1
|
Sakaguchi S, Nakagawa N, Wahba HM, Wada J, Kamada R, Omichinski JG, Sakaguchi K. Highly Similar Tetramerization Domains from the p53 Protein of Different Mammalian Species Possess Varying Biophysical, Functional and Structural Properties. Int J Mol Sci 2023; 24:16620. [PMID: 38068946 PMCID: PMC10706167 DOI: 10.3390/ijms242316620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The p53 protein is a transcriptional regulatory factor and many of its functions require that it forms a tetrameric structure. Although the tetramerization domain of mammalian p53 proteins (p53TD) share significant sequence similarities, it was recently shown that the tree shrew p53TD is considerably more thermostable than the human p53TD. To determine whether other mammalian species display differences in this domain, we used biophysical, functional, and structural studies to compare the properties of the p53TDs from six mammalian model organisms (human, tree shrew, guinea pig, Chinese hamster, sheep, and opossum). The results indicate that the p53TD from the opossum and tree shrew are significantly more stable than the human p53TD, and there is a correlation between the thermostability of the p53TDs and their ability to activate transcription. Structural analysis of the tree shrew and opossum p53TDs indicated that amino acid substitutions within two distinct regions of their p53TDs can dramatically alter hydrophobic packing of the tetramer, and in particular substitutions at positions corresponding to F341 and Q354 of the human p53TD. Together, the results suggest that subtle changes in the sequence of the p53TD can dramatically alter the stability, and potentially lead to important changes in the functional activity, of the p53 protein.
Collapse
Affiliation(s)
- Shuya Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| | - Natsumi Nakagawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| | - Haytham M. Wahba
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada;
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 2722165, Egypt
| | - Junya Wada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| | - Rui Kamada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| | - James G. Omichinski
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada;
| | - Kazuyasu Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| |
Collapse
|
2
|
Krois AS, Park S, Martinez-Yamout MA, Dyson HJ, Wright PE. Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR. Biochemistry 2022; 61:2709-2719. [PMID: 36380579 PMCID: PMC9788666 DOI: 10.1021/acs.biochem.2c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The C-terminal region of the tumor suppressor protein p53 contains three domains, nuclear localization signal (NLS), tetramerization domain (TET), and C-terminal regulatory domain (CTD), which are essential for p53 function. Characterization of the structure and interactions of these domains within full-length p53 has been limited by the overall size and flexibility of the p53 tetramer. Using trans-intein splicing, we have generated full-length p53 constructs in which the C-terminal region is isotopically labeled with 15N for NMR analysis, allowing us to obtain atomic-level information on the C-terminal domains in the context of the full-length protein. Resonances of NLS and CTD residues have narrow linewidths, showing that these regions are largely solvent-exposed and dynamically disordered, whereas resonances from the folded TET are broadened beyond detection. Two regions of the CTD, spanning residues 369-374 and 381-388 and with high lysine content, make dynamic and sequence-independent interactions with DNA in regions that flank the p53 recognition element. The population of DNA-bound states increases as the length of the flanking regions is extended up to approximately 20 base pairs on either side of the recognition element. Acetylation of K372, K373, and K382, using a construct of the transcriptional coactivator CBP containing the TAZ2 and acetyltransferase domains, inhibits interaction of the CTD with DNA. This work provides high-resolution insights into the behavior of the intrinsically disordered C-terminal regions of p53 within the full-length tetramer and the molecular basis by which the CTD mediates DNA binding and specificity.
Collapse
Affiliation(s)
- Alexander S Krois
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Sangho Park
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| |
Collapse
|
3
|
Kamada R, Toguchi Y, Nomura T, Imagawa T, Sakaguchi K. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers 2017; 106:598-612. [PMID: 26572807 DOI: 10.1002/bip.22772] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 01/10/2023]
Abstract
Tetramer formation of p53 is essential for its tumor suppressor function. p53 not only acts as a tumor suppressor protein by inducing cell cycle arrest and apoptosis in response to genotoxic stress, but it also regulates other cellular processes, including autophagy, stem cell self-renewal, and reprogramming of differentiated cells into stem cells, immune system, and metastasis. More than 50% of human tumors have TP53 gene mutations, and most of them are missense mutations that presumably reduce tumor suppressor activity of p53. This review focuses on the role of the tetramerization (oligomerization), which is modulated by the protein concentration of p53, posttranslational modifications, and/or interactions with its binding proteins, in regulating the tumor suppressor function of p53. Functional control of p53 by stabilizing or inhibiting oligomer formation and its bio-applications are also discussed. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 598-612, 2016.
