1
|
Mühling L, Baur T, Molitor B. Methanothermobacter thermautotrophicus and Alternative Methanogens: Archaea-Based Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39363002 DOI: 10.1007/10_2024_270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Methanogenic archaea convert bacterial fermentation intermediates from the decomposition of organic material into methane. This process has relevance in the global carbon cycle and finds application in anthropogenic processes, such as wastewater treatment and anaerobic digestion. Furthermore, methanogenic archaea that utilize hydrogen and carbon dioxide as substrates are being employed as biocatalysts for the biomethanation step of power-to-gas technology. This technology converts hydrogen from water electrolysis and carbon dioxide into renewable natural gas (i.e., methane). The application of methanogenic archaea in bioproduction beyond methane has been demonstrated in only a few instances and is limited to mesophilic species for which genetic engineering tools are available. In this chapter, we discuss recent developments for those existing genetically tractable systems and the inclusion of novel genetic tools for thermophilic methanogenic species. We then give an overview of recombinant bioproduction with mesophilic methanogenic archaea and thermophilic non-methanogenic microbes. This is the basis for discussing putative products with thermophilic methanogenic archaea, specifically the species Methanothermobacter thermautotrophicus. We give estimates of potential conversion efficiencies for those putative products based on a genome-scale metabolic model for M. thermautotrophicus.
Collapse
Affiliation(s)
- Lucas Mühling
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Tina Baur
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Sammond DW, Kastelowitz N, Himmel ME, Yin H, Crowley MF, Bomble YJ. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms. PLoS One 2016; 11:e0145848. [PMID: 26741367 PMCID: PMC4704809 DOI: 10.1371/journal.pone.0145848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.
Collapse
Affiliation(s)
- Deanne W Sammond
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, 80401, United States of America
| | - Noah Kastelowitz
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80309, United States of America
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, 80401, United States of America
| | - Hang Yin
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80309, United States of America
| | - Michael F Crowley
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, 80401, United States of America
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, 80401, United States of America
| |
Collapse
|
3
|
Abstract
Microorganisms growing near the boiling point have enormous biotechnological potential but only recently have molecular engineering tools become available for them. We have engineered the hyperthermophilic archaeon Pyrococcus furiosus, which grows optimally at 100°C, to switch its end products of fermentation in a temperature-controlled fashion without the need for chemical inducers. The recombinant strain (LAC) expresses a gene (ldh) encoding lactate dehydrogenase from the moderately thermophilic Caldicellulosiruptor bescii (optimal growth temperature [Topt] of 78°C) controlled by a “cold shock” promoter that is upregulated when cells are transferred from 98°C to 72°C. At 98°C, the LAC strain fermented sugar to produce acetate and hydrogen as end products, and lactate was not detected. When the LAC strain was grown at 72°C, up to 3 mM lactate was produced instead. Expression of a gene from a moderately thermophilic bacterium in a hyperthermophilic archaeon at temperatures at which the hyperthermophile has low metabolic activity provides a new perspective to engineering microorganisms for bioproduct and biofuel formation. IMPORTANCE Extremely thermostable enzymes from microorganisms that grow near or above the boiling point of water are already used in biotechnology. However, the use of hyperthermophilic microorganisms themselves for biotechnological applications has been limited by the lack of their genetic accessibility. Recently, a genetic system for Pyrococcus furiosus, which grows optimally near 100°C, was developed in our laboratory. In this study, we present the first heterologous protein expression system for a microorganism that grows optimally at 100°C, a first step towards the potential expression of genes involved in biomass degradation or biofuel production in hyperthermophiles. Moreover, we developed the first system for specific gene induction in P. furiosus. As the cold shock promoter for protein expression used in this study is activated at suboptimal growth temperatures of P. furiosus, it is a powerful genetic tool for protein expression with minimal interference of the host’s metabolism and without the need for chemical inducers. Extremely thermostable enzymes from microorganisms that grow near or above the boiling point of water are already used in biotechnology. However, the use of hyperthermophilic microorganisms themselves for biotechnological applications has been limited by the lack of their genetic accessibility. Recently, a genetic system for Pyrococcus furiosus, which grows optimally near 100°C, was developed in our laboratory. In this study, we present the first heterologous protein expression system for a microorganism that grows optimally at 100°C, a first step towards the potential expression of genes involved in biomass degradation or biofuel production in hyperthermophiles. Moreover, we developed the first system for specific gene induction in P. furiosus. As the cold shock promoter for protein expression used in this study is activated at suboptimal growth temperatures of P. furiosus, it is a powerful genetic tool for protein expression with minimal interference of the host’s metabolism and without the need for chemical inducers.
