1
|
Mahanty S, Raghav D, Rathinasamy K. In vitro evaluation of the cytotoxic and bactericidal mechanism of the commonly used pesticide triphenyltin hydroxide. CHEMOSPHERE 2017; 183:339-352. [PMID: 28554018 DOI: 10.1016/j.chemosphere.2017.05.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Triphenyltin hydroxide (TPTH) is a widely used pesticide that is highly toxic to a variety of organisms including humans and a potential contender for the environmental pollutant. In the present study, the cytotoxic mechanism of TPTH on mammalian cells was analyzed using HeLa cells and the antibacterial activity was analyzed using B. subtilis and E. coli cells. TPTH inhibited the growth of HeLa cells with a half-maximal inhibitory concentration of 0.25 μM and induced mitotic arrest. Immunofluorescence microscopy analysis showed that TPTH caused strong depolymerization of interphase microtubules and spindle abnormality with the appearance of colchicine type mitosis and condensed chromosome. TPTH exhibited high affinity for tubulin with a dissociation constant of 2.3 μM and inhibited the in vitro microtubule assembly in the presence of glutamate as well as microtubule-associated proteins. Results from the molecular docking and in vitro experiments implied that TPTH may have an overlapping binding site with colchicine on tubulin with a distance of about 11 Å between them. TPTH also binds to DNA at the A-T rich region of the minor groove. The data presented in the study revealed that the toxicity of TPTH in mammalian cells is mediated through its interactions with DNA and its strong depolymerizing activity on tubulin. However, its antibacterial activity was not through FtsZ, the prokaryotic homolog of tubulin but perhaps through its interactions with DNA.
Collapse
Affiliation(s)
- Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Darpan Raghav
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
2
|
Raghav D, Ashraf SM, Mohan L, Rathinasamy K. Berberine Induces Toxicity in HeLa Cells through Perturbation of Microtubule Polymerization by Binding to Tubulin at a Unique Site. Biochemistry 2017; 56:2594-2611. [DOI: 10.1021/acs.biochem.7b00101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Darpan Raghav
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Shabeeba M. Ashraf
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Lakshmi Mohan
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
3
|
Jana B, Mohapatra S, Mondal P, Barman S, Pradhan K, Saha A, Ghosh S. α-Cyclodextrin Interacts Close to Vinblastine Site of Tubulin and Delivers Curcumin Preferentially to the Tubulin Surface of Cancer Cell. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13793-13803. [PMID: 27228201 DOI: 10.1021/acsami.6b03474] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tubulin is the key cytoskeleton component, which plays a crucial role in eukaryotic cell division. Many anticancer drugs have been developed targeting the tubulin surface. Recently, it has been shown that few polyhydroxy carbohydrates perturb tubulin polymerization. Cyclodextrin (CD), a polyhydroxy carbohydrate, has been extensively used as the delivery vehicle for delivery of hydrophobic drugs to the cancer cell. However, interaction of CD with intracellular components has not been addressed before. In this Article, we have shown for the first time that α-CD interacts with tubulin close to the vinblastine site using molecular docking and Förster resonance energy transfer (FRET) experiment. In addition, we have shown that α-CD binds with intracellular tubulin/microtubule. It delivers a high amount of curcumin onto the cancer cell, which causes severe disruption of intracellular microtubules. Finally, we have shown that the inclusion complex of α-CD and curcumin (CCC) preferentially enters into the human lung cancer cell (A549) as compared to the normal lung fibroblast cell (WI38), causes apoptotic death, activates tumor suppressor protein (p53) and cyclin-dependent kinase inhibitor 1 (p21), and inhibits 3D spheroid growth of cancer cell.