Collapse
Affiliation(s)
- Rui Kamada
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yu Toguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takao Nomura
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Toshiaki Imagawa
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kazuyasu Sakaguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
4
|
Lui K, Sheikh MS, Huang Y. Regulation of p53 oligomerization by Ras superfamily protein RBEL1A. Genes Cancer 2015; 6:307-16. [PMID: 26413214 PMCID: PMC4575918 DOI: 10.18632/genesandcancer.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/28/2015] [Indexed: 12/21/2022] Open
Abstract
Our previous studies showed that RBEL1A overexpressed in multiple human malignancies and its depletion by RNAi caused severe growth inhibition in tumor cells. We also showed that RBEL1A directly interacted with p53 and such interactions occurred at the oligomeric domain of p53. However, the effect of such interactions on p53 oligomerization and function remained to be investigated. Here, we report that the interaction of RBEL1A and p53 suppressed p53 oligomer formation in unstressed cells and in cells exposed to DNA damage. Furthermore, purified RBEL1A blocked the oligomerization of recombinant p53 corresponding to residues 315-360 in vitro. RBEL1A also significantly reduced the oligomerization of the exogenously expressed C-terminal region (residues 301-393) of p53 in cells. Overexpression of RBEL1A (as seen in human tumors), also suppressed oligomerization by endogenous p53. Our results also showed that GTPase domain of RBEL1A at residues 1-235 was sufficient to block p53 oligomerization. Furthermore, silencing of endogenous RBEL1A significantly enhanced the formation of p53 oligomeric complex following ultraviolet radiation-mediated DNA damage and RBEL1A knockdown also enhanced expression of p53 target genes. Taken together, our studies provide important new molecular insights into the regulation of p53 and the oncogenic role of RBEL1A in the context to human malignancy.
Collapse
Affiliation(s)
- Ki Lui
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, USA ; Division of Science and Technology, The Hong Kong Polytechnic University, Hong Kong Community College, Hung Hom, Kowloon, Hong Kong
| | - M Saeed Sheikh
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Ying Huang
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
5
|
García-Linares S, Richmond R, García-Mayoral MF, Bustamante N, Bruix M, Gavilanes JG, Martínez-del-Pozo Á. The sea anemone actinoporin (Arg-Gly-Asp) conserved motif is involved in maintaining the competent oligomerization state of these pore-forming toxins. FEBS J 2014; 281:1465-1478. [DOI: 10.1111/febs.12717] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/12/2013] [Accepted: 12/31/2013] [Indexed: 01/19/2023]
Affiliation(s)
- Sara García-Linares
- Departamento de Bioquímica y Biología Molecular I; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| | - Ryan Richmond
- Departamento de Bioquímica y Biología Molecular I; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| | | | | | - Marta Bruix
- Instituto de Química-Física Rocasolano; Madrid Spain
| | - José G. Gavilanes
- Departamento de Bioquímica y Biología Molecular I; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| | - Álvaro Martínez-del-Pozo
- Departamento de Bioquímica y Biología Molecular I; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| |
Collapse
|
6
|
Yakovlev VA, Bayden AS, Graves PR, Kellogg GE, Mikkelsen RB. Nitration of the tumor suppressor protein p53 at tyrosine 327 promotes p53 oligomerization and activation. Biochemistry 2010; 49:5331-9. [PMID: 20499882 DOI: 10.1021/bi100564w] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous studies demonstrate that nitric oxide (NO) promotes p53 transcriptional activity by a classical DNA damage responsive mechanism involving activation of ATM/ATR and phosphorylation of p53. These studies intentionally used high doses of NO donors to achieve the maximum DNA damage. However, lower concentrations of NO donors also stimulate rapid and unequivocal nuclear retention of p53 but apparently do not require ATM/ATR-dependent p53 phosphorylation or total p53 protein accumulation. To identify possible mechanisms for p53 activation at low NO levels, the role of Tyr nitration in p53 activation was evaluated. Low concentrations of the NO donor, DETA NONOate (<200 microM), exclusively nitrate Tyr327 within the tetramerization domain promoting p53 oligomerization, nuclear accumulation, and increased DNA-binding activity without p53 Ser15 phosphorylation. Molecular modeling indicates that nitration of one Tyr327 stabilizes the dimer by about 2.67 kcal mol(-1). Significant quantitative and qualitative differences in the patterns of p53-target gene modulation by low (50 microM), non-DNA-damaging and high (500 microM), DNA-damaging NO donor concentrations were shown. These results demonstrate a new posttranslational mechanism for modulating p53 transcriptional activity responsive to low NO concentrations and independent of DNA damage signaling.
Collapse
Affiliation(s)
- Vasily A Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
7
|
Cai BH, Chen JY, Lu MH, Chang LT, Lin HC, Chang YM, Chao CF. Functional four-base A/T gap core sequence CATTAG of P53 response elements specifically bound tetrameric P53 differently than two-base A/T gap core sequence CATG bound both dimeric and tetrameric P53. Nucleic Acids Res 2009; 37:1984-90. [PMID: 19208646 PMCID: PMC2665222 DOI: 10.1093/nar/gkp033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The consensus sequence of p53 is repeated half sites of PuPuPuC(A/T)(A/T)GPyPyPy. GtAGCAttAGCCCAGACATGTCC is a 14-3-3sigma promoter p53 regulation site; the first core sequence is CAttAG, and the second is CATG. Both mutants GtAGgAttAGCCCAGACATGTCC and GtAGCAttAGCCCAGACATcTCC can be activated by p53 as a 1.5-fold half site. The original p53 regulated site on the 14-3-3sigma promoter is a whole site, and CATTAG is a functional core sequence. The p53-binding affinity and the activity of CATTAG were lower than for the mutant CATATG core sequence. Wild-type p53 acts as a tetramer to bind to the whole site; however, it also can bind to a half site by one of its dimers. Wild-type p53 can only bind to a half site with core sequence CATG but not to CATATG. The 1.5-fold half site or whole site with core sequence CATATG can be bound by wild-type p53. A p53 mutant, A344, forms dimeric p53; it can only bind to CATG, and not to CATATG. Therefore, tetrameric and dimeric p53 can bind to a two-base A/T gap core sequence, but only tetrameric p53 can bind to a four-base A/T gap core sequence.