Collapse
|
4
|
Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 2011; 49:326-46. [PMID: 22112558 DOI: 10.1016/j.enzmictec.2011.06.023] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/20/2022]
Abstract
The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications.
Collapse
|
5
|
Zhou Q, Shao WL. Molecular genetic characterization of the thermostable L-lactate dehydrogenase gene (ldhL) of Thermoanaerobacter ethanolicus JW200 and biochemical characterization of the enzyme. BIOCHEMISTRY (MOSCOW) 2010; 75:526-30. [DOI: 10.1134/s0006297910040188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D. Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 2007; 374:547-62. [PMID: 17936781 DOI: 10.1016/j.jmb.2007.09.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 11/19/2022]
Abstract
Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate with concomitant oxidation of NADH during the last step in anaerobic glycolysis. In the present study, we present a comparative biochemical and structural analysis of various LDHs adapted to function over a large temperature range. The enzymes were from Champsocephalus gunnari (an Antarctic fish), Deinococcus radiodurans (a mesophilic bacterium) and Thermus thermophilus (a hyperthermophilic bacterium). The thermodynamic activation parameters of these LDHs indicated that temperature adaptation from hot to cold conditions was due to a decrease in the activation enthalpy and an increase in activation entropy. The crystal structures of these LDHs have been solved. Pairwise comparisons at the structural level, between hyperthermophilic versus mesophilic LDHs and mesophilic versus psychrophilic LDHs, have revealed that temperature adaptation is due to a few amino acid substitutions that are localized in critical regions of the enzyme. These substitutions, each having accumulating effects, play a role in either the conformational stability or the local flexibility or in both. Going from hot- to cold-adapted LDHs, the various substitutions have decreased the number of ion pairs, reduced the size of ionic networks, created unfavorable interactions involving charged residues and induced strong local disorder. The analysis of the LDHs adapted to extreme temperatures shed light on how evolutionary processes shift the subtle balance between overall stability and flexibility of an enzyme.
Collapse
Affiliation(s)
- Nicolas Coquelle
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale J.-P. Ebel, CEA CNRS UJF, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | | | | | | | | |
Collapse
|
7
|
Lee BI, Chang C, Cho SJ, Eom SH, Kim KK, Yu YG, Suh SW. Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases. J Mol Biol 2001; 307:1351-62. [PMID: 11292347 DOI: 10.1006/jmbi.2001.4532] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The MJ0490 gene, one of the only two genes of Methanococcus jannaschii showing sequence similarity to the lactate/malate family of dehydrogenases, was classified initially as coding for a putative l-lactate dehydrogenase (LDH). It has been re-classified as a malate dehydrogenase (MDH) gene, because it shows significant sequence similarity to MT0188, MDH II from Methanobacterium thermoautotrophicum strain DeltaH. The three-dimensional structure of its gene product has been determined in two crystal forms: a "dimeric" structure in the orthorhombic crystal at 1.9 A resolution and a "tetrameric" structure in the tetragonal crystal at 2.8 A. These structures share a similar subunit fold with other LDHs and MDHs. The tetrameric structure resembles typical tetrameric LDHs. The dimeric structure is equivalent to the P-dimer of tetrameric LDHs, unlike dimeric MDHs, which correspond to the Q-dimer. The structure reveals that the cofactor NADP(H) is bound at the active site, despite the fact that it was not intentionally added during protein purification and crystallization. The preference of NADP(H) over NAD(H) has been supported by activity assays. The cofactor preference is explained by the presence of a glycine residue in the cofactor binding pocket (Gly33), which replaces a conserved aspartate (or glutamate) residue in other NAD-dependent LDHs or MDHs. Preference for NADP(H) is contributed by hydrogen bonds between the oxygen atoms of the monophosphate group and the ribose sugar of adenosine in NADP(H) and the side-chains of Ser9, Arg34, His36, and Ser37. The MDH activity of MJ0490 is made possible by Arg86, which is conserved in MDHs but not in LDHs. The enzymatic assay showed that the MJ0490 protein possesses the fructose-1,6-bisphosphate-activated LDH activity (reduction). Thus the MJ0490 gene product appears to be a novel member of the lactate/malate dehydrogenase family, displaying an LDH scaffold and exhibiting a relaxed substrate and cofactor specificities in NADP(H) and NAD(H)-dependent malate and lactate dehydrogenase reactions.
