1
|
Qin Y, Jin J, Zhang J, Wang H, Liu L, Zhang Y, Ling S, Hu J, Li N, Wang J, Lv C, Yang X. A fully human monoclonal antibody targeting Semaphorin 5A alleviates the progression of rheumatoid arthritis. Biomed Pharmacother 2023; 168:115666. [PMID: 37832409 DOI: 10.1016/j.biopha.2023.115666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is the most common chronic autoimmune disease worldwide. Although progress has been made in RA treatment in recent decades, remission cannot be effectively achieved for a considerable proportion of RA patients. Thus, novel potential targets for therapeutic strategies are needed. Semaphorin 5A (SEMA5A) plays a pivotal role in RA progression by facilitating pannus formation, and it is a promising therapeutic target. In this study, we sought to develop an antibody treatment strategy targeting SEMA5A and evaluate its therapeutic effect using a collagen-induced arthritis (CIA) model. We generated SYD12-12, a fully human SEMA5A blocking antibody, through phage display technology. SYD12-12 intervention effectively inhibited angiogenesis and aggressive phenotypes of RA synoviocytes in vitro and dose-dependently inhibited synovial hyperplasia, pannus formation, bone destruction in CIA mice. Notably, SYD12-12 also improved the Treg/Th17 imbalance in CIA mice. We confirmed through immunofluorescence and molecular docking that SYD12-12 integrated with the unique TSP-1 domain of SEMA5A. In conclusion, we developed and characterized a fully human SEMA5A-blocking antibody for the first time. SYD12-12 effectively alleviated disease progression in CIA mice by inhibiting pannus formation and improving the Treg/Th17 imbalance, demonstrating its potential for the RA treatment.
Collapse
Affiliation(s)
- Yang Qin
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayi Jin
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiani Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanwen Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sunwang Ling
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jinzhu Hu
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nuan Li
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianguang Wang
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Chen Lv
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Peissert F, Pedotti M, Corbellari R, Simonelli L, De Gasparo R, Tamagnini E, Plüss L, Elsayed A, Matasci M, De Luca R, Cassaniti I, Sammartino JC, Piralla A, Baldanti F, Neri D, Varani L. Adapting Neutralizing Antibodies to Viral Variants by Structure-Guided Affinity Maturation Using Phage Display Technology. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300088. [PMID: 37829677 PMCID: PMC10566804 DOI: 10.1002/gch2.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 10/14/2023]
Abstract
Neutralizing monoclonal antibodies have achieved great efficacy and safety for the treatment of numerous infectious diseases. However, their neutralization potency is often rapidly lost when the target antigen mutates. Instead of isolating new antibodies each time a pathogen variant arises, it can be attractive to adapt existing antibodies, making them active against the new variant. Potential benefits of this approach include reduced development time, cost, and regulatory burden. Here a methodology is described to rapidly evolve neutralizing antibodies of proven activity, improving their function against new pathogen variants without losing efficacy against previous ones. The reported procedure is based on structure-guided affinity maturation using combinatorial mutagenesis and phage display technology. Its use against the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is demonstrated, but it is suitable for any other pathogen. As proof of concept, the method is applied to CoV-X2, a human bispecific antibody that binds with high affinity to the early SARS-CoV-2 variants but lost neutralization potency against Delta. Antibodies emerging from the affinity maturation selection exhibit significantly improved neutralization potency against Delta and no loss of efficacy against the other viral sequences tested. These results illustrate the potential application of structure-guided affinity maturation in facilitating the rapid adaptation of neutralizing antibodies to pathogen variants.
Collapse
Affiliation(s)
| | - Mattia Pedotti
- Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)Bellinzona6500Switzerland
| | | | - Luca Simonelli
- Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)Bellinzona6500Switzerland
| | - Raoul De Gasparo
- Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)Bellinzona6500Switzerland
| | - Elia Tamagnini
- Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)Bellinzona6500Switzerland
| | - Louis Plüss
- Philochem AGLibernstrasse 3Otelfingen8112Switzerland
| | | | | | | | - Irene Cassaniti
- Molecular Virology UnitMicrobiology and Virology DepartmentFondazione IRCCS Policlinico San MatteoPavia27100Italy
| | - Jose’ Camilla Sammartino
- Molecular Virology UnitMicrobiology and Virology DepartmentFondazione IRCCS Policlinico San MatteoPavia27100Italy
| | - Antonio Piralla
- Molecular Virology UnitMicrobiology and Virology DepartmentFondazione IRCCS Policlinico San MatteoPavia27100Italy
| | - Fausto Baldanti
- Molecular Virology UnitMicrobiology and Virology DepartmentFondazione IRCCS Policlinico San MatteoPavia27100Italy
- Department of Clinical Surgical Diagnostic and Pediatric SciencesUniversità degli Studi di PaviaPavia27100Italy
| | - Dario Neri
- Philochem AGLibernstrasse 3Otelfingen8112Switzerland
- Philogen SpALocalità Bellaria 35Sovicille (SI)53018Italy
| | - Luca Varani
- Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)Bellinzona6500Switzerland
| |
Collapse
|
3
|
Silva-Pilipich N, Covo-Vergara Á, Vanrell L, Smerdou C. Checkpoint blockade meets gene therapy: Opportunities to improve response and reduce toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:43-86. [PMID: 37541727 DOI: 10.1016/bs.ircmb.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) based on monoclonal antibodies represent a breakthrough for the treatment of cancer. However, their efficacy varies among tumor types and patients, and they can lead to adverse effects due to on-target/off-tumor activity, since they are administered systemically at high doses. An alternative and attractive approach for the delivery of ICIs is the use of gene therapy vectors able to express them in vivo. This review focuses on the most recent studies using viral vectors able to express ICIs locally or systemically in preclinical models of cancer. These vectors include non-replicating viruses, oncolytic viruses able to propagate specifically in tumor cells and destroy them, and self-amplifying RNA vectors, armed with different formats of antibodies against immune checkpoints. Non-replicating vectors usually lead to long-term ICI expression, potentially eliminating the need for repeated administration. Vectors with replication capacity, although they have a shorter window of expression, can induce inflammation which enhances the antitumor effect. Finally, these engineered vectors can be used in combination with other immunostimulatory molecules or with CAR-T cells, further boosting the antitumor immune responses.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain.