Collapse
Affiliation(s)
- Bi-He Cai
- National Defense Medical Center, Institute of Life Sciences, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
8
|
Galea C, Bowman P, Kriwacki RW. Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils. Protein Sci 2005; 14:2993-3003. [PMID: 16260757 PMCID: PMC2253254 DOI: 10.1110/ps.051622005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We describe in molecular detail how disruption of an intermonomer salt bridge (Arg337-Asp352) leads to partial destabilization of the p53 tetramerization domain and a dramatically increased propensity to form amyloid fibrils. At pH 4.0 and 37 degrees C, a p53 tetramerization domain mutant (p53tet-R337H), associated with adrenocortical carcinoma in children, readily formed amyloid fibrils, while the wild-type (p53tet-wt) did not. We characterized these proteins by equilibrium denaturation, 13C(alpha) secondary chemical shifts, (1H)-15N heteronuclear NOEs, and H/D exchange. Although p53tet-R337H was thermodynamically less stable, NMR data indicated that the two proteins had similar secondary structure and molecular dynamics. NMR derived pK(a) values indicated that at low pH the R337H mutation partially disrupted an intermonomer salt bridge. Backbone H/D exchange results showed that for at least a small population of p53tet-R337H molecules disruption of this salt bridge resulted in partial destabilization of the protein. It is proposed that this decrease in p53tet-R337H stability resulted in an increased propensity to form amyloid fibrils.
Collapse
Affiliation(s)
- Charles Galea
- Department of Structural Biology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | |
Collapse
|
9
|
Iwahara J, Peterson RD, Clubb RT. Compensating increases in protein backbone flexibility occur when the Dead ringer AT-rich interaction domain (ARID) binds DNA: a nitrogen-15 relaxation study. Protein Sci 2005; 14:1140-50. [PMID: 15802641 PMCID: PMC2253272 DOI: 10.1110/ps.041154405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AT-rich interaction domains (ARIDs) are found in a large number of eukaryotic transcription factors that regulate cell proliferation, differentiation, and development. Previously we elucidated how ARIDs recognize DNA by determining the solution structure of the Drosophila melanogaster Dead ringer protein in both its DNA-free and -bound states. In order to quantitatively determine how ARIDs alter their mobility to recognize DNA, we have measured the relaxation parameters of the backbone nitrogen-15 nuclei of Dead ringer in its free and bound forms, and interpreted these data using the model-free approach. We show that Dead ringer undergoes significant changes in its mobility upon binding, with residues in the loop connecting helices H5 and H6 becoming immobilized in the major groove and contacts to the minor groove slowing down the motion of residues at the C terminus. A DNA-induced rotation and displacement of the N-terminal subdomain of the protein increases the mobility of helix H1 located distal to the DNA interface and may partially negate the entropic cost of immobilizing interfacial residues. Elevated motions on the micro- to millisecond timescale in the N-terminal domain prior to DNA binding appear to foreshadow the DNA-induced conformation change.
Collapse
Affiliation(s)
- Junji Iwahara
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1570, USA
| | | | | |
Collapse
|
10
|
Varadi G, Otvos L. Synthesis of complex phosphopeptides as mimics of p53 functional domains. J Pept Sci 2002; 8:621-33. [PMID: 12487430 DOI: 10.1002/psc.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A complete set of mono-, di- and triphosphorylated peptides comprising amino acids 10-27, the Mdm2 and p300 binding site(s) of p53, with and without a fluorescein label at the N-terminus, was synthesized by step-by-step solid phase synthesis. Fluorescence polarization analysis revealed that phosphorylation at Thr18 decreased binding to recombinant Mdm2 protein compared with the unphosphorylated and the two other single phosphorylated analogues. Unlabelled multiply phosphorylated peptides corresponding to this amino-terminal transactivation domain proved to be powerful tools in analysing the phosphate specificity of existing anti-p53 monoclonal and polyclonal antibodies using direct ELISA. The tetramerization domain of human p53 protein was modelled with a 53 residue-long unlabelled unphosphorylated and Ser315-phosphorylated peptide pair. CD analysis showed similar alpha-helical structures for both peptides and no major difference in the secondary structure could be observed upon phosphorylation. Size-exclusion HPLC indicated that these synthetic oligomerization domain mimics underwent a pH-dependent tetramerization process, but the presence of a phosphate group at Ser315 did not modify the oligomeric state of the 308-360 p53 fragments. Nevertheless, the fluorescein-labelled Ser315 phosphorylated peptide bound to the downstream signalling ligand DNA topoisomerase I protein with slightly higher affinity than did the unphosphorylated analogue.
