtain the fraction of unfolded protein in a model-free way from FRET efficiency histograms. Surprisingly, it was found that the effect of two inhibitors (Ap5A and AMPPNP) and a substrate (AMP) on the stability of AKE was much smaller than expected based on Kd values obtained independently using microscale thermophoresis. To shed light on this issue, we measured the Kd for Ap5A over a range of chemical denaturant concentrations where the protein is still folded. It was found that Kd increases dramatically over this range, likely due to the population of folding intermediates, whose binding to the ligand is much weaker than that of the native state. We propose that binding to folding intermediates may dominate the effect of ligands on the stability of multi-domain proteins, and could therefore have a strong impact on protein homeostasis in vivo.
Collapse
Affiliation(s)
- Hisham Mazal
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | | | | | | |
Collapse
|
10
|
The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner. Biochem J 2015; 467:47-62. [PMID: 25583260 DOI: 10.1042/bj20141441] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human Tribbles (TRB)-related pseudokinases are CAMK (calcium/calmodulin-dependent protein kinase)-related family members that have evolved a series of highly unusual motifs in the 'pseudocatalytic' domain. In canonical kinases, conserved amino acids bind to divalent metal ions and align ATP prior to efficient phosphoryl-transfer to substrates. However, in pseudokinases, atypical residues give rise to diverse and often unstudied biochemical and structural features that are thought to be central to cellular functions. TRB proteins play a crucial role in multiple signalling networks and overexpression confers cancer phenotypes on human cells, marking TRB pseudokinases out as a novel class of drug target. In the present paper, we report that the human pseudokinase TRB2 retains the ability to both bind and hydrolyse ATP weakly in vitro. Kinase activity is metal-independent and involves a catalytic lysine residue, which is conserved in TRB proteins throughout evolution alongside several unique amino acids in the active site. A similar low level of autophosphorylation is also preserved in the closely related human TRB3. By employing chemical genetics, we establish that the nucleotide-binding site of an 'analogue-sensitive' (AS) TRB2 mutant can be targeted with specific bulky ligands of the pyrazolo-pyrimidine (PP) chemotype. Our analysis confirms that TRB2 retains low levels of ATP binding and/or catalysis that is targetable with small molecules. Given the significant clinical successes associated with targeting of cancer-associated kinases with small molecule inhibitors, it is likely that similar approaches will be useful for further evaluating the TRB pseudokinases, with the translation of this information likely to furnish new leads for drug discovery.
Collapse
|
11
|
Markesteijn A, Karabasov S, Scukins A, Nerukh D, Glotov V, Goloviznin V. Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:rsta.2013.0379. [PMID: 24982246 PMCID: PMC4084524 DOI: 10.1098/rsta.2013.0379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space-time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space-time, a novel hybrid atomistic-fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided.
Collapse
Affiliation(s)
- Anton Markesteijn
- Department of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Sergey Karabasov
- Department of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Arturs Scukins
- Department of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Dmitry Nerukh
- Department of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Vyacheslav Glotov
- Department of Mathematical Modelling, Moscow Institute of Nuclear Safety, 113191 Moscow, Russia
| | - Vasily Goloviznin
- Department of Mathematical Modelling, Moscow Institute of Nuclear Safety, 113191 Moscow, Russia
| |
Collapse
|
12
|
Inhibitor-induced conformational stabilization and structural alteration of a mip-like peptidyl prolyl cis-trans isomerase and its C-terminal domain. PLoS One 2014; 9:e102891. [PMID: 25072141 PMCID: PMC4114562 DOI: 10.1371/journal.pone.0102891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023] Open
Abstract
FKBP22, an Escherichia coli-encoded PPIase (peptidyl-prolyl cis-trans isomerase) enzyme, shares substantial identity with the Mip-like pathogenic factors, caries two domains, exists as a dimer in solution and binds some immunosuppressive drugs (such as FK506 and rapamycin) using its C-terminal domain (CTD). To understand the effects of these drugs on the structure and stability of the Mip-like proteins, rFKBP22 (a chimeric FKBP22) and CTD+ (a CTD variant) have been studied in the presence and absence of rapamycin using different probes. We demonstrated that rapamycin binding causes minor structural alterations of rFKBP22 and CTD+. Both the proteins (equilibrated with rapamycin) were unfolded via the formation of intermediates in the presence of urea. Further study revealed that thermal unfolding of both rFKBP22 and rapamycin-saturated rFKBP22 occurred by a three-state mechanism with the synthesis of intermediates. Intermediate from the rapamycin-equilibrated rFKBP22 was formed at a comparatively higher temperature. All intermediates carried substantial extents of secondary and tertiary structures. Intermediate resulted from the thermal unfolding of rFKBP22 existed as the dimers in solution, carried an increased extent of hydrophobic surface and possessed relatively higher rapamycin binding activity. Despite the formation of intermediates, both the thermal and urea-induced unfolding reactions were reversible in nature. Unfolding studies also indicated the considerable stabilization of both proteins by rapamycin binding. The data suggest that rFKBP22 or CTD+ could be exploited to screen the rapamycin-like inhibitors in the future.
