1
|
Serwanja J, Brandstetter H, Schönauer E. Quantitative cross-linking via engineered cysteines to study inter-domain interactions in bacterial collagenases. STAR Protoc 2023; 4:102519. [PMID: 37605531 PMCID: PMC10458335 DOI: 10.1016/j.xpro.2023.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023] Open
Abstract
Inter-domain movements act as important activity modulators in multi-domain proteins. Here, we present a protocol for inter-domain cross-linking via engineered cysteines. Using collagenase G (ColG) from Hathewaya histolytica as a model, we describe steps for the design, expression, purification, and cross-linking of the target protein. We detail a system to monitor the progress of the cross-linking reaction and to confirm the structural integrity of the purified cross-linked proteins. We anticipate this protocol to be readily adaptable to other multi-domain enzymes. For complete details on the use and execution of this protocol, please refer to Serwanja et al.1.
Collapse
Affiliation(s)
- Jamil Serwanja
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg 5020, Austria
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg 5020, Austria
| | - Esther Schönauer
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|
2
|
Karschin N, Becker S, Griesinger C. Interdomain Dynamics via Paramagnetic NMR on the Highly Flexible Complex Calmodulin/Munc13-1. J Am Chem Soc 2022; 144:17041-17053. [PMID: 36082939 PMCID: PMC9501808 DOI: 10.1021/jacs.2c06611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paramagnetic NMR constraints are very useful to study protein interdomain motion, but their interpretation is not always straightforward. On the example of the particularly flexible complex Calmodulin/Munc13-1, we present a new approach to characterize this motion with pseudocontact shifts and residual dipolar couplings. Using molecular mechanics, we sampled the conformational space of the complex and used a genetic algorithm to find ensembles that are in agreement with the data. We used the Bayesian information criterion to determine the ideal ensemble size. This way, we were able to make an accurate, unambiguous, reproducible model of the interdomain motion of Calmodulin/Munc13-1 without prior knowledge about the domain orientation from crystallography.
Collapse
Affiliation(s)
- Niels Karschin
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany
| | - Stefan Becker
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany
| | - Christian Griesinger
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen D-37075, Germany
| |
Collapse
|
3
|
Yan K, Stanley M, Kowalski B, Raimi OG, Ferenbach AT, Wei P, Fang W, van Aalten DMF. Genetic validation of Aspergillus fumigatus phosphoglucomutase as a viable therapeutic target in invasive aspergillosis. J Biol Chem 2022; 298:102003. [PMID: 35504355 PMCID: PMC9168620 DOI: 10.1016/j.jbc.2022.102003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/09/2023] Open
Abstract
Aspergillus fumigatus is the causative agent of invasive aspergillosis, an infection with mortality rates of up to 50%. The glucan-rich cell wall of A. fumigatus is a protective structure that is absent from human cells and is a potential target for antifungal treatments. Glucan is synthesized from the donor uridine diphosphate glucose, with the conversion of glucose-6-phosphate to glucose-1-phosphate by the enzyme phosphoglucomutase (PGM) representing a key step in its biosynthesis. Here, we explore the possibility of selectively targeting A. fumigatus PGM (AfPGM) as an antifungal treatment strategy. Using a promoter replacement strategy, we constructed a conditional pgm mutant and revealed that pgm is required for A. fumigatus growth and cell wall integrity. In addition, using a fragment screen, we identified the thiol-reactive compound isothiazolone fragment of PGM as targeting a cysteine residue not conserved in the human ortholog. Furthermore, through scaffold exploration, we synthesized a para-aryl derivative (ISFP10) and demonstrated that it inhibits AfPGM with an IC50 of 2 μM and exhibits 50-fold selectivity over the human enzyme. Taken together, our data provide genetic validation of PGM as a therapeutic target and suggest new avenues for inhibiting AfPGM using covalent inhibitors that could serve as tools for chemical validation.