Collapse
Affiliation(s)
- Gyorgyi Varadi
- The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
11
|
Johansson MU, Nilsson H, Evenäs J, Forsén S, Drakenberg T, Björck L, Wikström M. Differences in backbone dynamics of two homologous bacterial albumin-binding modules: implications for binding specificity and bacterial adaptation. J Mol Biol 2002; 316:1083-99. [PMID: 11884146 DOI: 10.1006/jmbi.2002.5398] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins G and PAB are bacterial albumin-binding proteins expressed at the surface of group C and G streptococci and Peptostreptococcus magnus, respectively. Repeated albumin-binding domains, known as GA modules, are found in both proteins. The third GA module of protein G from the group G streptococcal strain G148 (G148-GA3) and the second GA module of protein PAB from P.magnus strain ALB8 (ALB8-GA) exhibit 59% sequence identity and both fold to form three-helix bundle structures that are very stable against thermal denaturation. ALB8-GA binds human serum albumin with higher affinity than G148-GA3, but G148-GA3 shows substantially broader albumin-binding specificity than ALB8-GA. The (15)N nuclear magnetic resonance spin relaxation measurements reported here, show that the two GA modules exhibit mobility on the picosecond-nanosecond time scale in directly corresponding regions (loops and termini). Most residues in G148-GA3 were seen to be involved in conformational exchange processes on the microsecond-millisecond time scale, whereas for ALB8-GA such motions were only identified for the beginning of helix 2 and its preceding loop. Furthermore, and more importantly, hydrogen-deuterium exchange and saturation transfer experiments reveal large differences between the two GA modules with respect to motions on the second-hour time scale. The high degree of similarity between the two GA modules with respect to sequence, structure and stability, and the observed differences in dynamics, binding affinity and binding specificity to different albumins, suggest a distinct correlation between dynamics, binding affinity and binding specificity. Finally, it is noteworthy in this context that the module G148-GA3, which has broad albumin-binding specificity, is expressed by group C and G streptococci known to infect all mammalian species, whereas P.magnus with the ALB8-GA module has been isolated only from humans.
Collapse
Affiliation(s)
- Maria U Johansson
- Department of Biophysical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
12
|
Moy FJ, Chanda PK, Chen JM, Cosmi S, Edris W, Levin JI, Powers R. High-resolution solution structure of the catalytic fragment of human collagenase-3 (MMP-13) complexed with a hydroxamic acid inhibitor. J Mol Biol 2000; 302:671-89. [PMID: 10986126 DOI: 10.1006/jmbi.2000.4082] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The high-resolution solution structure of the catalytic fragment of human collagenase-3 (MMP-13) complexed with a sulfonamide derivative of a hydroxamic acid compound (WAY-151693) has been determined by multidimensional heteronuclear NMR. A total of 30 structures were calculated for residues 7-164 by means of hybrid distance geometry-simulated annealing using a total of 3280 experimental NMR restraints. The atomic rms distribution about the mean coordinate positions for the 30 structures is 0.43(+/-0.05) A for the backbone atoms, 0.80(+/-0.09) A for all atoms, and 0.47(+/-0.04) A for all atoms excluding disordered side-chains. The overall structure of MMP-13 is composed of a beta-sheet consisting of five beta-strands in a mixed parallel and anti-parallel arrangement and three alpha-helices where its overall fold is consistent with previously solved MMP structures. A comparison of the NMR structure of MMP-13 with the published 1.6 A resolution X-ray structure indicates that the major differences between the structures is associated with loop dynamics and crystal-packing interactions. The side-chains of some active-site residues for the NMR and X-ray structures of MMP-13 adopt distinct conformations. This is attributed to the presence of unique inhibitors in the two structures that encounter distinct interactions with MMP-13. The major structural difference observed between the MMP-13 and MMP-1 NMR structures is the relative size and shape of the S1' pocket where this pocket is significantly longer for MMP-13, nearly reaching the surface of the protein. Additionally, MMP-1 and MMP-13 exhibit different dynamic properties for the active-site loop and the structural Zn-binding region. The inhibitor WAY-151693 is well defined in the MMP-13 active-site based on a total of 52 distance restraints. The binding motif of WAY-151693 in the MMP-13 complex is consistent with our previously reported MMP-1:CGS-27023A NMR structure and is similar to the MMP-13: RS-130830 X-ray structure.
Collapse
Affiliation(s)
- F J Moy
- Department of Biological Chemistry, Wyeth Research, 85 Bolton St., Cambridge, MA 02140, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Connelly GP, Withers SG, McIntosh LP. Analysis of the dynamic properties of Bacillus circulans xylanase upon formation of a covalent glycosyl-enzyme intermediate. Protein Sci 2000; 9:512-24. [PMID: 10752613 PMCID: PMC2144565 DOI: 10.1110/ps.9.3.512] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
NMR spectroscopy was used to search for mechanistically significant differences in the local mobility of the main-chain amides of Bacillus circulans xylanase (BCX) in its native and catalytically competent covalent glycosyl-enzyme intermediate states. 15N T1, T2, and 15N[1H] NOE values were measured for approximately 120 out of 178 peptide groups in both the apo form of the protein and in BCX covalently modified at position Glu78 with a mechanism-based 2-deoxy-2-fluoro-beta-xylobioside inactivator. Employing the model-free formalism of Lipari and Szabo, the measured relaxation parameters were used to calculate a global correlation time (tau(m)) for the protein in each form (9.2 +/- 0.2 ns for apo-BCX; 9.8 +/- 0.3 ns for the modified protein), as well as individual order parameters for the main-chain NH bond vectors. Average values of the order parameters for the protein in the apo and complexed forms were S2 = 0.86 +/- 0.04 and S2 = 0.91 +/- 0.04, respectively. No correlation is observed between these order parameters and the secondary structure, solvent accessibility, or hydrogen bonding patterns of amides in either form of the protein. These results demonstrate that the backbone of BCX is well ordered in both states and that formation of the glycosyl-enzyme intermediate leads to little change, in any, in the dynamic properties of BCX on the time scales sampled by 15N-NMR relaxation measurements.
