1
|
Zhou X, An L, Yang Y, Liu Z, Wang Y, Yao L. Positive activation entropy of Bacillus circulans xylanase catalyzed ONPX 2 hydrolysis: A mechanistic and engineering study. Int J Biol Macromol 2024; 282:137087. [PMID: 39489233 DOI: 10.1016/j.ijbiomac.2024.137087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Transition state (TS) stabilization by enzymes greatly accelerates catalytic reactions. For some enzymes, the TS complex has entropy higher than enzyme substrate (ES) complex. But the origin of favorable entropy remains unclear. In this work, we studied the mechanism of Bacillus Circulans xylanase (BCX) 11 catalyzed o-nitrophenyl β-xylobioside (ONPX2) glycoside hydrolysis. The catalytic reaction exhibits a positive activation entropy, and an increase in ionic strength leads to a decrease in entropy without affecting the activation free energy, indicating that the entropy is predominantly influenced by electrostatic forces. Moreover, NMR measurements of electrostatic attractions within the active site demonstrate a positive entropy, aligning with molecular dynamics (MD) simulations showing that electrostatic interactions contribute to the entropic stabilization of the TS complex. These findings suggest that the positive entropy primarily originates from alterations in electrostatic interactions due to the formation of the oxocarbenium ion at C1 in the TS. Differences of electrostatic interactions in ES and TS modify hydrogen bonding of surrounding residues in the active site which causes their side chain dynamics and thus conformational entropy changes. Residues critical for the positive activation entropy are identified. A new BCX mutant with an increased activation entropy and catalytic activity is found.
Collapse
Affiliation(s)
- Xuchen Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liaoyuan An
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Ying Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Zhijun Liu
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, 201210, China
| | - Yefei Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| | - Lishan Yao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
2
|
Saberi M, Chikunova A, Ben Bdira F, Cramer-Blok A, Timmer M, Voskamp P, Ubbink M. Bimodal substrate binding in the active site of the glycosidase BcX. FEBS J 2024; 291:4222-4239. [PMID: 39185686 DOI: 10.1111/febs.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Bacillus circulans xylanase (BcX) from the glycoside hydrolase family 11 degrades xylan through a retaining, double-displacement mechanism. The enzyme is thought to hydrolyze glycosidic bonds in a processive manner and has a large, active site cleft, with six subsites allowing the binding of six xylose units. Such an active site architecture suggests that oligomeric xylose substrates can bind in multiple ways. In the crystal structure of the catalytically inactive variant BcX E78Q, the substrate xylotriose is observed in the active site, as well as bound to the known secondary binding site and a third site on the protein surface. Nuclear magnetic resonance (NMR) titrations with xylose oligomers of different lengths yield nonlinear chemical shift trajectories for active site nuclei resonances, indicative of multiple binding orientations for these substrates for which binding and dissociation are in fast exchange on the NMR timescale, exchanging on the micro- to millisecond timescale. Active site binding can be modeled with a 2 : 1 model with dissociation constants in the low and high millimolar range. Extensive mutagenesis of active site residues indicates that tight binding occurs in the glycon binding site and is stabilized by Trp9 and the thumb region. Mutations F125A and W71A lead to large structural rearrangements. Binding at the glycon site is sensed throughout the active site, whereas the weak binding mostly affects the aglycon site. The interactions with the two active site locations are largely independent of each other and of binding at the secondary binding site.
Collapse
Affiliation(s)
- Mahin Saberi
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | - Fredj Ben Bdira
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Patrick Voskamp
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| |
Collapse
|
3
|
Bu YJ, Tijaro-Bulla S, Cui H, Nitz M. Oxidation-Controlled, Strain-Promoted Tellurophene-Alkyne Cycloaddition (OSTAC): A Bioorthogonal Tellurophene-Dependent Conjugation Reaction. J Am Chem Soc 2024; 146:26161-26177. [PMID: 39259935 DOI: 10.1021/jacs.4c07275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Tellurophene-bearing small molecules have emerged as valuable tools for localizing cellular activities in vivo using mass cytometry. To broaden the utility of tellurophenes in chemical biology, we have developed a bioorthogonal reaction to facilitate tagging of tellurophene-bearing conjugates for downstream applications. Using TePhe, a tellurophene-based phenylalanine analogue, labeled recombinant proteins were generated for reaction development. Using these proteins, we demonstrate an oxidation-controlled, strain-promoted tellurophene-alkyne cycloaddition (OSTAC) reaction. Mild oxidation of the tellurophene ring with N-chlorosuccinimide produces a reactive Te(IV) species which undergoes rapid (k > 100 M-1 s-1) cycloaddition with bicyclo[6.1.0]nonyne (BCN) yielding a benzo-fused cyclooctane. Selective labeling of TePhe-containing proteins can be achieved in complex protein mixtures and on fixed cells. OSTAC reactions can be combined with strain-promoted azide alkyne cycloaddition (SPAAC) and copper-catalyzed azide alkyne click (CuAAC) reactions. Demonstrating the versatility of this approach, we observe the expected staining patterns for 5-ethynyl-2'-deoxyuridine (DNA synthesis-CuAAC) and immunohistochemistry targets in combination with TePhe (protein synthesis-OSTAC) in fixed cells. The favorable properties of the OSTAC reaction suggest its broad applicability in chemical biology.
Collapse
Affiliation(s)
- Yong Jia Bu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
4
|
Zhao Y, Yang K, Wang Y, Li X, Xia C, Huang Y, Li Z, Zhu C, Cui Z, Ye X. A novel xylanase from a myxobacterium triggers a plant immune response in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2024; 25:e13488. [PMID: 38924248 PMCID: PMC11196902 DOI: 10.1111/mpp.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Xylanases derived from fungi, including phytopathogenic and nonpathogenic fungi, are commonly known to trigger plant immune responses. However, there is limited research on the ability of bacterial-derived xylanases to trigger plant immunity. Here, a novel xylanase named CcXyn was identified from the myxobacterium Cystobacter sp. 0969, which displays broad-spectrum activity against both phytopathogenic fungi and bacteria. CcXyn belongs to the glycoside hydrolases (GH) 11 family and shares a sequence identity of approximately 32.0%-45.0% with fungal xylanases known to trigger plant immune responses. Treatment of Nicotiana benthamiana with purified CcXyn resulted in the induction of hypersensitive response (HR) and defence responses, such as the production of reactive oxygen species (ROS) and upregulation of defence gene expression, ultimately enhancing the resistance of N. benthamiana to Phytophthora nicotianae. These findings indicated that CcXyn functions as a microbe-associated molecular pattern (MAMP) elicitor for plant immune responses, independent of its enzymatic activity. Similar to fungal xylanases, CcXyn was recognized by the NbRXEGL1 receptor on the cell membrane of N. benthamiana. Downstream signalling was shown to be independent of the BAK1 and SOBIR1 co-receptors, indicating the involvement of other co-receptors in signal transduction following CcXyn recognition in N. benthamiana. Moreover, xylanases from other myxobacteria also demonstrated the capacity to trigger plant immune responses in N. benthamiana, indicating that xylanases in myxobacteria are ubiquitous in triggering plant immune functions. This study expands the understanding of xylanases with plant immune response-inducing properties and provides a theoretical basis for potential applications of myxobacteria in biocontrol strategies against phytopathogens.
Collapse
Affiliation(s)
- Yuqiang Zhao
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Kun Yang
- Crop Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
- College of Life SciencesLiaocheng UniversityLiaochengChina
| | - Xu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Cancan Zhu
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
5
|
MacDonald ME, Wells NGM, Hassan BA, Dudley JA, Walters KJ, Korzhnev DM, Aramini JM, Smith CA. Effects of Xylanase A double mutation on substrate specificity and structural dynamics. J Struct Biol 2024; 216:108082. [PMID: 38438058 DOI: 10.1016/j.jsb.2024.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
While protein activity is traditionally studied with a major focus on the active site, the activity of enzymes has been hypothesized to be linked to the flexibility of adjacent regions, warranting more exploration into how the dynamics in these regions affects catalytic turnover. One such enzyme is Xylanase A (XylA), which cleaves hemicellulose xylan polymers by hydrolysis at internal β-1,4-xylosidic linkages. It contains a "thumb" region whose flexibility has been suggested to affect the activity. The double mutation D11F/R122D was previously found to affect activity and potentially bias the thumb region to a more open conformation. We find that the D11F/R122D double mutation shows substrate-dependent effects, increasing activity on the non-native substrate ONPX2 but decreasing activity on its native xylan substrate. To characterize how the double mutant causes these kinetics changes, nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations were used to probe structural and flexibility changes. NMR chemical shift perturbations revealed structural changes in the double mutant relative to the wild-type, specifically in the thumb and fingers regions. Increased slow-timescale dynamics in the fingers region was observed as intermediate-exchange line broadening. Lipari-Szabo order parameters show negligible changes in flexibility in the thumb region in the presence of the double mutation. To help understand if there is increased energetic accessibility to the open state upon mutation, alchemical free energy simulations were employed that indicated thumb opening is more favorable in the double mutant. These studies aid in further characterizing how flexibility in adjacent regions affects the function of XylA.