Collapse
Affiliation(s)
- Kaizhou Yan
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mathew Stanley
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Bartosz Kowalski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Olawale G Raimi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pingzhen Wei
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
4
|
Genomic Analysis of Natural Rough Brucella melitensis Rev.1 Vaccine Strains: Identification and Characterization of Mutations in Key Genes Associated with Bacterial LPS Biosynthesis and Virulence. Int J Mol Sci 2020; 21:ijms21249341. [PMID: 33302421 PMCID: PMC7762576 DOI: 10.3390/ijms21249341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022] Open
Abstract
Brucella species are facultative intracellular bacteria that cause brucellosis, a zoonotic world-wide disease. The live attenuated B. melitensis Rev.1 vaccine strain is widely used for the control of brucellosis in the small ruminant population. However, Rev.1 induces antibodies against the O-polysaccharide (O-PS) of the smooth lipopolysaccharide thus, it is difficult to differentiate between infected and vaccinated animals. Hence, rough Brucella strains lacking the O-PS have been introduced. In the current study, we conducted a comprehensive comparative analysis of the genome sequence of two natural Rev.1 rough strains, isolated from sheep, against that of 24 Rev.1 smooth strains and the virulent reference strain B. melitensis 16M. We identified and characterized eight vital mutations within highly important genes associated with Brucella lipopolysaccharide (LPS) biosynthesis and virulence, which may explain the mechanisms underlying the formation of the Rev.1 rough phenotype and may be used to determine the mechanism underlying virulence attenuation. Further complementation studies aimed to estimate the specific role of these mutations in affecting Brucella morphology and virulence will serve as a basis for the design of new attenuated vaccines for animal immunization against brucellosis.
Collapse
|
5
|
Medvedev KE, Kolchanov NA, Afonnikov DA. High temperature and pressure influence the interdomain orientation of Nip7 proteins from P. abyssi and P. furiosus: MD simulations. J Biomol Struct Dyn 2017; 36:68-82. [DOI: 10.1080/07391102.2016.1268070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kirill E. Medvedev
- Systems Biology Department, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikolay A. Kolchanov
- Systems Biology Department, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
- Chair of Informational Biology, Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Dmitry A. Afonnikov
- Systems Biology Department, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
- Chair of Informational Biology, Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Alsop JD, Mitchell JC. Interolog interfaces in protein-protein docking. Proteins 2015; 83:1940-6. [PMID: 25740680 PMCID: PMC5054918 DOI: 10.1002/prot.24788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022]
Abstract
Proteins are essential elements of biological systems, and their function typically relies on their ability to successfully bind to specific partners. Recently, an emphasis of study into protein interactions has been on hot spots, or residues in the binding interface that make a significant contribution to the binding energetics. In this study, we investigate how conservation of hot spots can be used to guide docking prediction. We show that the use of evolutionary data combined with hot spot prediction highlights near‐native structures across a range of benchmark examples. Our approach explores various strategies for using hot spots and evolutionary data to score protein complexes, using both absolute and chemical definitions of conservation along with refinements to these strategies that look at windowed conservation and filtering to ensure a minimum number of hot spots in each binding partner. Finally, structure‐based models of orthologs were generated for comparison with sequence‐based scoring. Using two data sets of 22 and 85 examples, a high rate of top 10 and top 1 predictions are observed, with up to 82% of examples returning a top 10 hit and 35% returning top 1 hit depending on the data set and strategy applied; upon inclusion of the native structure among the decoys, up to 55% of examples yielded a top 1 hit. The 20 common examples between data sets show that more carefully curated interolog data yields better predictions, particularly in achieving top 1 hits. Proteins 2015; 83:1940–1946. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James D Alsop
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin
| | - Julie C Mitchell
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin.,Department of Mathematics, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
7
|
Andrałojć W, Berlin K, Fushman D, Luchinat C, Parigi G, Ravera E, Sgheri L. Information content of long-range NMR data for the characterization of conformational heterogeneity. JOURNAL OF BIOMOLECULAR NMR 2015; 62:353-71. [PMID: 26044033 PMCID: PMC4782772 DOI: 10.1007/s10858-015-9951-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/25/2015] [Indexed: 05/16/2023]
Abstract
Long-range NMR data, namely residual dipolar couplings (RDCs) from external alignment and paramagnetic data, are becoming increasingly popular for the characterization of conformational heterogeneity of multidomain biomacromolecules and protein complexes. The question addressed here is how much information is contained in these averaged data. We have analyzed and compared the information content of conformationally averaged RDCs caused by steric alignment and of both RDCs and pseudocontact shifts caused by paramagnetic alignment, and found that, despite the substantial differences, they contain a similar amount of information. Furthermore, using several synthetic tests we find that both sets of data are equally good towards recovering the major state(s) in conformational distributions.