Collapse
Affiliation(s)
- Batakrishna Jana
- Organic & Medicinal Chemistry Division, and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saswat Mohapatra
- Organic & Medicinal Chemistry Division, and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Prasenjit Mondal
- Organic & Medicinal Chemistry Division, and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Barman
- Organic & Medicinal Chemistry Division, and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Krishnangsu Pradhan
- Organic & Medicinal Chemistry Division, and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Abhijit Saha
- Organic & Medicinal Chemistry Division, and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
4
|
A genetic network that balances two outcomes utilizes asymmetric recognition of operator sites. Biophys J 2012; 102:1580-9. [PMID: 22500758 DOI: 10.1016/j.bpj.2012.01.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 11/21/2022] Open
Abstract
Stability and induction of the lysogenic state of bacteriophage λ are balanced by a complex regulatory network. A key feature of this network is the mutually exclusive cooperative binding of a repressor dimer (CI) to one of two pairs of binding sites, O(R)1-O(R)2 or O(R)2-O(R)3. The structural features that underpin the mutually exclusive binding mode are not well understood. Recent studies have demonstrated that CI is an asymmetric dimer. The functional importance of the asymmetry is not fully clear. Due to the asymmetric nature of the CI dimer as well as its binding sites, there are two possible bound orientations. By fluorescence resonance energy transfer measurements we showed that CI prefers one bound orientation. We also demonstrated that the relative configuration of the binding sites is important for CI dimer-dimer interactions and consequent cooperative binding. We proposed that the operator configuration dictates the orientations of the bound CI molecules, which in turn dictates CI cooperative interaction between the O(R)1-O(R)2 or O(R)2-O(R)3, but not both. Modeling suggests that the relative orientation of the C- and N-terminal domains may play an important role in the mutually exclusive nature of the cooperative binding. This work correlates unique structural features of a transcription regulatory protein with the functional properties of a gene regulatory network.
Collapse
|
5
|
Raha P, Chattopadhyay S, Mukherjee S, Chattopadhyay R, Roy K, Roy S. Alternative Sigma Factors in the Free State Are Equilibrium Mixtures of Open and Compact Conformations. Biochemistry 2010; 49:9809-19. [DOI: 10.1021/bi1011173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paromita Raha
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | - Srijata Mukherjee
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Ruchira Chattopadhyay
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Koushik Roy
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Siddhartha Roy
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| |
Collapse
|
6
|
Devred F, Barbier P, Lafitte D, Landrieu I, Lippens G, Peyrot V. Microtubule and MAPs: thermodynamics of complex formation by AUC, ITC, fluorescence, and NMR. Methods Cell Biol 2010; 95:449-80. [PMID: 20466148 DOI: 10.1016/s0091-679x(10)95023-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microtubules are implicated in many essential cellular processes such as architecture, cell division, and intracellular traffic, due to their dynamic instability. This dynamicity is tightly regulated by microtubule-associated proteins (MAPs), such as tau and stathmin. Despite extensive studies motivated by their central role in physiological functions and pathological role in neurodegenerative diseases and cancer, the precise mechanisms of tau and stathmin binding to tubulin and their consequences on microtubule stability are still not fully understood. One of the most crucial points missing is a quantitative thermodynamic description of their interaction with tubulin/microtubules and of the tubulin complexes formed upon these interactions. In this chapter, we will focus on the use of analytical ultracentrifugation, isothermal titration calorimetry, and nuclear magnetic resonance-three powerful and complementary techniques in the field of MAP-tubulin/microtubule interactions, in addition to the spectrometric techniques and co-sedimentation approach. We will present the limits of these techniques to study this particular interaction and precautions that need to be taken during MAPs preparation. Understanding the molecular mechanisms that govern MAPs action on microtubular network will not only shed new light on the role of this crucial family of protein in the biology of the cell, but also hopefully open new paths to increase the therapeutic efficiency of microtubule-targeting drugs in cancers therapies and neurodegeneratives diseases prevention.