Collapse
Affiliation(s)
- Meagan E MacDonald
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, United States; Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, United States
| | - Nicholas G M Wells
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, United States
| | - Bakar A Hassan
- Protein Processing Section, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Joshua A Dudley
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, United States
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, United States
| | - James M Aramini
- Structural Biology Initiative, Advanced Science Research Center, The City University of New York, New York, NY 10031, United States
| | - Colin A Smith
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, United States.
| |
Collapse
|
6
|
Kim IJ, Kim SR, Kim KH, Bornscheuer UT, Nam KH. Characterization and structural analysis of the endo-1,4-β-xylanase GH11 from the hemicellulose-degrading Thermoanaerobacterium saccharolyticum useful for lignocellulose saccharification. Sci Rep 2023; 13:17332. [PMID: 37833340 PMCID: PMC10576002 DOI: 10.1038/s41598-023-44495-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
Xylanases are important for the enzymatic breakdown of lignocellulose-based biomass to produce biofuels and other value-added products. We report functional and structural analyses of TsaGH11, an endo-1,4-β-xylanase from the hemicellulose-degrading bacterium, Thermoanaerobacterium saccharolyticum. TsaGH11 was shown to be a thermophilic enzyme that favors acidic conditions with maximum activity at pH 5.0 and 70 °C. It decomposes xylans from beechwood and oat spelts to xylose-containing oligosaccharides with specific activities of 5622.0 and 3959.3 U mg-1, respectively. The kinetic parameters, Km and kcat towards beechwood xylan, are 12.9 mg mL-1 and 34,015.3 s-1, respectively, resulting in kcat/Km value of 2658.7 mL mg-1 s-1, higher by 102-103 orders of magnitude compared to other reported GH11s investigated with the same substrate, demonstrating its superior catalytic performance. Crystal structures of TsaGH11 revealed a β-jelly roll fold, exhibiting open and close conformations of the substrate-binding site by distinct conformational flexibility to the thumb region of TsaGH11. In the room-temperature structure of TsaGH11 determined by serial synchrotron crystallography, the electron density map of the thumb domain of the TsaGH11 molecule, which does not affect crystal packing, is disordered, indicating that the thumb domain of TsaGH11 has high structural flexibility at room temperature, with the water molecules in the substrate-binding cleft being more disordered than those in the cryogenic structure. These results expand our knowledge of GH11 structural flexibility at room temperature and pave the way for its application in industrial biomass degradation.
Collapse
Affiliation(s)
- In Jung Kim
- Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, South Korea
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Ki Hyun Nam
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| |
Collapse
|
7
|
Mendonça M, Barroca M, Collins T. Endo-1,4-β-xylanase-containing glycoside hydrolase families: Characteristics, singularities and similarities. Biotechnol Adv 2023; 65:108148. [PMID: 37030552 DOI: 10.1016/j.biotechadv.2023.108148] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endo-1,4-β-xylanases (EC 3.2.1.8) are O-glycoside hydrolases that cleave the internal β-1,4-D-xylosidic linkages of the complex plant polysaccharide xylan. They are produced by a vast array of organisms where they play critical roles in xylan saccharification and plant cell wall hydrolysis. They are also important industrial biocatalysts with widespread application. A large and ever growing number of xylanases with wildly different properties and functionalites are known and a better understanding of these would enable a more effective use in various applications. The Carbohydrate-Active enZYmes database (CAZy), which classifies evolutionarily related proteins into a glycoside hydrolase family-subfamily organisational scheme has proven powerful in understanding these enzymes. Nevertheless, ambiguity currently exists as to the number of glycoside hydrolase families and subfamilies harbouring catalytic domains with true endoxylanase activity and as to the specific characteristics of each of these families/subfamilies. This review seeks to clarify this, identifying 9 glycoside hydrolase families containing enzymes with endo-1,4-β-xylanase activity and discussing their properties, similarities, differences and biotechnological perspectives. In particular, substrate specificities and hydrolysis patterns and the structural determinants of these are detailed, with taxonomic aspects of source organisms being also presented. Shortcomings in current knowledge and research areas that require further clarification are highlighted and suggestions for future directions provided. This review seeks to motivate further research on these enzymes and especially of the lesser known endo-1,4-β-xylanase containing families. A better understanding of these enzymes will serve as a foundation for the knowledge-based development of process-fitted endo-1,4-β-xylanases and will accelerate their development for use with even the most recalcitrant of substrates in the biobased industries of the future.
Collapse
|
8
|
Sürmeli Y. Comparative investigation of bacterial thermoalkaliphilic GH11 xylanases at molecular phylogeny, sequence and structure level. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Zhao L, Wang WQ, Xu SQ, Guan DL. The Comparison of Gut Bacteria Communities and the Functions Among the Sympatric Grasshopper Species From the Loess Plateau. Front Microbiol 2022; 13:806927. [PMID: 35479627 PMCID: PMC9037097 DOI: 10.3389/fmicb.2022.806927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Gut bacteria exert effects on the health and fitness of their insect hosts. Grasshoppers are an important part of the grassland ecosystem and provide important ecosystem services. As the most valuable feature in grassland ecosystem, the compositions and potential influences of gut bacterial in herbivorous grasshoppers in the same ecological environment are essential but undetermined. To facilitate such studies, we collected nine species of grasshoppers (n = 110) from a rebuild grassland on the Loess Plateau in northern Shaanxi, China, which is a representative area of ecosystem restoration model. We characterized the composition and function of the gut bacteria. We found that 326 OTUs were exhibited in all grasshoppers in which Enterobacter, Pantoea, Bacillus, and Spiroplsma are dominant. Among them, 18 OTUs were shared across all nine species of grasshoppers. The predicted function showed that the majority function of those OTUs were involved in survival dependent processes including membrane transport, carbohydrate metabolism, amino acid metabolism, and DNA replication and repair. The composition of gut bacteria is specific to each grasshopper species, and the bacteria community is most various in Trilophidia annulata. These results highlight the gut bacterial community diversity in different grasshopper species. Our findings are necessary for better understanding the relationships between this important herbivorous insect and their microbiomes and have the potential contribution of evaluating the revegetation and ecosystem management in this area.
Collapse
Affiliation(s)
- Lu Zhao
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Wen-Qiang Wang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Sheng-Quan Xu
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - De-Long Guan
- College of Life Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
10
|
Yi Y, Xu S, Kovalevsky A, Zhang X, Liu D, Wan Q. Characterization and structural analysis of a thermophilic GH11 xylanase from compost metatranscriptome. Appl Microbiol Biotechnol 2021; 105:7757-7767. [PMID: 34553251 DOI: 10.1007/s00253-021-11587-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Xylanase is efficient for xylan degradation and widely applied in industries. We found a GH11 family xylanase (Xyn11A) with high thermostability and catalytic activity from compost metatranscriptome. This xylanase has the optimal reaction temperature at 80 °C with the activity of 2907.3 U/mg. The X-ray crystallographic structure shows a typical "right hand" architecture, which is the characteristics of the GH11 family enzymes. Comparing it with the mesophilic XYN II, a well-studied GH11 xylanase from Trichoderma reesei, Xyn11A is more compact with more H-bonds. Our mutagenic results show that the electrostatic interactions in the thumb and palm region of Xyn11A could result in its high thermostability and activity. Introducing a disulfide bond at the N-terminus further increased its optimal reaction temperature to 90 °C with augmented activity. KEY POINTS: • A hyperthermophilic xylanase with high activity was discovered using the metatranscriptomic method. • The mechanisms of thermophilicity and high activity were revealed using X-ray crystallography, mutagenesis, and molecular dynamics simulations. • The thermostability and activity were further improved by introducing a disulfide bond.
Collapse
Affiliation(s)
- Yunlei Yi
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shenyuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xia Zhang
- Department of Molecular Biology, Qingdao Vland Biotech Group Inc., Qingdao, Shandong, 266000, People's Republic of China
| | - Dongyang Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qun Wan
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
11
|
Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products. Appl Microbiol Biotechnol 2021; 105:6759-6778. [PMID: 34458936 DOI: 10.1007/s00253-021-11495-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/29/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The genus Cohnella belongs to a group of Gram-positive endospore-forming bacteria within the Paenibacillaceae family. Although most species were described as xylanolytic bacteria, the literature still lacks some key information regarding their repertoire of xylan-degrading enzymes. The whole genome sequence of an isolated xylan-degrading bacterium Cohnella sp. strain AR92 was found to contain five genes encoding putative endo-1,4-β-xylanases, of which four were cloned, expressed, and characterized to better understand the contribution of the individual endo-xylanases to the overall xylanolytic properties of strain AR92. Three of the enzymes, CoXyn10A, CoXyn10C, and CoXyn11A, were shown to be effective at hydrolyzing xylans-derived from agro-industrial, producing oligosaccharides with substrate conversion values of 32.5%, 24.7%, and 10.6%, respectively, using sugarcane bagasse glucuronoarabinoxylan and of 29.9%, 19.1%, and 8.0%, respectively, using wheat bran-derived arabinoxylan. The main reaction products from GH10 enzymes were xylobiose and xylotriose, whereas CoXyn11A produced mostly xylooligosaccharides (XOS) with 2 to 5 units of xylose, often substituted, resulting in potentially prebiotic arabinoxylooligosaccharides (AXOS). The endo-xylanases assay displayed operational features (temperature optima from 49.9 to 50.4 °C and pH optima from 6.01 to 6.31) fitting simultaneous xylan utilization. Homology modeling confirmed the typical folds of the GH10 and GH11 enzymes, substrate docking studies allowed the prediction of subsites (- 2 to + 1 in GH10 and - 3 to + 1 in GH11) and identification of residues involved in ligand interactions, supporting the experimental data. Overall, the Cohnella sp. AR92 endo-xylanases presented significant potential for enzymatic conversion of agro-industrial by-products into high-value products.Key points• Cohnella sp. AR92 genome encoded five potential endo-xylanases.• Cohnella sp. AR92 enzymes produced xylooligosaccharides from xylan, with high yields.• GH10 enzymes from Cohnella sp. AR92 are responsible for the production of X2 and X3 oligosaccharides.• GH11 from Cohnella sp. AR92 contributes to the overall xylan degradation by producing substituted oligosaccharides.