Collapse
Affiliation(s)
- Witold Andrałojć
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Konstantin Berlin
- Department of Chemistry and Biochemistry, Center for Biomolecular
Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular
Structure and Organization, University of Maryland, College Park, MD 20742, USA
- Corresponding authors: David Fushman, ,
Claudio Luchinat,
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University
of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- Corresponding authors: David Fushman, ,
Claudio Luchinat,
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University
of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University
of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Luca Sgheri
- Istituto per le Applicazioni del Calcolo, Sezione di Firenze,
CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Jing R, Sun J, Wang Y, Li M. Domain position prediction based on sequence information by using fuzzy mean operator. Proteins 2015; 83:1462-9. [PMID: 26009844 DOI: 10.1002/prot.24833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/23/2015] [Accepted: 05/17/2015] [Indexed: 11/09/2022]
Abstract
The prediction of protein domain region is an advantageous process on the study of protein structure and function. In this study, we proposed a new method, which is composed of fuzzy mean operator and region division, to predict the particular positions of domains in a target protein based on its sequence. The whole sequence is aligned and scored by using fuzzy mean operator, and the final determination of domain region position is realized by region division. A published benchmark is used for the comparison with previous researches. In addition, we generate two extra datasets to examine the stability of this method. Finally, the prediction accuracy of independent test dataset achieved by our method was up to 84.13%. We wish that this method could be useful for related researches.
Collapse
Affiliation(s)
- Runyu Jing
- Chemical Information Center (CIC), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jing Sun
- Chemical Information Center (CIC), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuelong Wang
- Chemical Information Center (CIC), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Menglong Li
- Chemical Information Center (CIC), College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
9
|
Wei Y, Marcink TC, Xu J, Sirianni AG, Sarma AVS, Prior SH, Beamer LJ, Van Doren SR. Chemical shift assignments of domain 4 from the phosphohexomutase from Pseudomonas aeruginosa suggest that freeing perturbs its coevolved domain interface. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:329-333. [PMID: 23893395 PMCID: PMC3905050 DOI: 10.1007/s12104-013-9511-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
A domain needed for the catalytic efficiency of an enzyme model of simple processivity and domain-domain interactions has been characterized by NMR. This domain 4 from phosphomannomutase/phosphoglucomutase (PMM/PGM) closes upon glucose phosphate and mannose phosphate ligands in the active site, and can modestly reconstitute activity of enzyme truncated to domains 1-3. This enzyme supports biosynthesis of the saccharide-derived virulence factors (rhamnolipids, lipopolysaccharides, and alginate) of the opportunistic bacterial pathogen Pseudomonas aeruginosa. (1)H, (13)C, and (15)N NMR chemical shift assignments of domain 4 of PMM/PGM suggest preservation and independence of its structure when separated from domains 1-3. The face of domain 4 that packs with domain 3 is perturbed in NMR spectra without disrupting this fold. The perturbed residues overlap both the most highly coevolved positions in the interface and residues lining a cavity at the domain interface.
Collapse
|
10
|
Andrałojć W, Luchinat C, Parigi G, Ravera E. Exploring regions of conformational space occupied by two-domain proteins. J Phys Chem B 2014; 118:10576-87. [PMID: 25144917 DOI: 10.1021/jp504820w] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The presence of heterogeneity in the interdomain arrangement of several biomolecules is required for their function. Here we present a method to obtain crucial clues to distinguish between different kinds of protein conformational distributions based on experimental NMR data. The method explores subregions of the conformational space and provides both upper and lower bounds of probability for the system to be in each subregion.
Collapse
Affiliation(s)
- Witold Andrałojć
- Center for Magnetic Resonance, University of Florence , Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
11
|
Russo L, Maestre-Martinez M, Wolff S, Becker S, Griesinger C. Interdomain dynamics explored by paramagnetic NMR. J Am Chem Soc 2013; 135:17111-20. [PMID: 24111622 DOI: 10.1021/ja408143f] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An ensemble-based approach is presented to explore the conformational space sampled by a multidomain protein showing moderate interdomain dynamics in terms of translational and rotational motions. The strategy was applied on a complex of calmodulin (CaM) with the IQ-recognition motif from the voltage-gated calcium channel Ca(v)1.2 (IQ), which adopts three different interdomain orientations in the crystal. The N60D mutant of calmodulin was used to collect pseudocontact shifts and paramagnetically induced residual dipolar couplings for six different lanthanide ions. Then, starting from the crystal structure, pools of conformations were generated by free MD. We found the three crystal conformations in solution, but four additional MD-derived conformations had to be included into the ensemble to fulfill all the paramagnetic data and cross-validate optimally against unused paramagnetic data. Alternative approaches led to similar ensembles. Our "ensemble" approach is a simple and efficient tool to probe and describe the interdomain dynamics and represents a general method that can be used to provide a proper ensemble description of multidomain proteins.