| | - Ángela Covo-Vergara
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain
| | - Lucía Vanrell
- Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo, Uruguay; Nanogrow Biotech, Montevideo, Uruguay
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain.
| |
Collapse
|
4
|
Boisgerault N, Bertrand P. Inside PD-1/PD-L1,2 with their inhibitors. Eur J Med Chem 2023; 256:115465. [PMID: 37196547 DOI: 10.1016/j.ejmech.2023.115465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
This review summarizes current knowledge in the development of immune checkpoint inhibitors, including antibodies and small molecules.
Collapse
Affiliation(s)
- Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université D'Angers, CRCI2NA, LabEx IGO, F-44000, Nantes, France
| | - Philippe Bertrand
- University of Poitiers, IC2MP UMR 7285 CNRS, 4 Rue Michel Brunet B27, TSA 51106, 86073 Poitiers Cedex 9, France.
| |
Collapse
|
5
|
Peissert F, Plüss L, Giudice AM, Ongaro T, Villa A, Elsayed A, Nadal L, Dakhel Plaza S, Scietti L, Puca E, De Luca R, Forneris F, Neri D. Selection of a PD-1 blocking antibody from a novel fully human phage display library. Protein Sci 2022; 31:e4486. [PMID: 36317676 PMCID: PMC9667898 DOI: 10.1002/pro.4486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Programmed cell death protein 1 (PD-1) is an immunoregulatory target which is recognized by different monoclonal antibodies, approved for the therapy of multiple types of cancer. Different anti-PD-1 antibodies display different therapeutic properties and there is a pharmaceutical interest to generate and characterize novel anti-PD-1 antibodies. We screened multiple human antibody phage display libraries to target novel epitopes on the PD-1 surface and we discovered a unique and previously undescribed binding specificity (termed D12) from a new antibody library (termed AMG). The library featured antibody fragments in single-chain fragment variable (scFv) format, based on the IGHV3-23*03 (VH ) and IGKV1-39*01 (Vκ) genes. The D12 antibody was characterized by surface plasmon resonance (SPR), cross-reacted with the Cynomolgus monkey antigen and bound to primary human T cells, as shown by flow cytometry. The antibody blocked the PD-1/PD-L1 interaction in vitro with an EC50 value which was comparable to the one of nivolumab, a clinically approved antibody. The fine details of the interaction between D12 and PD-1 were elucidated by x-ray crystallography of the complex at a 3.5 Å resolution, revealing an unprecedented conformational change at the N-terminus of PD-1 following D12 binding, as well as partial overlap with the binding site for the cognate PD-L1 and PD-L2 ligands which prevents their binding. The results of the study suggest that the expansion of antibody library repertoires may facilitate the discovery of novel binding specificities with unique properties that hold promises for the modulation of PD-1 activity in vitro and in vivo.
Collapse
Affiliation(s)
- Frederik Peissert
- Philochem AGOtelfingenSwitzerland
- Biomolecular Sciences and BiotechnologyUniversity School for Advanced Studies IUSS PaviaPaviaItaly
| | - Louis Plüss
- Philochem AGOtelfingenSwitzerland
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich)ZürichSwitzerland
| | | | - Tiziano Ongaro
- The Armenise‐Harvard Laboratory of Structural Biology, Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | | | - Abdullah Elsayed
- Philochem AGOtelfingenSwitzerland
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich)ZürichSwitzerland
| | | | | | - Luigi Scietti
- The Armenise‐Harvard Laboratory of Structural Biology, Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | | | | | - Federico Forneris
- The Armenise‐Harvard Laboratory of Structural Biology, Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Dario Neri
- Philochem AGOtelfingenSwitzerland
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich)ZürichSwitzerland
- Philogen SpASovicille (SI)Italy
| |
Collapse
|