Collapse
|
12
|
Koh S, Mizuno M, Izuoka Y, Fujino N, Hamada-Sato N, Amano Y. Xylanase from Marine Filamentous Fungus Pestalotiopsis sp. AN-7 Was Activated with Diluted Salt Solution Like Brackish Water. J Appl Glycosci (1999) 2021; 68:11-18. [PMID: 34354541 PMCID: PMC8116177 DOI: 10.5458/jag.jag.jag-2020_0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
The genus Pestalotiopsis are endophytic fungi that have recently been identified as cellulolytic system producers. We herein cloned a gene coding for a xylanase belonging to glycoside hydrolase (GH) family 10 (PesXyn10A) from Pestalotiopsis sp. AN-7, which was isolated from the soil of a mangrove forest. This protein was heterologously expressed by Pichia pastoris as a host, and its enzymatic properties were characterized. PesXyn10A was produced as a glycosylated protein and coincident to theoretical molecular weight (35.3 kDa) after deglycosylation by peptide-NfF-glycosidase F. Purified recombinant PesXyn10A exhibited maximal activity at pH 6.0 and 50 °C, and activity was maintained at 90 % at pH 5.0 and temperatures lower than 30 °C for 24 h. The substrate specificity of PesXyn10A was limited and it hydrolyzed glucuronoxylan and arabinoxylan, but not β-glucan. The final hydrolysis products from birchwood xylan were xylose, xylobiose, and 1,23-α-D-(4-O-methyl-glucuronyl)-1,4-β-D-xylotriose. The addition of metallic salts (NaCl, KCl, MgCl2, and CaCl2) activated PesXyn10A for xylan degradation, and maximal activation by these divalent cations was approximately 160 % at a concentration of 5 mM. The thermostability of PesXyn10A significantly increased in the presence of 50 mM NaCl or 5 mM MgCl2. The present results suggest that the presence of metallic salts at a low concentration, similar to brackish water, exerts positive effects on the enzyme activity and thermal stability of PesXyn10A.
Collapse
Affiliation(s)
- Sangho Koh
- 1 Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology. Shinshu University
| | - Masahiro Mizuno
- 1 Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology. Shinshu University.,2 Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University
| | - Yuto Izuoka
- 2 Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University
| | - Naoto Fujino
- 2 Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University.,4 Present address: Biomaterial in Tokyo Co., Ltd
| | - Naoko Hamada-Sato
- 3 Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology
| | - Yoshihiko Amano
- 1 Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology. Shinshu University.,2 Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University
| |
Collapse
|
13
|
Marneth K, van den Elst H, Cramer‐Blok A, Codee J, Overkleeft HS, Aerts JMFG, Ubbink M, Ben Bdira F. Tuning the Transglycosylation Reaction of a GH11 Xylanase by a Delicate Enhancement of its Thumb Flexibility. Chembiochem 2021; 22:1743-1749. [PMID: 33534182 PMCID: PMC8251542 DOI: 10.1002/cbic.202000856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/01/2021] [Indexed: 12/31/2022]
Abstract
Glycoside hydrolases (GHs) are attractive tools for multiple biotechnological applications. In conjunction with their hydrolytic function, GHs can perform transglycosylation under specific conditions. In nature, oligosaccharide synthesis is performed by glycosyltransferases (GTs); however, the industrial use of GTs is limited by their instability in solution. A key difference between GTs and GHs is the flexibility of their binding site architecture. We have used the xylanase from Bacillus circulans (BCX) to study the interplay between active-site flexibility and transglycosylation. Residues of the BCX "thumb" were substituted to increase the flexibility of the enzyme binding site. Replacement of the highly conserved residue P116 with glycine shifted the balance of the BCX enzymatic reaction toward transglycosylation. The effects of this point mutation on the structure and dynamics of BCX were investigated by NMR spectroscopy. The P116G mutation induces subtle changes in the configuration of the thumb and enhances the millisecond dynamics of the active site. Based on our findings, we propose the remodelling of the GH enzymes glycon site flexibility as a strategy to improve the transglycosylation efficiency of these biotechnologically important catalysts.
Collapse
Affiliation(s)
- Kim Marneth
- Department of Macromolecular BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Hans van den Elst
- Department of Bio-organic SynthesisLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Anneloes Cramer‐Blok
- Department of Macromolecular BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Jeroen Codee
- Department of Bio-organic SynthesisLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Hermen S. Overkleeft
- Department of Bio-organic SynthesisLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Marcellus Ubbink
- Department of Macromolecular BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Fredj Ben Bdira
- Department of Macromolecular BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
14
|
Ben Bdira F, Waudby CA, Volkov AN, Schröder SP, AB E, Codée JDC, Overkleeft HS, Aerts JMFG, Ingen H, Ubbink M. Dynamics of Ligand Binding to a Rigid Glycosidase**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fredj Ben Bdira
- Department of Macromolecular Biochemistry Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Christopher A. Waudby
- Institute of Structural and Molecular Biology University College London and Birkbeck College London WC1E 6BT UK
| | - Alexander N. Volkov
- VIB-VUB Center for Structural Biology Pleinlaan 2 1050 Brussels Belgium
- Jean Jeener NMR Centre VUB Pleinlaan 2 1050 Brussels Belgium
| | - Sybrin P. Schröder
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Eiso AB
- ZoBio BV BioPartner 2 building J.H. Oortweg 19 2333 CH Leiden The Netherlands
| | - Jeroen D. C. Codée
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Hermen S. Overkleeft
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Hugo Ingen
- Department of Macromolecular Biochemistry Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
- Present address: NMR Spectroscopy Research Group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Marcellus Ubbink
- Department of Macromolecular Biochemistry Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
15
|
Ben Bdira F, Waudby CA, Volkov AN, Schröder SP, AB E, Codée JDC, Overkleeft HS, Aerts JMFG, van Ingen H, Ubbink M. Dynamics of Ligand Binding to a Rigid Glycosidase*. Angew Chem Int Ed Engl 2020; 59:20508-20514. [PMID: 32533782 PMCID: PMC7693232 DOI: 10.1002/anie.202003236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Indexed: 11/09/2022]
Abstract
The single-domain GH11 glycosidase from Bacillus circulans (BCX) is involved in the degradation of hemicellulose, which is one of the most abundant renewable biomaterials in nature. We demonstrate that BCX in solution undergoes minimal structural changes during turnover. NMR spectroscopy results show that the rigid protein matrix provides a frame for fast substrate binding in multiple conformations, accompanied by slow conversion, which is attributed to an enzyme-induced substrate distortion. A model is proposed in which the rigid enzyme takes advantage of substrate flexibility to induce a conformation that facilitates the acyl formation step of the hydrolysis reaction.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Department of Macromolecular BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Christopher A. Waudby
- Institute of Structural and Molecular BiologyUniversity College London and Birkbeck CollegeLondonWC1E 6BTUK
| | - Alexander N. Volkov
- VIB-VUB Center for Structural BiologyPleinlaan 21050BrusselsBelgium
- Jean Jeener NMR CentreVUBPleinlaan 21050BrusselsBelgium
| | - Sybrin P. Schröder
- Department of Bio-organic SynthesisLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Eiso AB
- ZoBio BVBioPartner 2 buildingJ.H. Oortweg 192333 CHLeidenThe Netherlands
| | - Jeroen D. C. Codée
- Department of Bio-organic SynthesisLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Hermen S. Overkleeft
- Department of Bio-organic SynthesisLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Hugo van Ingen
- Department of Macromolecular BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
- Present address: NMR Spectroscopy Research GroupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Marcellus Ubbink
- Department of Macromolecular BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
16
|
Brandt SC, Ellinger B, van Nguyen T, Harder S, Schlüter H, Hahnke RL, Rühl M, Schäfer W, Gand M. Aspergillus sydowii: Genome Analysis and Characterization of Two Heterologous Expressed, Non-redundant Xylanases. Front Microbiol 2020; 11:2154. [PMID: 33071998 PMCID: PMC7531221 DOI: 10.3389/fmicb.2020.573482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
A prerequisite for the transition toward a biobased economy is the identification and development of efficient enzymes for the usage of renewable resources as raw material. Therefore, different xylanolytic enzymes are important for efficient enzymatic hydrolysis of xylan-heteropolymers. A powerful tool to overcome the limited enzymatic toolbox lies in exhausting the potential of unexplored habitats. By screening a Vietnamese fungal culture collection of 295 undiscovered fungal isolates, 12 highly active xylan degraders were identified. One of the best xylanase producing strains proved to be an Aspergillus sydowii strain from shrimp shell (Fsh102), showing a specific activity of 0.6 U/mg. Illumina dye sequencing was used to identify our Fsh102 strain and determine differences to the A. sydowii CBS 593.65 reference strain. With activity based in-gel zymography and subsequent mass spectrometric identification, three potential proteins responsible for xylan degradation were identified. Two of these proteins were cloned from the cDNA and, furthermore, expressed heterologously in Escherichia coli and characterized. Both xylanases, were entirely different from each other, including glycoside hydrolases (GH) families, folds, substrate specificity, and inhibition patterns. The specific enzyme activity applying 0.1% birch xylan of both purified enzymes were determined with 181.1 ± 37.8 or 121.5 ± 10.9 U/mg for xylanase I and xylanase II, respectively. Xylanase I belongs to the GH11 family, while xylanase II is member of the GH10 family. Both enzymes showed typical endo-xylanase activity, the main products of xylanase I are xylobiose, xylotriose, and xylohexose, while xylobiose, xylotriose, and xylopentose are formed by xylanase II. Additionally, xylanase II showed remarkable activity toward xylotriose. Xylanase I is stable when stored up to 30°C and pH value of 9, while xylanase II started to lose significant activity stored at pH 9 after exceeding 3 days of storage. Xylanase II displayed about 40% activity when stored at 50°C for 24 h. The enzymes are tolerant toward mesophilic temperatures, while acting in a broad pH range. With site directed mutagenesis, the active site residues in both enzymes were confirmed. The presented activity and stability justify the classification of both xylanases as highly interesting for further development.