Collapse
Affiliation(s)
- G P Connelly
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
14
|
Orekhov VY, Korzhnev DM, Pervushin KV, Hoffmann E, Arseniev AS. Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-diffusion measurements. J Biomol Struct Dyn 1999; 17:157-74. [PMID: 10496429 DOI: 10.1080/07391102.1999.10508348] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This paper presents a procedure for detection of intermediate nanosecond internal dynamics in globular proteins. The procedure uses 1H-15N relaxation measurements at several spectrometer frequencies and hydrodynamic calculations based on experimental self-diffusion coefficients. New heteronuclear experiments, using pulse field gradients, are introduced for the measurement of translation diffusion coefficients of 15N labeled proteins. An advanced interpretation of recently published (Luginbühl et al., Biochemistry, 36, 7305-7312 (1997)) backbone amide 15N relaxation data, measured at two spectrometers (400 and 750 MHz for 1H) for N-terminal DNA-binding domain (1-63) of 434 repressor, is presented. Non-applicability of commonly used fast (picosecond) dynamics model (FD) was justified by (i) poor fit of relaxation data by the FD model-free spectral density function both for isotropic and anisotropic models of the overall molecular tumbling; (ii) specific dependence of the overall rotation correlation times calculated from T1/T2 ratio on the spectrometer frequency; (iii) mismatch of the ratio of longitudinal 15N relaxation times T1, measured at different spectrometer frequencies, in comparison with that anticipated for the FD model; (iv) significantly underestimated overall rotation correlation time provided by the FD model (5.50+/-0.15 and 5.80+/-0.15 ns for 750 and 400 MHz spectrometer frequency respectively) in comparison with correlation time obtained from hydrodynamics. On the other hand, all relaxation and hydrodynamics data are in good correspondence with the model of intermediate (nanoseconds) dynamics. Overall rotation correlation time of 7.5+/-0.7 ns was calculated from experimental translation self-diffusion rate using hydrodynamics formalism (Garcia de la Torre, J. and Bloomfield, V.A. Quart. Rev. Biophys., 14, 81-139 (1981)). The statistical analysis of 15N relaxation data along with the hydrodynamic consideration clearly revealed that most of the residues in 434(1-63) repressor are involved in the nanosecond internal dynamics characterized by the the mean order parameters of 0.59+/-0.06 and the correlation times of ca. 5 ns.
Collapse
Affiliation(s)
- V Y Orekhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | |
Collapse
|
15
|
Eastman P, Pellegrini M, Doniach S. Protein flexibility in solution and in crystals. J Chem Phys 1999. [DOI: 10.1063/1.478887] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Sun YC, Yang SF, Hwang IL, Wu TH. A 500-ps molecular dynamics simulation trajectory of cardiotoxin II from Taiwan cobra venom in solution: Correlation with NMR and X-ray crystallography data. J Comput Chem 1999. [DOI: 10.1002/(sici)1096-987x(19990415)20:5<546::aid-jcc6>3.0.co;2-l] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Otvos L, Hoffmann R, Xiang ZQ, O I, Deng H, Wysocka M, Pease AM, Rogers ME, Blaszczyk-Thurin M, Ertl HC. A monoclonal antibody to a multiphosphorylated, conformational epitope at the carboxy-terminus of p53. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:457-74. [PMID: 9739174 DOI: 10.1016/s0167-4889(98)00087-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations of the gene encoding the tumor suppressor protein p53 are the most common molecular alterations of cancer cells found in about half of all human tumors. Mutations which cluster in well-defined hot spots change the structure of the protein thus affecting its ability to bind to DNA. Post-translational modifications, primarily phosphorylation, might also influence how p53 binds to DNA or folds to its active tetrameric form. However, the lack of appropriate biochemical markers to characterize the status of phosphorylation in different cell types and in cells at different stages of tumor progression has prohibited such investigations. To generate a sensitive and phosphorylation-specific monoclonal antibody (mAb), we chemically synthesized the C-terminal 23 amino acid stretch of human p53 in a double-phosphorylated form. The peptide 371-393, carrying phosphate groups on Ser378 and Ser392, was co-synthesized with a turn-inducing spacer and peptide 31D, an immunodominant T-helper cell epitope in mice of the H-2k haplotype. After immunization and fusion of splenocytes with myeloma cells, a number of mAbs were obtained, from which mAb p53-18 emerged as a highly sensitive reagent. By enzyme-linked immunosorbent assay, p53-18, a mAb of the IgM isotype, recognized phosphorylated p53, expressed in insect cells infected with a recombinant baculovirus but not p53 expressed in Escherichia coli. Moreover, murine p53 from insect cells could be immune purified with mAb p53-18. Mass spectrometry following tryptic digestion of the purified protein and liquid chromatography of the fragments verified the presence of phosphate groups at both Ser375 and Ser389. From the corresponding human protein fragments, mAb p53-18 bound to the immunizing peptide phosphorylated on Ser378 and on Ser392, but failed to cross-react with the unphosphorylated peptide, or peptides phosphorylated individually on either Ser378 or Ser392. The binding to the unphosphorylated peptide could be restored, however, if the peptide conformation was stabilized to that of an alpha-helix. The immunogenic nature of the multiphosphorylated C-terminus of p53 is indicated by the finding that human sera, mostly from cancer patients, preferentially recognized the double-phosphorylated peptide over the monophosphorylated or unphosphorylated analogs. Antibody p53-18 appears to be a highly useful biochemical marker to detect low levels of p53 protein in different tissues, and to be a key tool to characterize the phosphorylation status of the C-terminus of p53 protein originated from various sources.