Collapse
|
13
|
Fechner P, Bleher O, Ewald M, Freudenberger K, Furin D, Hilbig U, Kolarov F, Krieg K, Leidner L, Markovic G, Proll G, Pröll F, Rau S, Riedt J, Schwarz B, Weber P, Widmaier J. Size does matter! Label-free detection of small molecule-protein interaction. Anal Bioanal Chem 2014; 406:4033-51. [PMID: 24817356 DOI: 10.1007/s00216-014-7834-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Abstract
This review is focused on methods for detecting small molecules and, in particular, the characterisation of their interaction with natural proteins (e.g. receptors, ion channels). Because there are intrinsic advantages to using label-free methods over labelled methods (e.g. fluorescence, radioactivity), this review only covers label-free techniques. We briefly discuss available techniques and their advantages and disadvantages, especially as related to investigating the interaction between small molecules and proteins. The reviewed techniques include well-known and widely used standard analytical methods (e.g. HPLC-MS, NMR, calorimetry, and X-ray diffraction), newer and more specialised analytical methods (e.g. biosensors), biological systems (e.g. cell lines and animal models), and in-silico approaches.
Collapse
Affiliation(s)
- Peter Fechner
- Biametrics GmbH, Auf der Morgenstelle 18, 72076, Tübingen, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sagar DM, Aoudjane S, Gaudet M, Aeppli G, Dalby PA. Optically induced thermal gradients for protein characterization in nanolitre-scale samples in microfluidic devices. Sci Rep 2013; 3:2130. [PMID: 23823279 PMCID: PMC3703920 DOI: 10.1038/srep02130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/30/2013] [Indexed: 11/16/2022] Open
Abstract
Proteins are the most vital biological functional units in every living cell. Measurement
of protein stability is central to understanding their structure, function and role in
diseases. While proteins are also sought as therapeutic agents, they can cause diseases by
misfolding and aggregation in vivo. Here we demonstrate a novel method to measure protein
stability and denaturation kinetics, on unprecedented timescales, through optically-induced
heating of nanolitre samples in microfluidic capillaries. We obtain protein denaturation
kinetics as a function of temperature, and accurate thermodynamic stability data, from a
snapshot experiment on a single sample. We also report the first experimental
characterization of optical heating in controlled microcapillary flow, verified by
computational fluid dynamics modelling. Our results demonstrate that we now have the
engineering science in hand to design integrated all-optical microfluidic chips for a
diverse range of applications including in-vitro DNA amplification, healthcare diagnostics,
and flow chemistry.
Collapse
Affiliation(s)
- D M Sagar
- Department of Biochemical Engineering, Torrington Place, University College London, London, WC1E 7JE, UK
| | | | | | | | | |
Collapse
|
15
|
Schön A, Brown RK, Hutchins BM, Freire E. Ligand binding analysis and screening by chemical denaturation shift. Anal Biochem 2013; 443:52-7. [PMID: 23994566 DOI: 10.1016/j.ab.2013.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Toward this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Because ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities, and the ligand rank order obtained at denaturation temperatures (≥60°C) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations where binding changes the cooperativity of the unfolding transition. In this article, we develop the basic analytical equations and provide several experimental examples.
Collapse
Affiliation(s)
- Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
16
|
Targeting FKBP isoforms with small-molecule ligands. Curr Opin Pharmacol 2011; 11:365-71. [PMID: 21803654 DOI: 10.1016/j.coph.2011.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 04/13/2011] [Indexed: 11/21/2022]
Abstract
The FK506 binding protein (FKBP) family of proteins provide an interesting series of drug targets since different isoforms modulate diverse cellular pathways. There are therapeutic opportunities in the fields of cancer therapy, neurodegenerative conditions and psychiatric disorders. X-ray crystallographic or NMR data are available for eight of fourteen human FKBPs covering ten of the twenty-two different FKBP domains. We have made a detailed sequence and structural comparison of human FKBP domains. These data show that the chemical scaffolds common to the immunosuppressive inhibitors FK506 and rapamycin bind to the most conserved region of the binding site. This observation opens the way to the design of isoform specific inhibitors.
Collapse
|
17
|
Magliery TJ, Lavinder JJ, Sullivan BJ. Protein stability by number: high-throughput and statistical approaches to one of protein science's most difficult problems. Curr Opin Chem Biol 2011; 15:443-51. [PMID: 21498105 DOI: 10.1016/j.cbpa.2011.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 01/24/2023]
Abstract
Most proteins are only barely stable, which impedes research, complicates therapeutic applications, and makes proteins susceptible to pathologically destabilizing mutations. Our ability to predict the thermodynamic consequences of even single point mutations is still surprisingly limited, and established methods of measuring stability are slow. Recent advances are bringing protein stability studies into the high-throughput realm. Some methods are based on inferential read-outs such as activity, proteolytic resistance or split-protein fragment reassembly. Other methods use miniaturization of direct measurements, such as intrinsic fluorescence, H/D exchange, cysteine reactivity, aggregation and hydrophobic dye binding (DSF). Protein engineering based on statistical analysis (consensus and correlated occurrences of amino acids) is promising, but much work remains to understand and implement these methods.
Collapse
Affiliation(s)
- Thomas J Magliery
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| | | | | |
Collapse
|