Collapse
Affiliation(s)
- Sophie C. Brandt
- Department of Molecular Phytopathology, University of Hamburg, Hamburg, Germany
| | - Bernhard Ellinger
- Department ScreeningPort, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Hamburg, Germany
| | - Thuat van Nguyen
- Department of Molecular Phytopathology, University of Hamburg, Hamburg, Germany
| | - Sönke Harder
- Mass Spectrometric Proteomics Group, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Group, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Wilhelm Schäfer
- Department of Molecular Phytopathology, University of Hamburg, Hamburg, Germany
| | - Martin Gand
- Department of Molecular Phytopathology, University of Hamburg, Hamburg, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
17
|
Mathibe BN, Malgas S, Radosavljevic L, Kumar V, Shukla P, Pletschke BI. Tryptic Mapping Based Structural Insights of Endo-1, 4-β-Xylanase from Thermomyces lanuginosus VAPS-24. Indian J Microbiol 2020; 60:392-395. [PMID: 32655201 DOI: 10.1007/s12088-020-00879-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022] Open
Abstract
An endo-1,4-β-xylanase, XynA, from Thermomyces lanuginosus VAPS-24, was purified to homogeneity and exhibited a molecular mass of approximately 20 kDa. The protein sequence of XynA was found to be similar to those of other Thermomyces lanuginosus derived xylanases and, as a result, could be used as a model enzyme for understanding the protein structure-activity relationship and facilitating protein engineering to design enzyme variants with desirable properties. Therefore, this xylanase will be an attractive candidate for applications in the biofuel and fine chemical industries for the degradation of xylans in steam pre-treated biomass.
Collapse
Affiliation(s)
- Brian N Mathibe
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape 6140 South Africa
| | - Samkelo Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape 6140 South Africa
| | - Layla Radosavljevic
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape 6140 South Africa
| | - Vishal Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape 6140 South Africa
| |
Collapse
|
18
|
Liu MQ, Li JY, Rehman AU, Xu X, Gu ZJ, Wu RC. Laboratory Evolution of GH11 Endoxylanase Through DNA Shuffling: Effects of Distal Residue Substitution on Catalytic Activity and Active Site Architecture. Front Bioeng Biotechnol 2019; 7:350. [PMID: 31824938 PMCID: PMC6883096 DOI: 10.3389/fbioe.2019.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 11/15/2022] Open
Abstract
Endoxylanase with high specific activity, thermostability, and broad pH adaptability is in huge demand. The mutant library of GH11 endoxylanase was constructed via DNA shuffling by using the catalytic domain of Bacillus amyloliquefaciens xylanase A (BaxA) and Thermomonospora fusca TF xylanase A (TfxA) as parents. A total of 2,250 colonies were collected and 756 of them were sequenced. Three novel mutants (DS153: N29S, DS241: S31R and DS428: I51V) were identified and characterized in detail. For these mutants, three residues of BaxA were substituted by the corresponding one of TfxA_CD. The specific activity of DS153, DS241, and DS428 in the optimal condition was 4.54, 4.35, and 3.9 times compared with the recombinant BaxA (reBaxA), respectively. The optimum temperature of the three mutants was 50°C. The optimum pH for DS153, DS241, and DS428 was 6.0, 7.0, and 6.0, respectively. The catalytic efficiency of DS153, DS241, and DS428 enhanced as well, while their sensitivity to recombinant rice xylanase inhibitor (RIXI) was lower than that of reBaxA. Three mutants have identical hydrolytic function as reBaxA, which released xylobiose–xylopentaose from oat spelt, birchwood, and beechwood xylan. Furthermore, molecular dynamics simulations were performed on BaxA and three mutants to explore the precise impact of gain-of-function on xylanase activity. The tertiary structure of BaxA was not altered under the substitution of distal residues (N29S, S31R, and I51V); it induced slightly changes in active site architecture. The distal impact rescued the BaxA from native conformation (“closed state”) through weakening interactions between “gate” residues (R112, N35 in DS241 and DS428; W9, P116 in DS153) and active site residues (E78, E172, Y69, and Y80), favoring conformations with an “open state” and providing improved activity. The current findings would provide a better and more in-depth understanding of how distal single residue substitution improved the catalytic activity of xylanase at the atomic level.
Collapse
Affiliation(s)
- Ming-Qi Liu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jia-Yi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Xu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhu-Jun Gu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ruo-Chen Wu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
19
|
Takita T, Nakatani K, Katano Y, Suzuki M, Kojima K, Saka N, Mikami B, Yatsunami R, Nakamura S, Yasukawa K. Increase in the thermostability of GH11 xylanase XynJ from Bacillus sp. strain 41M-1 using site saturation mutagenesis. Enzyme Microb Technol 2019; 130:109363. [DOI: 10.1016/j.enzmictec.2019.109363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
20
|
Pason P, Sermsathanaswadi J, Waeonukul R, Tachaapaikoon C, Baramee S, Ratanakhanokchai K, Kosugi A. Molecular characterization of hypothetical scaffolding-like protein S1 in multienzyme complex produced by Paenibacillus curdlanolyticus B-6. AMB Express 2019; 9:171. [PMID: 31673804 PMCID: PMC6823336 DOI: 10.1186/s13568-019-0896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 11/24/2022] Open
Abstract
Paenibacillus curdlanolyticus B-6 produces an extracellular multienzyme complex containing a hypothetical scaffolding-like protein and several xylanases and cellulases. The largest (280-kDa) component protein, called S1, has cellulose-binding ability and xylanase activity, thus was considered to function like the scaffolding proteins found in cellulosomes. S1 consists of 863 amino acid residues with predicted molecular mass 91,029 Da and includes two N-terminal surface layer homology (SLH) domains, but most of its sequence shows no homology with proteins of known function. Native S1 (nS1) was highly glycosylated. Purified nS1 and recombinant Xyn11A (rXyn11A) as a major xylanase subunit could assemble in a complex, but recombinant S1 (rS1) could not interact with rXyn11A, indicating that S1 glycosylation is necessary for assembly of the multienzyme complex. nS1 and rS1 showed weak, typical endo-xylanase activity, even though they have no homology with known glycosyl hydrolase family enzymes. S1 and its SLH domains bound tightly to the peptide-glycan layer of P. curdlanolyticus B-6, microcrystalline cellulose, and insoluble xylan, indicating that the SLHs of S1 bind to carbohydrate polymers and the cell surface. When nS1 and rXyn11A were co-incubated with birchwood xylan, the degradation ability was synergistically increased compared with that for each protein; however synergy was not observed for rS1 and rXynA. These results indicate that S1 may have a scaffolding protein-like function by interaction with enzyme subunits and polysaccharides through its glycosylated sites and SLH domains.
Collapse
|
21
|
Bamford NC, Le Mauff F, Subramanian AS, Yip P, Millán C, Zhang Y, Zacharias C, Forman A, Nitz M, Codée JDC, Usón I, Sheppard DC, Howell PL. Ega3 from the fungal pathogen Aspergillus fumigatus is an endo-α-1,4-galactosaminidase that disrupts microbial biofilms. J Biol Chem 2019; 294:13833-13849. [PMID: 31416836 DOI: 10.1074/jbc.ra119.009910] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/01/2019] [Indexed: 11/06/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that causes both chronic and acute invasive infections. Galactosaminogalactan (GAG) is an integral component of the A. fumigatus biofilm matrix and a key virulence factor. GAG is a heterogeneous linear α-1,4-linked exopolysaccharide of galactose and GalNAc that is partially deacetylated after secretion. A cluster of five co-expressed genes has been linked to GAG biosynthesis and modification. One gene in this cluster, ega3, is annotated as encoding a putative α-1,4-galactosaminidase belonging to glycoside hydrolase family 114 (GH114). Herein, we show that recombinant Ega3 is an active glycoside hydrolase that disrupts GAG-dependent A. fumigatus and Pel polysaccharide-dependent Pseudomonas aeruginosa biofilms at nanomolar concentrations. Using MS and functional assays, we demonstrate that Ega3 is an endo-acting α-1,4-galactosaminidase whose activity depends on the conserved acidic residues, Asp-189 and Glu-247. X-ray crystallographic structural analysis of the apo Ega3 and an Ega3-galactosamine complex, at 1.76 and 2.09 Å resolutions, revealed a modified (β/α)8-fold with a deep electronegative cleft, which upon ligand binding is capped to form a tunnel. Our structural analysis coupled with in silico docking studies also uncovered the molecular determinants for galactosamine specificity and substrate binding at the -2 to +1 binding subsites. The findings in this study increase the structural and mechanistic understanding of the GH114 family, which has >600 members encoded by plant and opportunistic human pathogens, as well as in industrially used bacteria and fungi.