Collapse
Affiliation(s)
- B I Lee
- School of Chemistry and Molecular Engineering, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001; 65:1-43. [PMID: 11238984 PMCID: PMC99017 DOI: 10.1128/mmbr.65.1.1-43.2001] [Citation(s) in RCA: 1414] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.
Collapse
Affiliation(s)
- C Vieille
- Biochemistry Department, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
9
|
Coenzymes of Oxidation—Reduction Reactions. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Jaenicke R, Lilie H. Folding and association of oligomeric and multimeric proteins. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:329-401. [PMID: 10751948 DOI: 10.1016/s0065-3233(00)53007-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
11
|
Esser D, Rudolph R, Jaenicke R, Böhm G. The HU protein from Thermotoga maritima: recombinant expression, purification and physicochemical characterization of an extremely hyperthermophilic DNA-binding protein. J Mol Biol 1999; 291:1135-46. [PMID: 10518949 DOI: 10.1006/jmbi.1999.3022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The histone-like protein TmHU from the hyperthermophilic eubacterium Thermotoga maritima was cloned, expressed to high levels in Escherichia coli, and purified to homogeneity by heat precipitation and cation exchange chromatography. CD spectroscopical studies with secondary structure analysis as well as comparative modeling demonstrate that the dimeric TmHU has a tertiary structure similar to other homologous HU proteins. The Tm of the protein was determined to be 96 degrees C, and thermal unfolding is nearly completely reversible. Surface plasmon resonance measurements for TmHU show that the protein binds to DNA in a highly cooperative manner, with a KD of 73 nM and a Hill coefficient of 7.6 for a 56 bp DNA fragment. It is demonstrated that TmHU is capable to increase the melting point of a synthetic, double-stranded DNA (poly[d(A-T)]) by 47 degrees C, thus suggesting that DNA stabilization may be a major function of this protein in hyperthermophiles. The significant in vitro protection of double-helical DNA may be useful for biotechnological applications.
Collapse
Affiliation(s)
- D Esser
- Institut für Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Saale, Germany.
| | | | | | | |
Collapse
|
12
|
Ptak D. Rigid-body oscillations of α-helices: implications for protein thermal stability. Biophys Chem 1998; 73:121-7. [PMID: 17029718 DOI: 10.1016/s0301-4622(98)00143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/1997] [Revised: 03/03/1998] [Accepted: 03/03/1998] [Indexed: 11/22/2022]
Abstract
A quasi-continuity model protein consisting of two alpha-helices undergoing rigid-body torsional oscillations demonstrates that factors stabilizing the model protein, such as increased helix rigidity and hydrophobicity, are the same factors that stabilize thermophilic proteins relative to their mesophilic analogs. The model predicts oscillatory motions with frequencies in the microwave (10(10) Hz) range. These oscillations decrease in frequency with increasing helix rigidity because of compensating increases in the force constant and moment of inertia, thus explaining the retention of activity in the more rigid thermophilic enzymes. Implications for protein design, based on the predictions of the model, are discussed.
Collapse
Affiliation(s)
- D Ptak
- Santa Cruz High School, 415 Walnut Ave., Santa Cruz, CA 95060, USA
| |
Collapse
|
13
|
Auerbach G, Ostendorp R, Prade L, Korndörfer I, Dams T, Huber R, Jaenicke R. Lactate dehydrogenase from the hyperthermophilic bacterium thermotoga maritima: the crystal structure at 2.1 A resolution reveals strategies for intrinsic protein stabilization. Structure 1998; 6:769-81. [PMID: 9655830 DOI: 10.1016/s0969-2126(98)00078-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND L(+)-Lactate dehydrogenase (LDH) catalyzes the last step in anaerobic glycolysis, the conversion of pyruvate to lactate, with the concomitant oxidation of NADH. Extensive physicochemical and structural investigations of LDHs from both mesophilic and thermophilic organisms have been undertaken in order to study the temperature adaptation of proteins. In this study we aimed to determine the high-resolution structure of LDH from the hyperthermophilic bacterium Thermotoga maritima (TmLDH), the most thermostable LDH to be isolated so far. It was hoped that the structure of TmLDH would serve as a model system to reveal strategies of protein stabilization at temperatures near the boiling point of water. RESULTS The crystal structure of the extremely thermostable TmLDH has been determined at 2.1 A resolution as a quaternary complex with the cofactor NADH, the allosteric activator fructose-1,6-bisphosphate, and the substrate analog oxamate. The structure of TmLDH was solved by Patterson search methods using a homology-based model as a search probe. The native tetramer shows perfect 222 symmetry. Structural comparisons with five LDHs from mesophilic and moderately thermophilic organisms and with other ultrastable enzymes from T. maritima reveal possible strategies of protein thermostabilization. CONCLUSIONS Structural analysis of TmLDH and comparison of the enzyme to moderately thermophilic and mesophilic homologs reveals a strong conservation of both the three-dimensional fold and the catalytic mechanism. Going from lower to higher physiological temperatures a variety of structural differences can be observed: an increased number of intrasubunit ion pairs; a decrease of the ratio of hydrophobic to charged surface area, mainly caused by an increased number of arginine and glutamate sidechains on the protein surface; an increased secondary structure content including an additional unique 'thermohelix' (alphaT) in TmLDH; more tightly bound intersubunit contacts mainly based on hydrophobic interactions; and a decrease in both the number and the total volume of internal cavities. Similar strategies for thermal adaptation can be observed in other enzymes from T. maritima.