Collapse
Affiliation(s)
- L Otvos
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hyre DE, Klevit RE. A disorder-to-order transition coupled to DNA binding in the essential zinc-finger DNA-binding domain of yeast ADR1. J Mol Biol 1998; 279:929-43. [PMID: 9642072 DOI: 10.1006/jmbi.1998.1811] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The motional dynamics and solvent-exchange behavior of free and DNA-bound forms of the minimal zinc-finger DNA-binding domain of the yeast transcription factor ADR1 (ADR1-DBD) are investigated using NMR. The parameters measured include the 1H-15N heteronuclear NOE, 15N and 1H T1 relaxation rates, 15N T2 relaxation rates, and solvent-exchange rates. The spin relaxation parameters, spectral density maps, and solvent-exchange behavior show that, exclusive of the N and C termini, three distinct regions of free ADR1-DBD exhibit different motions on multiple timescales. The N-terminal proximal, or accessory, region appears to be unstructured and highly flexible: it exhibits large amplitude motions on a picosecond timescale, little or no protection from solvent exchange, and random-coil proton chemical shifts. The two zinc fingers tumble anisotropically as folded domains, with the tumbling of the individual fingers being only partly correlated to each other, and are modestly protected from solvent exchange except near the tips of the fingers and in the linker joining them. Free ADR1-DBD exhibits exchange broadening around P97 in the proximal region, at the tip of finger 1, and throughout finger 2. Upon binding, most of the proximal region and both zinc fingers tumble as a single domain and exhibit significantly reduced picosecond timescale motions. This region becomes more protected from solvent exchange. The bound portion of the proximal region is proposed to lie exposed on the surface of the DNA. Exchange broadening remains around P97 but also becomes evident for residues in direct contact with the DNA and in the linker. We conclude that the region of ADR1-DBD essential for high-affinity binding undergoes a disorder-to-order transition upon binding to its cognate DNA and, together with the zinc fingers, forms a cohesive molecular complex with the nucleic acid.
Collapse
Affiliation(s)
- D E Hyre
- Department of Biochemistry and Biomolecular Structure Center, University of Washington, Seattle, WA, 98195-7742, USA
| | | |
Collapse
|
19
|
Carr PA, Erickson HP, Palmer AG. Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin. Structure 1997; 5:949-59. [PMID: 9261088 DOI: 10.1016/s0969-2126(97)00248-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Fibronectin type III domains are found as autonomously-folded domains in a large variety of multidomain proteins, including extracellular matrix proteins. A subset of these domains employ an Arg-Gly-Asp (RGD) tripeptide motif to mediate contact with cell-surface receptors (integrins). This motif mediates protein-protein interactions in a diverse range of biological processes, such as in tissue development, would healing and metastasis. The molecular basis for affinity and specificity of cell adhesion via type III domains has not been clearly established. The tenth type III domain from fibronectin (FNfn10) and the third type III domain from tenascin-C (TNfn3) have 27% sequence identity and share the same overall protein fold, but present the RGD motifs in different structural contexts. The dynamical properties of the RGD motifs may affect the specificity and affinity of the FNfn10 and TNfn3 domains. Structure-dynamics correlations for these structurally homologous proteins may reveal common molecular features which are important to the dynamical properties of proteins. RESULTS The intramolecular dynamics of the protein backbones of FNfn10 and TNfn3 have been studied by 15N nuclear spin relaxation. The FG loop in FNfn10, which contains the RGD motif, exhibits extensive flexibility on picosecond to nanosecond timescales, but motions on microsecond to millisecond timescales are not observed. The equivalent region in TNfn3 is as rigid as regular elements of secondary structure. The CC' loop also is more flexible on picosecond-nanosecond timescales in FNfn10 than in TNfn3. Conformational exchange, reflecting flexibility on microsecond-millisecond timescales, is observed in beta strands A and B of both FNfn10 and TNfn3. CONCLUSIONS Comparison of the structures of the FNfn10 and TNfn3 reveals several features related to their different dynamical properties. The larger amplitude motions of loops in FNfn10 are consistent with the hypothesis that flexibility of these regions facilitates induced-fit recognition of fibronectin by multiple receptors. Similarly, the more rigid loops of TNfn3 may reflect greater specificity for particular integrins. The correlations observed between structural features and dynamical properties of the homologous type III domains indicate the influence of hydrogen bonding and hydrophobic packing on dynamical fluctuations in proteins.