Collapse
Affiliation(s)
- Natalie C Bamford
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - François Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada.,Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec H3A 1Y2, Canada
| | - Adithya S Subramanian
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patrick Yip
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Claudia Millán
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer Baldiri Reixac 15, 3 A17, Barcelona 08028, Spain
| | - Yongzhen Zhang
- Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | - Caitlin Zacharias
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada.,Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec H3A 1Y2, Canada
| | - Adam Forman
- Department of Chemistry, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | - Isabel Usón
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer Baldiri Reixac 15, 3 A17, Barcelona 08028, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, E-08003 Barcelona, Spain
| | - Donald C Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada .,Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec H3A 1Y2, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada .,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
22
|
Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges. Int J Biol Macromol 2019; 128:354-362. [DOI: 10.1016/j.ijbiomac.2019.01.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 11/24/2022]
|
23
|
Differential inhibition of GH family 11 endo-xylanase by rice xylanase inhibitor and verification by a modified yeast two-hybrid system. Int J Biol Macromol 2019; 132:514-523. [PMID: 30951774 DOI: 10.1016/j.ijbiomac.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 11/22/2022]
Abstract
Rice xylanase inhibitor (RIXI) is a XIP-type xylanase inhibitor protein that protects rice cells from pathogenic organisms. RIXI inhibits most microbial xylanases and thus decreases their practical application. The recombinant RIXI (rePRIXI) showed evident inhibitory activities against several family 11 endo-xylanases. After interaction with rePRIXI at 50 °C for 40 min, the residual activities of reBaxA50, reBaxA, TfxA_CD214, and TfxA_CD were 55.6%, 30.3%, 30.09%, and 11.20%, respectively. Intrinsic fluorescence of reBaxA50 and TfxA_CD214 was statically quenched after interaction with rePRIXI. rePRIXI decreased hydrolysis of beechwood xylan by reBaxA50 and TfxA_CD214. Molecular dynamics simulations revealed the long loop (residues 144-153) of RIXI inserts into the catalytic cleft of family 11 xylanases. Native PAGE results revealed the formation of RIXI-xylanase complex after their interaction in the test tube. Interactions were also observed between RIXI and xylanases in living yeast cells. The results of inhibitory activity assay and modified yeast two-hybrid revealed that the inhibitory activity of RIXI on family 11 xylanase improved with the interaction strength of the RIXI-xylanase complex, indicating their positive correlation. The modified yeast two-hybrid system is relatively simple and has low cost, and its use may be extended to other studies on protein-protein interactions.
Collapse
|
24
|
Du T, Buenbrazo N, Kell L, Rahmani S, Sim L, Withers SG, DeFrees S, Wakarchuk W. A Bacterial Expression Platform for Production of Therapeutic Proteins Containing Human-like O-Linked Glycans. Cell Chem Biol 2019; 26:203-212.e5. [PMID: 30503285 DOI: 10.1016/j.chembiol.2018.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/07/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
We have developed an Escherichia coli strain for the in vivo production of O-glycosylated proteins. This was achieved using a dual plasmid approach: one encoding a therapeutic protein target, and a second encoding the enzymatic machinery required for O-glycosylation. The latter plasmid encodes human polypeptide N-acetylgalactosaminyl transferase as well as a β1,3-galactosyl transferase and UDP-Glc(NAc)-4-epimerase, both from Campylobacter jejuni, and a disulfide bond isomerase of bacterial or human origin. The effectiveness of this two-plasmid synthetic operon system has been tested on three proteins with therapeutic potential: the native and an engineered version of the naturally O-glycosylated human interferon α-2b, as well as human growth hormone with one engineered site of glycosylation. Having established proof of principle for the addition of the core-1 glycan onto proteins, we are now developing this system as a platform for producing and modifying human protein therapeutics with more complex O-glycan structures in E. coli.
Collapse
Affiliation(s)
- Ting Du
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Nakita Buenbrazo
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Laura Kell
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Sadia Rahmani
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Lyann Sim
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Shawn DeFrees
- La Jolla Pharmaceutical Company, San Diego, CA 92121, USA
| | - Warren Wakarchuk
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
25
|
Charlton T, Shah V, Lynch T, Candreva J, Chau E, Yang Y, Kim H, Wood A, Kim JR. Amyloid Aggregation of Bacillus circulans Xylanase under Native Conditions and its Modulation by β-Amyloid-Derived Peptide Fragments. Chembiochem 2018; 19:2566-2574. [PMID: 30332530 DOI: 10.1002/cbic.201800472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/13/2018] [Indexed: 12/31/2022]
Abstract
The aggregation of intrinsically disordered proteins into fibrils is implicated in many neurodegenerative diseases. Amyloid aggregation is a generic property of proteins as evidenced by globular proteins that often form amyloid aggregates under partially denaturing conditions. Recently, multiple lines of evidence have suggested that the amyloid aggregation of globular proteins can also occur under native conditions. Unfortunately, amyloid aggregation under native conditions has been demonstrated in only a handful of cases. Engineering a globular protein's amyloid aggregation might benefit from its fusion to an amyloid-derived fragment with reduced aggregation propensity. Unfortunately, the impacts of such fragments on the amyloid aggregation under native conditions have yet to be examined. In this study, we show that a globular protein, Bacillus circulans xylanase (BCX), can aggregate to form amyloid fibrils under native conditions. When BCX was mixed with or fused to the non-self-aggregating fragments, KLVFWAK and ELVFWAE-which were derived from β-amyloid (Aβ)-they modulated the BCX amyloid aggregation to differing extents. This study also provides insight into a correlation between the kinetic stability and amyloid aggregation of BCX, and supports a view that Aβ-derived fragments can be useful for the modulating amyloid aggregation of some, though not all, proteins.
Collapse
Affiliation(s)
- Timothy Charlton
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Vandan Shah
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Tonianna Lynch
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jason Candreva
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Edward Chau
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - YanXi Yang
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Hyunjoo Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Amy Wood
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| |
Collapse
|
26
|
|
27
|
Bugada LF, Smith MR, Wen F. Engineering Spatially Organized Multienzyme Assemblies for Complex Chemical Transformation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01883] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Luke F. Bugada
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mason R. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Huang Y, Harris RC, Shen J. Generalized Born Based Continuous Constant pH Molecular Dynamics in Amber: Implementation, Benchmarking and Analysis. J Chem Inf Model 2018; 58:1372-1383. [PMID: 29949356 DOI: 10.1021/acs.jcim.8b00227] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Solution pH plays an important role in structure and dynamics of biomolecular systems; however, pH effects cannot be accurately accounted for in conventional molecular dynamics simulations based on fixed protonation states. Continuous constant pH molecular dynamics (CpHMD) based on the λ-dynamics framework calculates protonation states on the fly during dynamical simulation at a specified pH condition. Here we report the CPU-based implementation of the CpHMD method based on the GBNeck2 generalized Born (GB) implicit-solvent model in the pmemd engine of the Amber molecular dynamics package. The performance of the method was tested using pH replica-exchange titration simulations of Asp, Glu and His side chains in 4 miniproteins and 7 enzymes with experimentally known p Ka's, some of which are significantly shifted from the model values. The added computational cost due to CpHMD titration ranges from 11 to 33% for the data set and scales roughly linearly as the ratio between the titrable sites and number of solute atoms. Comparison of the experimental and calculated p Ka's using 2 ns per replica sampling yielded a mean unsigned error of 0.70, a root-mean-squared error of 0.91, and a linear correlation coefficient of 0.79. Though this level of accuracy is similar to the GBSW-based CpHMD in CHARMM, in contrast to the latter, the current implementation was able to reproduce the experimental orders of the p Ka's of the coupled carboxylic dyads. We quantified the sampling errors, which revealed that prolonged simulation is needed to converge p Ka's of several titratable groups involved in salt-bridge-like interactions or deeply buried in the protein interior. Our benchmark data demonstrate that GBNeck2-CpHMD is an attractive tool for protein p Ka predictions.
Collapse
Affiliation(s)
- Yandong Huang
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Robert C Harris
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jana Shen
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
29
|
Censoni L, Dos Santos Muniz H, Martínez L. A network model predicts the intensity of residue-protein thermal coupling. Bioinformatics 2018; 33:2106-2113. [PMID: 28334219 DOI: 10.1093/bioinformatics/btx124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
Motivation The flow of vibrational energy in proteins has been shown not to obey expectations for isotropic media. The existence of preferential pathways for energy transport, with probable connections to allostery mechanisms, has been repeatedly demonstrated. Here, we investigate whether, by representing a set of protein structures as networks of interacting amino acid residues, we are able to model heat diffusion and predict residue-protein vibrational couplings, as measured by the Anisotropic Thermal Diffusion (ATD) computational protocol of modified molecular dynamics simulations. Results We revisit the structural rationales for the precise definition of a contact between amino acid residues. Using this definition to describe a set of proteins as contact networks where each node corresponds to a residue, we show that node centrality, particularly closeness centrality and eigenvector centrality , correlates to the strength of the vibrational coupling of each residue to the rest of the structure. We then construct an analytically solvable model of heat diffusion on a network, whose solution incorporates an explicit dependence on the connectivity of the heated node, as described by a perturbed graph Laplacian Matrix. Availability and Implementation An implementation of the described model is available at http://leandro.iqm.unicamp.br/atd-scripts . Contact leandro@iqm.unicamp.br.