Collapse
Affiliation(s)
- G Auerbach
- Max-Planck-Institut für Biochemie Abt. Strukturforschung, 82152, Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Symmetry in the 2.25 MDa homomultimeric phosphoenolpyruvate synthase fromStaphylothermus marinus: Analyses of negatively stained preparations. Micron 1998. [DOI: 10.1016/s0968-4328(97)00069-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Pappenberger G, Schurig H, Jaenicke R. Disruption of an ionic network leads to accelerated thermal denaturation of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. J Mol Biol 1997; 274:676-83. [PMID: 9417944 DOI: 10.1006/jmbi.1997.1421] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of an ionic network of four charged amino acid side-chains in the thermostability of the enzyme D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima (TmGAPDH) has been assessed by site-directed mutagenesis, replacing the central residue of the ionic network, arginine 20, by either alanine (R20A) or asparagine (R20N). The purified mutant enzymes display no differences to the wild-type enzyme regarding spectroscopic properties and enzymatic activity. However, denaturation kinetics reveal that the resistance towards thermal denaturation is strongly diminished in the mutant enzymes. This is reflected by a decrease in free energy of activation for thermal unfolding of about 4 kJ/mol at 100 degrees C and a shift of temperature of half denaturation after one hour incubation from 96 to 89 degrees C for both mutant enzymes. Due to a large decrease in activation enthalpy, the effects of the mutations are temperature dependent and become even more significant at the physiological temperature of Thermotoga maritima (approximately 80 degrees C). The importance of the arginine 20 side-chain for kinetic thermal stability is plausible in the light of its key role in the ionic network and the strategic positioning of this ionic network in the context of the overall protein structure.
Collapse
Affiliation(s)
- G Pappenberger
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | |
Collapse
|
16
|
Dams T, Ostendorp R, Ott M, Rutkat K, Jaenicke R. Tetrameric and octameric lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. Structure and stability of the two active forms. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:274-9. [PMID: 8925837 DOI: 10.1111/j.1432-1033.1996.0274h.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima has been functionally expressed in Escherichia coli. As shown by gel-permeation chromatography, dynamic light scattering, and ultracentrifugation, the recombinant protein forms homotetrameric and homooctameric assemblies with identical spectral properties and a common subunit molecular mass (35 kDa). Dynamic light scattering and sedimentation equilibrium experiments proved that both species are monodisperse, thus excluding their interconversion in the given ranges of concentration (0.02-50 mg/ml) and temperature (20-80 degrees C). Rechromatography confirms this finding: the octamer does not dissociate at low enzyme concentrations, nor do tetramers dimerize at the given upper limit of concentration. Renaturation of pure tetramers or octamers after preceding guanidine denaturation leads to redistribution of the two species; increased temperature favors octamer formation. Thermal analysis and denaturation by chaotropic agents do not allow the free energies of stabilization of the two forms to be quantified, because heat coagulation and kinetic partitioning between reconstitution and aggregation causes irreversible side reactions. Guanidine denaturation of the octamer leads to a highly cooperative dissociation to tetramers which subsequently dissociate and unfold to yield metastable dimers and, finally, fully unfolded monomers. Evidently, there is no tight coupling of the two tetramers within the stable octameric quaternary structure. Electron microscopy clearly corroborates this conclusion: image processing shows that the dumb-bell-shaped octamer is made up of two tetramers connected via surface contacts without significant changes in the dimensions of the constituent parts.
Collapse
Affiliation(s)
- T Dams
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Jaenicke R, Schurig H, Beaucamp N, Ostendorp R. Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:181-269. [PMID: 8791626 DOI: 10.1016/s0065-3233(08)60363-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | | | |
Collapse
|