Collapse
Affiliation(s)
- P A Carr
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
20
|
Moy FJ, Pisano MR, Chanda PK, Urbano C, Killar LM, Sung ML, Powers R. Assignments, secondary structure and dynamics of the inhibitor-free catalytic fragment of human fibroblast collagenase. JOURNAL OF BIOMOLECULAR NMR 1997; 10:9-19. [PMID: 9335112 DOI: 10.1023/a:1018362914316] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fibroblast collagenase (MMP-1), a 169-residue protein with a molecular mass of 18.7 kDa, is a matrix metalloproteinase which has been associated with pathologies such as arthritis and cancer. The assignments of the 1H, 15N, 13CO and 13C resonances, determination of the secondary structure and analysis of 15N relaxation data of the inhibitor-free catalytic fragment of recombinant human fibroblast collagenase (MMP-1) are presented. It is shown that MMP-1 is composed of a beta-sheet consisting of five beta-strands in a mixed parallel and antiparallel arrangement (residues 13-19, 48-53, 59-65, 82-85 and 94-99) and three alpha-helices (residues 27-43, 112-124 and 150-160). This is nearly identical to the secondary structure determined from the refined X-ray crystal structures of inhibited MMP-1. The major difference observed between the NMR solution structure of inhibitor-free MMP-1 and the X-ray structures of inhibited MMP-1 is the dynamics of the active site. The 2D 15N-1H HSQC spectra, the lack of information in the 15N-edited NOESY spectra, and the generalized order parameters (S2) determined from 15N T1, T2 and NOE data suggest a slow conformational exchange for residues comprising the active site (helix B, zinc ligated histidines and the nearby loop region) and a high mobility for residues Pro138-Gly144 in the vicinity of the active site for inhibitor-free collagenase. In contrast to the X-ray structures, only the slow conformational exchange is lost in the presence of an inhibitor.
Collapse
Affiliation(s)
- F J Moy
- Department of Structural Biology, Wyeth-Ayerst Research, Pearl River, NY 10965, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Moy FJ, Safran M, Seddon AP, Kitchen D, Böhlen P, Aviezer D, Yayon A, Powers R. Properly oriented heparin-decasaccharide-induced dimers are the biologically active form of basic fibroblast growth factor. Biochemistry 1997; 36:4782-91. [PMID: 9125499 DOI: 10.1021/bi9625455] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interaction of basic fibroblast growth factor (FGF-2) with heparin or heparan sulfate proteoglycans (HSPGs) is required for receptor activation and initiation of biological responses. To gain insight into the mechanism of activation of the FGF receptor by FGF-2 and heparin, we have used NMR, dynamic light scattering, and HSPG-deficient cells and cell-free systems. The first 28 N-terminal residues in FGF-2 were found to be highly mobile and flexible, consistent with the disorder found in both the NMR and X-ray structures. The structure of an FGF-2-heparin-decasaccharide complex that binds to and activates the FGF receptor was compared to a heparin-tetrasaccharide-induced complex that does not promote an interaction with the receptor. The major change observed upon the addition of the tetrasaccharide to FGF-2 was an increase in the correlation time consistent with the formation of an FGF-2 dimer. The NMR line widths of FGF-2 in the presence of the decasaccharide are severely broadened relative to the tetrasaccharide, consistent with dynamic light scattering results which indicate FGF-2 is a tetramer. The interaction of these heparin species with FGF-2 does not induce a significant conformational change in the overall structure of FGF-2, but small chemical shift changes are observed in both heparin and receptor binding sites. A trans-oriented symmetric dimer of FGF-2 is formed in the presence of the tetrasaccharide whereas two cis-oriented dimers in a symmetric tetramer are formed in the presence of the decasaccharide. This suggests that the cis-oriented FGF-2 dimer is the minimal biologically active structural unit of FGF-2. These data allow us to propose a novel mechanism to explain the functional interaction of FGF-2 with heparin and its transmembrane receptor.
Collapse
Affiliation(s)
- F J Moy
- Department of Structural Biology, Wyeth-Ayerst Research, Pearl River, New York 10965, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Jeon YH, Yamazaki T, Otomo T, Ishihama A, Kyogoku Y. Flexible linker in the RNA polymerase alpha subunit facilitates the independent motion of the C-terminal activator contact domain. J Mol Biol 1997; 267:953-62. [PMID: 9135123 DOI: 10.1006/jmbi.1997.0902] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dynamic properties of the C-terminal one-third of the alpha subunit of RNA polymerase were investigated. The intact alpha subunit exhibited almost the same NMR spectral pattern as the isolated C-terminal fragment, indicating that the C-terminal domain retains the same conformation as the isolated fragment, and that its motion is independent of that of the associated N-terminal domain. Analysis of the NMR dynamics data for the intact alpha subunit indicated that at least 13 residues between the N and C-terminal domains show distinctly higher motional flexibility than the structured parts. This flexible linker may endow the C-terminal domain with locational freedom in different kinds of initiation complex. The dynamics data also revealed that the residues in the contact site for DNA and transcription factors exhibited higher mobility than other secondary structural elements.
Collapse
Affiliation(s)
- Y H Jeon
- Institute for Protein Research, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
23
|
Abstract
NMR relaxation experiments can provide information on overall and internal motions in proteins. This review consists of a concise report on the evolution of the theories for nuclear relaxation followed by an overview of mathematical models for internal motions in proteins. Next, the method of spectral density mapping with recent developments is reviewed. This is followed by a discussion of pulse sequences for relaxation experiments. Finally, we review recent studies correlating relaxation parameters, in particular spectral density functions, with structural features of proteins and with results of molecular dynamics simulations.