Collapse
Affiliation(s)
- Luciano Censoni
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | | | - Leandro Martínez
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
30
|
Xiong K, Xiong S, Gao S, Li Q, Sun B, Li X. Improving Hydrolysis Characteristics of Xylanases by Site-Directed Mutagenesis in Binding-Site Subsites from Streptomyces L10608. Int J Mol Sci 2018. [PMID: 29533991 PMCID: PMC5877695 DOI: 10.3390/ijms19030834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The preparation of oligosaccharides via xylan hydrolysis is an effective way to add value to hemicellulosic material of agricultural waste. The bacterial strain Streptomyces L10608, isolated from soil, contains genes encoding xylanases of glucoside hydrolase family 10/11 (GH10/11), and these have been cloned to catalyze the production of xylooligosaccharide (XOS). To improve the XOS proportion of hydrolysates produced by xylanase, four amino acid residues were substituted by site-directed mutagenesis, and the mutant genes were overexpressed in Escherichia coli. Mutations replaced the codons encoding Asn214 (+2) and Asn86 (−2) by Ala and removed the Ricin B-lectin domain in GH10-xyn, and mutants Y115A (−2) and Y123A (−2) were produced for GH11-xyn. Interestingly, GH10-N86Q had significantly increased hydrolysis of XOS and almost eliminated xylose (X1) to <2.5%, indicating that the −2 binding site of GH10-xyn of L10608 is required for binding with xylotriose (X3). The hydrolytic activity of GH10-N86Q was increased approximately 1.25-fold using beechwood xylan as a substrate and had high affinity for the substrate with a low Km of about 1.85 mg·mL−1. Otherwise, there were no significant differences in enzymatic properties between GH10-N86Q and GH10-xyn. These mutants offer great potential for modification of xylanase with desired XOS hydrolysis.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
| | - Suyue Xiong
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
| | - Siyu Gao
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
| | - Qin Li
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
| | - Xiuting Li
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
| |
Collapse
|
31
|
Dey P, Roy A. Molecular structure and catalytic mechanism of fungal family G acidophilic xylanases. 3 Biotech 2018; 8:78. [PMID: 29430342 PMCID: PMC5799109 DOI: 10.1007/s13205-018-1091-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022] Open
Abstract
Industrial applications of xylanases have made this enzyme an important subject of applied research work. Function of this particular enzyme is to degrade or hydrolyze the plentiful polysaccharide xylan, an important component of hemicellulose. It mainly cleaves the backbone of xylan that is made up of a number of xylose residues connected with β-1,4-glycosidic linkages. Fungi with mycelia are regarded as the best producer of xylanases. These varied xylanases not only differ in their sizes and shapes but also differ in their physicochemical properties. Depending on the optimum pH in which they work best, they have been classified into (1) acidophilic xylanases active at low pH or acidic pH range, (2) alkaliphilic xylanases that are active at high or alkaline pH range and (3) neutral xylanases having pH optima in the neutral range between pH 5 and 7. Other researchers have classified the xylanases also on the basis of their structural properties, kinetic parameters, etc. This review discusses the molecular structures of some acidophilic xylanases and the molecular basis of low pH optima observed for their activities. It also discusses their unique catalytic mechanism and actual role of the catalytic residues found in them. Apart from these, the review also discusses different applications of these acidophilic xylanases in different industries. The article concludes with brief suggestions about how these acidophilic xylanases can be created employing the techniques of genetic engineering and concepts of synthetic evolution, using the traits of the known acidophilic xylanases discussed in the review.
Collapse
Affiliation(s)
- Protyusha Dey
- Department of Biotechnology, Visva-Bharati University, Santiniketan, 731235 West Bengal India
| | - Amit Roy
- Department of Biotechnology, Visva-Bharati University, Santiniketan, 731235 West Bengal India
| |
Collapse
|
32
|
You S, Chen CC, Tu T, Wang X, Ma R, Cai HY, Guo RT, Luo HY, Yao B. Insight into the functional roles of Glu175 in the hyperthermostable xylanase XYL10C-ΔN through structural analysis and site-saturation mutagenesis. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:159. [PMID: 29930705 PMCID: PMC5992652 DOI: 10.1186/s13068-018-1150-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/23/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Improving the hydrolytic performance of hemicellulases to degrade lignocellulosic biomass is of considerable importance for second-generation biorefinery. Xylanase, as the crucial hemicellulase, must be thermostable and have high activity for its potential use in the bioethanol industry. To obtain excellent xylanase candidates, it is necessary to understand the structure-function relationships to provide a meaningful reference to improve the enzyme properties. This study aimed to investigate the catalytic mechanism of a highly active hyperthermophilic xylanase variant, XYL10C-ΔN, for hemicellulose degradation. RESULTS By removing the N-terminal 66 amino acids, the variant XYL10C-ΔN showed a 1.8-fold improvement in catalytic efficiency and could hydrolyze corn stover more efficiently in hydrolysis of corn stover; however, it retained similar thermostability to the wild-type XYL10C. Based on the crystal structures of XYL10C-ΔN and its complex with xylobiose, Glu175 located on loop 3 was found to be specific to GH10 xylanases and probably accounts for the excellent enzyme properties by interacting with Lys135 and Met137 on loop 2. Site-saturation mutagenesis confirmed that XYL10C-ΔN with glutamate acid at position 175 had the highest catalytic efficiency, specific activity, and the broadest pH-activity profile. The functional roles of Glu175 were also verified in the mutants of another two GH10 xylanases, XylE and XynE2, which showed increased catalytic efficiencies and wider pH-activity profiles. CONCLUSIONS XYL10C-ΔN, with excellent thermostability, high catalytic efficiency, and great lignocellulose-degrading capability, is a valuable candidate xylanase for the biofuel industry. The mechanism underlying improved activity of XYN10C-ΔN was thus investigated through structural analysis and functional verification, and Glu175 was identified to play the key role in the improved catalytic efficiency. This study revealed the importance of a key residue (Glu175) in XYN10C-ΔN and provides a reference to modify GH10 xylanases for improved catalytic performance.
Collapse
Affiliation(s)
- Shuai You
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chun-Chi Chen
- National Engineering Laboratory of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaoyu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hui-yi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Rey-Ting Guo
- National Engineering Laboratory of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Hui-ying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
33
|
Shah V, Pierre B, Kirtadze T, Shin S, Kim JR. Stabilization of Bacillus circulans xylanase by combinatorial insertional fusion to a thermophilic host protein. Protein Eng Des Sel 2017; 30:281-290. [PMID: 28100651 DOI: 10.1093/protein/gzw081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/21/2016] [Indexed: 11/15/2022] Open
Abstract
High thermostability of an enzyme is critical for its industrial application. While many engineering approaches such as mutagenesis have enhanced enzyme thermostability, they often suffer from reduced enzymatic activity. A thermally stabilized enzyme with unchanged amino acids is preferable for subsequent functional evolution necessary to address other important industrial needs. In the research presented here, we applied insertional fusion to a thermophilic maltodextrin-binding protein from Pyrococcus furiosus (PfMBP) in order to improve the thermal stability of Bacillus circulans xylanase (BCX). Specifically, we used an engineered transposon to construct a combinatorial library of randomly inserted BCX into PfMBP. The library was then subjected to functional screening to identify successful PfMBP-BCX insertion complexes, PfMBP-BCX161 and PfMBP-BCX165, displaying substantially improved kinetic stability at elevated temperatures compared to unfused BCX and other controls. Results from subsequent characterizations were consistent with the view that lowered aggregation of BCX and reduced conformational flexibility at the termini was responsible for increased thermal stability. Our stabilizing approach neither sacrificed xylanase activity nor required changes in the BCX amino acid sequence. Overall, the current study demonstrated the benefit of combinatorial insertional fusion to PfMBP as a systematic tool for the creation of enzymatically active and thermostable BCX variants.
Collapse
Affiliation(s)
- Vandan Shah
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Brennal Pierre
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Tamari Kirtadze
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Seung Shin
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Jin Ryoun Kim
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| |
Collapse
|
34
|
Structural comparison, docking and substrate interaction study of modeled endo -1, 4-beta xylanase enzyme of Bacillus brevis. J Mol Graph Model 2017; 74:337-343. [DOI: 10.1016/j.jmgm.2017.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 11/24/2022]
|
35
|
Kötzler MP, McIntosh LP, Withers SG. Refolding the unfoldable: A systematic approach for renaturation of Bacillus circulans xylanase. Protein Sci 2017; 26:1555-1563. [PMID: 28466501 DOI: 10.1002/pro.3181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 11/11/2022]
Abstract
Xylanases are important polysaccharide-cleaving catalysts for the pulp and paper, animal feeds and biofuels industries. They have also proved to be valuable model systems for understanding enzymatic catalysis, with one of the best studied being the GH11 xylanase from Bacillus circulans (Bcx). However, proteins from this class are very recalcitrant to refolding in vitro. This both limits their high level expression in heterologous hosts, and prevents experimental approaches, such as peptide ligation or chemical modifications, to probe and engineer their stability and function. To solve this problem, a systematic screening approach was employed to identify suitable buffer conditions for renaturing Bcx in vitro. The fractional factorial screen employed identified starting conditions for refolding, which were then refined and developed into a generic protocol for renaturing preparative amounts of active Bcx in a 50-60% yield from inclusion bodies. The method is robust and proved equally proficient at refolding circularly permuted versions that carry cysteine mutations. This general approach should be applicable to related GH11 xylanases, as well as proteins adopting a similar β-jellyroll fold, that are otherwise recalcitrant to refolding in vitro.
Collapse
Affiliation(s)
- Miriam P Kötzler
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Lawrence P McIntosh
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1
| |
Collapse
|
36
|
Sermsathanaswadi J, Baramee S, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Kosugi A. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation. Enzyme Microb Technol 2017; 96:75-84. [DOI: 10.1016/j.enzmictec.2016.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/05/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
|
37
|
Mello BL, Alessi AM, Riaño-Pachón DM, deAzevedo ER, Guimarães FEG, Espirito Santo MC, McQueen-Mason S, Bruce NC, Polikarpov I. Targeted metatranscriptomics of compost-derived consortia reveals a GH11 exerting an unusual exo-1,4-β-xylanase activity. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:254. [PMID: 29118851 PMCID: PMC5667448 DOI: 10.1186/s13068-017-0944-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/24/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Using globally abundant crop residues as a carbon source for energy generation and renewable chemicals production stand out as a promising solution to reduce current dependency on fossil fuels. In nature, such as in compost habitats, microbial communities efficiently degrade the available plant biomass using a diverse set of synergistic enzymes. However, deconstruction of lignocellulose remains a challenge for industry due to recalcitrant nature of the substrate and the inefficiency of the enzyme systems available, making the economic production of lignocellulosic biofuels difficult. Metatranscriptomic studies of microbial communities can unveil the metabolic functions employed by lignocellulolytic consortia and identify novel biocatalysts that could improve industrial lignocellulose conversion. RESULTS In this study, a microbial community from compost was grown in minimal medium with sugarcane bagasse sugarcane bagasse as the sole carbon source. Solid-state nuclear magnetic resonance was used to monitor lignocellulose degradation; analysis of metatranscriptomic data led to the selection and functional characterization of several target genes, revealing the first glycoside hydrolase from Carbohydrate Active Enzyme family 11 with exo-1,4-β-xylanase activity. The xylanase crystal structure was resolved at 1.76 Å revealing the structural basis of exo-xylanase activity. Supplementation of a commercial cellulolytic enzyme cocktail with the xylanase showed improvement in Avicel hydrolysis in the presence of inhibitory xylooligomers. CONCLUSIONS This study demonstrated that composting microbiomes continue to be an excellent source of biotechnologically important enzymes by unveiling the diversity of enzymes involved in in situ lignocellulose degradation.