Collapse
Affiliation(s)
- Luigi Russo
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
12
|
Moreira IS, Ramos RM, Martins JM, Fernandes PA, Ramos MJ. Are hot-spots occluded from water? J Biomol Struct Dyn 2013; 32:186-97. [DOI: 10.1080/07391102.2012.758598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Lapointe J. Mechanism and evolution of multidomain aminoacyl-tRNA synthetases revealed by their inhibition by analogues of a reaction intermediate, and by properties of truncated forms. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.610115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Accordino SR, Rodriguez Fris JA, Appignanesi GA, Fernández A. A unifying motif of intermolecular cooperativity in protein associations. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:59. [PMID: 22791307 DOI: 10.1140/epje/i2012-12059-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/25/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
At the molecular level, most biological processes entail protein associations which in turn rely on a small fraction of interfacial residues called hot spots. Our theoretical analysis shows that hot spots share a unifying molecular attribute: they provide a third-body contribution to intermolecular cooperativity. Such motif, based on the wrapping of interfacial electrostatic interactions, is essential to maintain the integrity of the interface. Thus, our main result is to unravel the molecular nature of the protein association problem by revealing its underlying physics and thus by casting it in simple physical grounds. Such knowledge could then be exploited in rational drug design since the regions here indicated may serve as blueprints to engineer small molecules disruptive of protein-protein interfaces.
Collapse
Affiliation(s)
- S R Accordino
- Sección Fisicoquímica, INQUISUR-UNS-CONICET-Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
15
|
Ngan CH, Bohnuud T, Mottarella SE, Beglov D, Villar EA, Hall DR, Kozakov D, Vajda S. FTMAP: extended protein mapping with user-selected probe molecules. Nucleic Acids Res 2012; 40:W271-5. [PMID: 22589414 PMCID: PMC3394268 DOI: 10.1093/nar/gks441] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Binding hot spots, protein sites with high-binding affinity, can be identified using X-ray crystallography or NMR by screening libraries of small organic molecules that tend to cluster at such regions. FTMAP, a direct computational analog of the experimental screening approaches, globally samples the surface of a target protein using small organic molecules as probes, finds favorable positions, clusters the conformations and ranks the clusters on the basis of the average energy. The regions that bind several probe clusters predict the binding hot spots, in good agreement with experimental results. Small molecules discovered by fragment-based approaches to drug design also bind at the hot spot regions. To identify such molecules and their most likely bound positions, we extend the functionality of FTMAP (http://ftmap.bu.edu/param) to accept any small molecule as an additional probe. In its updated form, FTMAP identifies the hot spots based on a standard set of probes, and for each additional probe shows representative structures of nearby low energy clusters. This approach helps to predict bound poses of the user-selected molecules, detects if a compound is not likely to bind in the hot spot region, and provides input for the design of larger ligands.
Collapse
Affiliation(s)
- Chi Ho Ngan
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Accordino SR, Morini MA, Sierra MB, Fris JAR, Appignanesi GA, Fernández A. Wrapping mimicking in drug-like small molecules disruptive of protein-protein interfaces. Proteins 2012; 80:1755-65. [PMID: 22422633 DOI: 10.1002/prot.24069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/05/2012] [Accepted: 03/08/2012] [Indexed: 11/06/2022]
Abstract
The discovery of small-molecule drugs aimed at disrupting protein-protein associations is expected to lead to promising therapeutic strategies. The small molecule binds to the target protein thus replacing its natural protein partner. Noteworthy, structural analysis of complexes between successful disruptive small molecules and their target proteins has suggested the possibility that such ligands might somehow mimic the binding behavior of the protein they replace. In these cases, the molecules show a spatial and "chemical" (i.e., hydrophobicity) similarity with the residues of the partner protein involved in the protein-protein complex interface. However, other disruptive small molecules do not seem to show such spatial and chemical correspondence with the replaced protein. In turn, recent progress in the understanding of protein-protein interactions and binding hot spots has revealed the main role of intermolecular wrapping interactions: three-body cooperative correlations in which nonpolar groups in the partner protein promote dehydration of a two-body electrostatic interaction of the other protein. Hence, in the present work, we study some successful complexes between already discovered small disruptive drug-like molecules and their target proteins already reported in the literature and we compare them with the complexes between such proteins and their natural protein partners. Our results show that the small molecules do in fact mimic to a great extent the wrapping behavior of the protein they replace. Thus, by revealing the replacement the small molecule performs of relevant wrapping interactions, we convey precise physical meaning to the mimicking concept, a knowledge that might be exploited in future drug-design endeavors.