Collapse
Affiliation(s)
- K T Dayie
- Program in Higher Degrees in Biophysics, Harvard University, Boston, MA 02115, USA
| | | | | |
Collapse
|
24
|
Mühlhahn P, Bernhagen J, Czisch M, Georgescu J, Renner C, Ross A, Bucala R, Holak TA. NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF). Protein Sci 1996; 5:2095-103. [PMID: 8897610 PMCID: PMC2143260 DOI: 10.1002/pro.5560051016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human macrophage migration inhibitory factor is a 114 amino acid protein that belongs to the family of immunologic cytokines. Assignments of 1H, 15N, and 13C resonances have enabled the determination of the secondary structure of the protein, which consists of two alpha-helices (residues 18-31 and 89-72) and a central four-stranded beta-sheet. In the beta-sheet, two parallel beta-sheets are connected in an antiparallel sense. From the total of three cysteines present in the primary structure of MIF, none was found to form disulfide bridges. 1H-15N heteronuclear T1, T2, and steady-state NOE measurements indicate that the backbone of MIF exists in a rigid structure of limited conformational flexibility (on the nanosecond to picosecond time scale). Several residues located in the loop regions and at the N termini of two helices exhibit internal motions on the 1-3 ns time scale. The capacity to bind glutathione was investigated by titration of a uniform 15N-labeled sample and led us to conclude that MIF has, at best, very low affinity for glutathione.
Collapse
Affiliation(s)
- P Mühlhahn
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Stivers JT, Abeygunawardana C, Whitman CP, Mildvan AS. 4-Oxalocrotonate tautomerase, a 41-kDa homohexamer: backbone and side-chain resonance assignments, solution secondary structure, and location of active site residues by heteronuclear NMR spectroscopy. Protein Sci 1996; 5:729-41. [PMID: 8845763 PMCID: PMC2143398 DOI: 10.1002/pro.5560050418] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
4-Oxalocrotonate tautomerase (4-OT), a homohexamer consisting of 62 residues per subunit, catalyzes the isomerization of unsaturated alpha-keto acids using Pro-1 as a general base (Stivers et al., 1996a, 1996b). We report the backbone and side-chain 1H, 15N, and 13C NMR assignments and the solution secondary structure for 4-OT using 2D and 3D homonuclear and heteronuclear NMR methods. The subunit secondary structure consists of an alpha-helix (residues 13-30), two beta-strands (beta 1, residues 2-8; beta 2, residues 39-45), a beta-hairpin (residues 50-57), two loops (I, residues 9-12; II, 34-38), and two turns (I, residues 30-33; II, 47-50). The remaining residues form coils. The beta 1 strand is parallel to the beta 2 strand of the same subunit on the basis of cross stand NH(i)-NH(j) NOEs in a 2D 15N-edited 1H-NOESY spectrum of hexameric 4-OT containing two 15N-labeled subunits/hexamer. The beta 1 strand is also antiparallel to another beta 1 strand from an adjacent subunit forming a subunit interface. Because only three such pairwise interactions are possible, the hexamer is a trimer of dimers. The diffusion constant, determined by dynamic light scattering, and the rotational correlation time (14.5 ns) estimated from 15N T1/T2 measurements, are consistent with the hexameric molecular weight of 41 kDa. Residue Phe-50 is in the active site on the basis of transferred NOEs to the bound partial substrate 2-oxo-1,6-hexanedioate. Modification of the general base, Pro-1, with the active site-directed irreversible inhibitor, 3-bromopyruvate, significantly alters the amide 15N and NH chemical shifts of residues in the beta-hairpin and in loop II, providing evidence that these regions change conformation when the active site is occupied.
Collapse
Affiliation(s)
- J T Stivers
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | | | |
Collapse
|
26
|
Clubb RT, Mizuuchi M, Huth JR, Omichinski JG, Savilahti H, Mizuuchi K, Clore GM, Gronenborn AM. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition. Proc Natl Acad Sci U S A 1996; 93:1146-50. [PMID: 8577730 PMCID: PMC40046 DOI: 10.1073/pnas.93.3.1146] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A tetramer of the Mu transposase (MuA) pairs the recombination sites, cleaves the donor DNA, and joins these ends to a target DNA by strand transfer. Juxtaposition of the recombination sites is accomplished by the assembly of a stable synaptic complex of MuA protein and Mu DNA. This initial critical step is facilitated by the transient binding of the N-terminal domain of MuA to an enhancer DNA element within the Mu genome (called the internal activation sequence, IAS). Recently we solved the three-dimensional solution structure of the enhancer-binding domain of Mu phage transposase (residues 1-76, MuA76) and proposed a model for its interaction with the IAS element. Site-directed mutagenesis coupled with an in vitro transposition assay has been used to assess the validity of the model. We have identified five residues on the surface of MuA that are crucial for stable synaptic complex formation but dispensable for subsequent events in transposition. These mutations are located in the loop (wing) structure and recognition helix of the MuA76 domain of the transposase and do not seriously perturb the structure of the domain. Furthermore, in order to understand the dynamic behavior of the MuA76 domain prior to stable synaptic complex formation, we have measured heteronuclear 15N relaxation rates for the unbound MuA76 domain. In the DNA free state the backbone atoms of the helix-turn-helix motif are generally immobilized whereas the residues in the wing are highly flexible on the pico- to nanosecond time scale. Together these studies define the surface of MuA required for enhancement of transposition in vitro and suggest that a flexible loop in the MuA protein required for DNA recognition may become structurally ordered only upon DNA binding.
Collapse
Affiliation(s)
- R T Clubb
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institues of Health, Bethesda, MD 20892-0520, USA
| | | | | | | | | | | | | | | |
Collapse
|