Collapse
Affiliation(s)
- Bruno L. Mello
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, São Carlos, SP 13560-970 Brazil
| | - Anna M. Alessi
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Diego M. Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Rua Giuseppe Máximo Scalfaro 10000, Campinas, SP 13083-100 Brazil
- Laboratório de Biologia de Sistemas Regulatórios, Departamento de Química, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000 Brazil
| | - Eduardo R. deAzevedo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, São Carlos, SP 13560-970 Brazil
| | - Francisco E. G. Guimarães
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, São Carlos, SP 13560-970 Brazil
| | - Melissa C. Espirito Santo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, São Carlos, SP 13560-970 Brazil
| | | | - Neil C. Bruce
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, São Carlos, SP 13560-970 Brazil
| |
Collapse
|
38
|
Bai W, Cao Y, Liu J, Wang Q, Jia Z. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. BMC Biotechnol 2016; 16:77. [PMID: 27825339 PMCID: PMC5101721 DOI: 10.1186/s12896-016-0310-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Family 11 alkaline xylanases have great potential economic applications in the pulp and paper industry. In this study, we would improve the alkalophilicity of family 11 alkaline xylanase Xyn11A-LC from Bacillus sp. SN5, for the better application in this field. RESULTS A random mutation library of Xyn11A-LC with about 10,000 clones was constructed by error-prone PCR. One mutant, M52-C10 (V116A and E135V), with improved alkalophilicity was obtained from the library. Site-directed mutation showed that the mutation E135V was responsible for the alkalophilicity of the mutant. The variant E135V shifted the optimum pH of the wild-type enzyme from 7.5 to 8.0. Compared to the relative activities of the wild type enzyme, those of the mutant E135V increased by 17.5, 18.9, 14.3 and 9.5 % at pH 8.5, 9.0, 9.5 and 10.0, respectively. Furthermore, Glu135 saturation mutagenesis showed that the only mutant to have better alkalophilicity than E135V was E135R. The optimal pH of the mutant E135R was 8.5, 1.0 pH units higher than that of the wild-type. In addition, compared to the wild-type enzyme, the mutations E135V and E135R increased the catalytic efficiency (k cat/K m) by 57 and 37 %, respectively. Structural analysis showed that the residue at position 135, located in the eight-residue loop on the protein surface, might improve the alkalophilicity and catalytic activity by the elimination of the negative charge and the formation of salt-bridge. CONCLUSIONS Mutants E135V and E135R with improved alkalophilicity were obtained by directed evolution and site saturation mutagenesis. The residue at position 135 in the eight-residue loop on the protein surface was found to play an important role in the pH activity profile of family 11 xylanases. This study provided alkalophilic mutants for application in bleaching process, and it was also helpful to understand the alkaline adaptation mechanism of family 11 xylanases.
Collapse
Affiliation(s)
- Wenqin Bai
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China. .,College of Life Science, Shanxi Normal University, Linfen, 041004, China.
| | - Yufan Cao
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China.,College of Life Science, Shanxi Normal University, Linfen, 041004, China
| | - Jun Liu
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China.,College of Life Science, Shanxi Normal University, Linfen, 041004, China
| | - Qinhong Wang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Zhenhu Jia
- College of Life Science, Shanxi Normal University, Linfen, 041004, China.
| |
Collapse
|
39
|
Watanabe M, Fukada H, Ishikawa K. Construction of Thermophilic Xylanase and Its Structural Analysis. Biochemistry 2016; 55:4399-409. [DOI: 10.1021/acs.biochem.6b00414] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masahiro Watanabe
- Biomass
Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
- Research
Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Harumi Fukada
- Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Kazuhiko Ishikawa
- Biomass
Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
40
|
Gagné D, Narayanan C, Nguyen-Thi N, Roux LD, Bernard DN, Brunzelle JS, Couture JF, Agarwal PK, Doucet N. Ligand Binding Enhances Millisecond Conformational Exchange in Xylanase B2 from Streptomyces lividans. Biochemistry 2016; 55:4184-96. [PMID: 27387012 DOI: 10.1021/acs.biochem.6b00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Xylanases catalyze the hydrolysis of xylan, an abundant carbon and energy source with important commercial ramifications. Despite tremendous efforts devoted to the catalytic improvement of xylanases, success remains limited because of our relatively poor understanding of their molecular properties. Previous reports suggested the potential role of atomic-scale residue dynamics in modulating the catalytic activity of GH11 xylanases; however, dynamics in these studies was probed on time scales orders of magnitude faster than the catalytic time frame. Here, we used nuclear magnetic resonance titration and relaxation dispersion experiments ((15)N-CPMG) in combination with X-ray crystallography and computational simulations to probe conformational motions occurring on the catalytically relevant millisecond time frame in xylanase B2 (XlnB2) and its catalytically impaired mutant E87A from Streptomyces lividans 66. Our results show distinct dynamical properties for the apo and ligand-bound states of the enzymes. The apo form of XlnB2 experiences conformational exchange for residues in the fingers and palm regions of the catalytic cleft, while the catalytically impaired E87A variant displays millisecond dynamics only in the fingers, demonstrating the long-range effect of the mutation on flexibility. Ligand binding induces enhanced conformational exchange of residues interacting with the ligand in the fingers and thumb loop regions, emphasizing the potential role of residue motions in the fingers and thumb loop regions for recognition, positioning, processivity, and/or stabilization of ligands in XlnB2. To the best of our knowledge, this work represents the first experimental characterization of millisecond dynamics in a GH11 xylanase family member. These results offer new insights into the potential role of conformational exchange in GH11 enzymes, providing essential dynamic information to help improve protein engineering and design applications.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Chitra Narayanan
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Nhung Nguyen-Thi
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Louise D Roux
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - David N Bernard
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Joseph S Brunzelle
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University , 320 East Superior Street, Chicago, Illinois 60611, United States
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.,PROTEO, Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval , 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada.,GRASP, Groupe de Recherche Axé sur la Structure des Protéines, McGill University , 3649 Promenade Sir William Osler, Montréal, Québec H3G 0B1, Canada
| | - Pratul K Agarwal
- Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States.,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada.,PROTEO, Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval , 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada.,GRASP, Groupe de Recherche Axé sur la Structure des Protéines, McGill University , 3649 Promenade Sir William Osler, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
41
|
Structural insight into potential cold adaptation mechanism through a psychrophilic glycoside hydrolase family 10 endo-β-1,4-xylanase. J Struct Biol 2016; 193:206-211. [DOI: 10.1016/j.jsb.2015.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 11/18/2022]
|
42
|
Qiu J, Han H, Sun B, Chen L, Yu C, Peng R, Yao Q. Residue mutations of xylanase in Aspergillus kawachii alter its optimum pH. Microbiol Res 2015; 182:1-7. [PMID: 26686608 DOI: 10.1016/j.micres.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/17/2015] [Accepted: 09/06/2015] [Indexed: 12/18/2022]
Abstract
Aspergillus kawachii and Aspergillus niger have been traditionally used as molds for commercial microbial fermentation because of their capability to grow in extremely acidic environments and produce acid-stable enzymes. Endo-1,4-β-xylanase cleaves the glycosidic bonds in the xylan backbone, consequently reducing the degree of polymerization of the substrate. The amino acid sequences of xylanases from A. kawachii and A. niger only differ in one amino acid residue. However, the xylanases from A. kawachii and A. niger show different optimum pH values of 2.0 and 3.0, respectively. In this study, we synthesized the A. kawachii xylanase gene (XynC) on the basis of the bias codon of yeast and mutated the gene in the dominating region related to optimum pH shifting during gene synthesis. After the overexpression of this gene in Pichia pastoris G115, the mutant (Thr64Ser) enzyme (XynC-C) showed an optimum pH of 3.8, which indicated partial alkalinity compared with the original xylanase from A. kawachii. Similar to that of the enzyme with one residue mutation (Asp48Asn), the optimum pH of the enzyme with two residue mutations (Thr64Ser and Asp48Asn) shifted to 5.0. The result indicated that mutation Asp48 was more important than mutation Thr64 in optimum pH shifting. We proposed a model that explains the lower optimum pH of XynC-C than other members of the xylanase family G. XynC-C showed similar proteolytic resistance and Km and Vmax values for beechwood xylan to other xylanases.