Collapse
Affiliation(s)
- Sebastián R Accordino
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avda Alem 1253, 8000 Bahía Blanca, Argentina
| | | | | | | | | | | |
Collapse
|
17
|
Iverson TM, Panosian TD, Birmingham WR, Nannemann DP, Bachmann BO. Molecular differences between a mutase and a phosphatase: investigations of the activation step in Bacillus cereus phosphopentomutase. Biochemistry 2012; 51:1964-75. [PMID: 22329805 DOI: 10.1021/bi201761h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prokaryotic phosphopentomutases (PPMs) are di-Mn(2+) enzymes that catalyze the interconversion of α-D-ribose 5-phosphate and α-D-ribose 1-phosphate at an active site located between two independently folded domains. These prokaryotic PPMs belong to the alkaline phosphatase superfamily, but previous studies of Bacillus cereus PPM suggested adaptations of the conserved alkaline phosphatase catalytic cycle. Notably, B. cereus PPM engages substrates when the active site nucleophile, Thr-85, is phosphorylated. Further, the phosphoenzyme is stable throughout purification and crystallization. In contrast, alkaline phosphatase engages substrates when the active site nucleophile is dephosphorylated, and the phosphoenzyme reaction intermediate is only stably trapped in a catalytically compromised enzyme. Studies were undertaken to understand the divergence of these mechanisms. Crystallographic and biochemical investigations of the PPM(T85E) phosphomimetic variant and the neutral corollary PPM(T85Q) determined that the side chain of Lys-240 underwent a change in conformation in response to active site charge, which modestly influenced the affinity for the small molecule activator α-D-glucose 1,6-bisphosphate. More strikingly, the structure of unphosphorylated B. cereus PPM revealed a dramatic change in the interdomain angle and a new hydrogen bonding interaction between the side chain of Asp-156 and the active site nucleophile, Thr-85. This hydrogen bonding interaction is predicted to align and activate Thr-85 for nucleophilic addition to α-D-glucose 1,6-bisphosphate, favoring the observed equilibrium phosphorylated state. Indeed, phosphorylation of Thr-85 is severely impaired in the PPM(D156A) variant even under stringent activation conditions. These results permit a proposal for activation of PPM and explain some of the essential features that distinguish between the catalytic cycles of PPM and alkaline phosphatase.
Collapse
Affiliation(s)
- T M Iverson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.
| | | | | | | | | |
Collapse
|
18
|
Buhrman G, O'Connor C, Zerbe B, Kearney BM, Napoleon R, Kovrigina EA, Vajda S, Kozakov D, Kovrigin EL, Mattos C. Analysis of binding site hot spots on the surface of Ras GTPase. J Mol Biol 2011; 413:773-89. [PMID: 21945529 DOI: 10.1016/j.jmb.2011.09.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/14/2011] [Accepted: 09/07/2011] [Indexed: 12/31/2022]
Abstract
We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the "off" and "on" allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target.
Collapse
Affiliation(s)
- Greg Buhrman
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mehra-Chaudhary R, Mick J, Tanner JJ, Henzl MT, Beamer LJ. Crystal structure of a bacterial phosphoglucomutase, an enzyme involved in the virulence of multiple human pathogens. Proteins 2011; 79:1215-29. [PMID: 21246636 PMCID: PMC3066478 DOI: 10.1002/prot.22957] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/12/2010] [Accepted: 11/24/2010] [Indexed: 11/11/2022]
Abstract
The crystal structure of the enzyme phosphoglucomutase from Salmonella typhimurium (StPGM) is reported at 1.7 A resolution. This is the first high-resolution structural characterization of a bacterial protein from this large enzyme family, which has a central role in metabolism and is also important to bacterial virulence and infectivity. A comparison of the active site of StPGM with that of other phosphoglucomutases reveals conserved residues that are likely involved in catalysis and ligand binding for the entire enzyme family. An alternate crystal form of StPGM and normal mode analysis give insights into conformational changes of the C-terminal domain that occur upon ligand binding. A novel observation from the StPGM structure is an apparent dimer in the asymmetric unit of the crystal, mediated largely through contacts in an N-terminal helix. Analytical ultracentrifugation and small-angle X-ray scattering confirm that StPGM forms a dimer in solution. Multiple sequence alignments and phylogenetic studies show that a distinct subset of bacterial PGMs share the signature dimerization helix, while other bacterial and eukaryotic PGMs are likely monomers. These structural, biochemical, and bioinformatic studies of StPGM provide insights into the large α-D-phosphohexomutase enzyme superfamily to which it belongs, and are also relevant to the design of inhibitors specific to the bacterial PGMs.
Collapse
Affiliation(s)
- Ritcha Mehra-Chaudhary
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| | - Jacob Mick
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| | - John J. Tanner
- Department of Chemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| | - Michael T. Henzl
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| | - Lesa J. Beamer
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| |
Collapse
|