Collapse
Affiliation(s)
- Jin Qiu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China; College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Rd, Shanghai 210306, PR China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Baihui Sun
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China; College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Rd, Shanghai 210306, PR China
| | - Lei Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China; College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Rd, Shanghai 210306, PR China
| | - Chengye Yu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China; College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Rd, Shanghai 210306, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China; College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Rd, Shanghai 210306, PR China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China; College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Rd, Shanghai 210306, PR China.
| |
Collapse
|
43
|
Sakalli I, Knapp EW. pK(A) in proteins solving the Poisson-Boltzmann equation with finite elements. J Comput Chem 2015; 36:2147-57. [PMID: 26284944 DOI: 10.1002/jcc.24053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/24/2015] [Accepted: 07/30/2015] [Indexed: 11/12/2022]
Abstract
Knowledge on pK(A) values is an eminent factor to understand the function of proteins in living systems. We present a novel approach demonstrating that the finite element (FE) method of solving the linearized Poisson-Boltzmann equation (lPBE) can successfully be used to compute pK(A) values in proteins with high accuracy as a possible replacement to finite difference (FD) method. For this purpose, we implemented the software molecular Finite Element Solver (mFES) in the framework of the Karlsberg+ program to compute pK(A) values. This work focuses on a comparison between pK(A) computations obtained with the well-established FD method and with the new developed FE method mFES, solving the lPBE using protein crystal structures without conformational changes. Accurate and coarse model systems are set up with mFES using a similar number of unknowns compared with the FD method. Our FE method delivers results for computations of pK(A) values and interaction energies of titratable groups, which are comparable in accuracy. We introduce different thermodynamic cycles to evaluate pK(A) values and we show for the FE method how different parameters influence the accuracy of computed pK(A) values.
Collapse
Affiliation(s)
- Ilkay Sakalli
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Ernst-Walter Knapp
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Fabeckstr. 36a, 14195, Berlin, Germany
| |
Collapse
|
44
|
Kalpana V, Rajeswari VD. Production of Xylanase from Various Lignocellulosic Waste Materials by Streptomyces sp. and its Potential Role in Deinking of Newsprint. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajb.2015.222.229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J 2015; 467:17-35. [PMID: 25793417 DOI: 10.1042/bj20141412] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carbohydrates are ubiquitous in Nature and play vital roles in many biological systems. Therefore the synthesis of carbohydrate-based compounds is of considerable interest for both research and commercial purposes. However, carbohydrates are challenging, due to the large number of sugar subunits and the multiple ways in which these can be linked together. Therefore, to tackle the challenge of glycosynthesis, chemists are increasingly turning their attention towards enzymes, which are exquisitely adapted to the intricacy of these biomolecules. In Nature, glycosidic linkages are mainly synthesized by Leloir glycosyltransferases, but can result from the action of non-Leloir transglycosylases or phosphorylases. Advantageously for chemists, non-Leloir transglycosylases are glycoside hydrolases, enzymes that are readily available and exhibit a wide range of substrate specificities. Nevertheless, non-Leloir transglycosylases are unusual glycoside hydrolases in as much that they efficiently catalyse the formation of glycosidic bonds, whereas most glycoside hydrolases favour the mechanistically related hydrolysis reaction. Unfortunately, because non-Leloir transglycosylases are almost indistinguishable from their hydrolytic counterparts, it is unclear how these enzymes overcome the ubiquity of water, thus avoiding the hydrolytic reaction. Without this knowledge, it is impossible to rationally design non-Leloir transglycosylases using the vast diversity of glycoside hydrolases as protein templates. In this critical review, a careful analysis of literature data describing non-Leloir transglycosylases and their relationship to glycoside hydrolase counterparts is used to clarify the state of the art knowledge and to establish a new rational basis for the engineering of glycoside hydrolases.
Collapse
|
46
|
Identification of three important amino acid residues of xylanase AfxynA from Aspergillus fumigatus for enzyme activity and formation of xylobiose as the major product. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Mhlongo NN, Ebrahim M, Skelton AA, Kruger HG, Williams IH, Soliman MES. Dynamics of the thumb-finger regions in a GH11 xylanase Bacillus circulans: comparison between the Michaelis and covalent intermediate. RSC Adv 2015. [DOI: 10.1039/c5ra16836h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structure and dynamics of B. circulans β-1,4-xylanase (BCX) were comparatively studied utilizing molecular dynamics.
Collapse
Affiliation(s)
- Ndumiso N. Mhlongo
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mahasin Ebrahim
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Adam A. Skelton
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit
- School of Health Sciences University of KwaZulu-Natal
- Durban 4001
- South Africa
| | | | - Mahmoud E. S. Soliman
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences University of KwaZulu-Natal
- Durban 4001
- South Africa
| |
Collapse
|
48
|
Gao J, Wakarchuk W. Characterization of five β-glycoside hydrolases from Cellulomonas fimi ATCC 484. J Bacteriol 2014; 196:4103-10. [PMID: 25225266 PMCID: PMC4248878 DOI: 10.1128/jb.02194-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/04/2014] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive bacterium Cellulomonas fimi produces a large array of carbohydrate-active enzymes. Analysis of the collection of carbohydrate-active enzymes from the recent genome sequence of C. fimi ATCC 484 shows a large number of uncharacterized genes for glycoside hydrolase (GH) enzymes potentially involved in biomass utilization. To investigate the enzymatic activity of potential β-glucosidases in C. fimi, genes encoding several GH3 enzymes and one GH1 enzyme were cloned and recombinant proteins were expressed in Escherichia coli. Biochemical analysis of these proteins revealed that the enzymes exhibited different substrate specificities for para-nitrophenol-linked substrates (pNP), disaccharides, and oligosaccharides. Celf_2726 encoded a bifunctional enzyme with β-d-xylopyranosidase and α-l-arabinofuranosidase activities, based on pNP-linked substrates (CfXyl3A). Celf_0140 encoded a β-d-glucosidase with activity on β-1,3- and β-1,6-linked glucosyl disaccharides as well as pNP-β-Glc (CfBgl3A). Celf_0468 encoded a β-d-glucosidase with hydrolysis of pNP-β-Glc and hydrolysis/transglycosylation activities only on β-1,6-linked glucosyl disaccharide (CfBgl3B). Celf_3372 encoded a GH3 family member with broad aryl-β-d-glycosidase substrate specificity. Celf_2783 encoded the GH1 family member (CfBgl1), which was found to hydrolyze pNP-β-Glc/Fuc/Gal, as well as cellotetraose and cellopentaose. CfBgl1 also had good activity on β-1,2- and β-1,3-linked disaccharides but had only very weak activity on β-1,4/6-linked glucose.
Collapse
Affiliation(s)
- Juan Gao
- School of Life Sciences, Northeast Normal University, Changchun, Jilin Province, People's Republic of China
| | - Warren Wakarchuk
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Molecular modeling and MM-PBSA free energy analysis of endo-1,4-β-xylanase from Ruminococcus albus 8. Int J Mol Sci 2014; 15:17284-303. [PMID: 25264743 PMCID: PMC4227162 DOI: 10.3390/ijms151017284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/16/2022] Open
Abstract
Endo-1,4-β-xylanase (EC 3.2.1.8) is the enzyme from Ruminococcus albus 8 (R. albus 8) (Xyn10A), and catalyzes the degradation of arabinoxylan, which is a major cell wall non-starch polysaccharide of cereals. The crystallographic structure of Xyn10A is still unknown. For this reason, we report a computer-assisted homology study conducted to build its three-dimensional structure based on the known sequence of amino acids of this enzyme. In this study, the best similarity was found with the Clostridium thermocellum (C. thermocellum) N-terminal endo-1,4-β-D-xylanase 10 b. Following the 100 ns molecular dynamics (MD) simulation, a reliable model was obtained for further studies. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) methods were used for the substrate xylotetraose having the reactive sugar, which was bound in the -1 subsite of Xyn10A in the 4C1 (chair) and 2SO (skew boat) ground state conformations. According to the simulations and free energy analysis, Xyn10A binds the substrate with the -1 sugar in the 2SO conformation 39.27 kcal·mol(-1) tighter than the substrate with the sugar in the 4C1 conformation. According to the Xyn10A-2SO Xylotetraose (X4(sb) interaction energies, the most important subsite for the substrate binding is subsite -1. The results of this study indicate that the substrate is bound in a skew boat conformation with Xyn10A and the -1 sugar subsite proceeds from the 4C1 conformation through 2SO to the transition state. MM-PBSA free energy analysis indicates that Asn187 and Trp344 in subsite -1 may an important residue for substrate binding. Our findings provide fundamental knowledge that may contribute to further enhancement of enzyme performance through molecular engineering.
Collapse
|
50
|
Kataoka M, Akita F, Maeno Y, Inoue B, Inoue H, Ishikawa K. Crystal structure of Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) GH family 11 xylanase. Appl Biochem Biotechnol 2014; 174:1599-1612. [PMID: 25138599 PMCID: PMC4177571 DOI: 10.1007/s12010-014-1130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/29/2014] [Indexed: 11/29/2022]
Abstract
Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) is one of the mesophilic fungi that can produce high levels of cellulose-related enzymes and are expected to be used for the degradation of polysaccharide biomass. In silico analysis of the genome sequence of T. cellulolyticus detected seven open reading frames (ORFs) showing homology to xylanases from glycoside hydrolase (GH) family 11. The gene encoding the GH11 xylanase C (TcXylC) with the highest activity was used for overproduction and purification of the recombinant enzyme, permitting solving of the crystal structure to a resolution of 1.98 Å. In the asymmetric unit, two kinds of the crystal structures of the xylanase were identified. The main structure of the protein showed a β-jelly roll structure. We hypothesize that one of the two structures represents the open form and the other shows the close form. The changing of the flexible region between the two structures is presumed to induce and accelerate the enzyme reaction. The specificity of xylanase toward the branched xylan is discussed in the context of this structural data and by comparison with the other published structures of xylanases.
Collapse
Affiliation(s)
- Misumi Kataoka
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Fusamichi Akita
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Yuka Maeno
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Benchaporn Inoue
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Hiroyuki Inoue
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Kazuhiko Ishikawa
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan.
| |
Collapse
|