Collapse
Affiliation(s)
- François Devred
- CRO2, U911 Inserm, Aix-Marseille Université, 27 Bd Jean Moulin, 13385 Marseille cedex 05, France
| | | | | | | | | | | |
Collapse
|
7
|
Gheshlaghi ZN, Riazi GH, Ahmadian S, Ghafari M, Mahinpour R. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00458.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Das J, Crouch RK, Chong PLG. Fluorescence Properties of Pyrylretinol. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720415fpop2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Mohan R, Rastogi N, Namboothiri INN, Mobin SM, Panda D. Synthesis and evaluation of α-hydroxymethylated conjugated nitroalkenes for their anticancer activity: Inhibition of cell proliferation by targeting microtubules. Bioorg Med Chem 2006; 14:8073-85. [PMID: 16891118 DOI: 10.1016/j.bmc.2006.07.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 07/18/2006] [Accepted: 07/19/2006] [Indexed: 11/27/2022]
Abstract
The Morita-Baylis-Hillman (MBH) type reaction of a variety of aromatic and heteroaromatic conjugated nitroalkenes with formaldehyde in the presence of stoichiometric amounts of imidazole and catalytic amounts (10 mol %) of anthranilic acid at room temperature provided the corresponding hydroxymethylated derivatives in moderate to good yield. The parent nitroalkenes and their MBH adducts were subsequently screened for their anticancer activity. Some of the MBH adducts were found to inhibit cervical cancer (HeLa) cell proliferation at low micromolar concentrations with half-maximal inhibitory concentrations in the range of 1-2 microM. The antiproliferative activity of 3-((E)-2-nitrovinyl)furan and three potent MBH adducts, namely, hydroxymethylated derivatives of 3-((E)-2-nitrovinyl)thiophene, 1-methoxy-4-((E)-2-nitrovinyl)benzene, and 1,2-dimethoxy-4-((E)-2-nitrovinyl)benzene was correlated well with their antimicrotubule activity. At their effective concentration range, the tested compounds perturbed the organization of mitotic spindle microtubules and chromosomes. In the presence of hydroxymethylated nitroalkenes, abnormal bipolar or multipolar mitotic spindles were apparent. Interphase microtubules were found to be significantly depolymerized at relatively higher concentrations of the tested compounds. These compounds inhibited tubulin assembly into microtubules in vitro by binding to tubulin at a site distinct from the vinblastine and colchicine binding sites. The compounds reduced the intrinsic tryptophan fluorescence of tubulin and the fluorescence of tubulin-1-anilinonaphthalene-8-sulfonic acid (ANS) complex indicating that they induced conformational changes in the tubulin. The results suggest that hydroxymethylated nitroalkenes exert their antiproliferative activity at least in part by depolymerizing cellular microtubules through tubulin binding and indicate that hydroxymethylated nitroalkenes are promising lead compounds for cancer therapy.
Collapse
Affiliation(s)
- Renu Mohan
- School of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai 400 076, India
| | | | | | | | | |
Collapse
|
10
|
Arbildua JJ, Brunet JE, Jameson DM, López M, Nova E, Lagos R, Monasterio O. Fluorescence resonance energy transfer and molecular modeling studies on 4',6-diamidino-2-phenylindole (DAPI) complexes with tubulin. Protein Sci 2006; 15:410-9. [PMID: 16452620 PMCID: PMC2249762 DOI: 10.1110/ps.051862206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The goal of this work was to determine the binding properties and location of 4',6-diamidino-2-phenylindole (DAPI) complexed with tubulin. Using fluorescence anisotropy, a dissociation constant of 5.2+/-0.4 microM for the DAPI-tubulin complex was determined, slightly lower than that for the tubulin S complex. The influence of the C-terminal region on the binding of DAPI to tubulin was also characterized. Using FRET experiments, and assuming a kappa2 value of 2/3, distances between Co2+ bound to its high-affinity binding site and the DAPI-binding site and 2',3'-O-(trinitrophenyl)guanosine 5'-triphosphate bound to the exchangeable nucleotide and the DAPI-binding site were found to be 20+/-2 A and 43+/-2 A, respectively. To locate potential DAPI-binding sites on tubulin, a molecular modeling study was carried out using the tubulin crystal structure and energy minimization calculations. The results from the FRET measurements were used to limit the possible location of DAPI in the tubulin structure. Several candidate binding sites were found and these are discussed in the context of the various properties of bound DAPI.
Collapse
Affiliation(s)
- José J Arbildua
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
11
|
Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P. Protein-protein interactions: mechanisms and modification by drugs. J Mol Recognit 2002; 15:405-22. [PMID: 12501160 DOI: 10.1002/jmr.597] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions form the proteinaceous network, which plays a central role in numerous processes in the cell. This review highlights the main structures, properties of contact surfaces, and forces involved in protein-protein interactions. The properties of protein contact surfaces depend on their functions. The characteristics of contact surfaces of short-lived protein complexes share some similarities with the active sites of enzymes. The contact surfaces of permanent complexes resemble domain contacts or the protein core. It is reasonable to consider protein-protein complex formation as a continuation of protein folding. The contact surfaces of the protein complexes have unique structure and properties, so they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations have been undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or on the other hand, induce protein dimerization.
Collapse
|
12
|
Abstract
A fluorescent analog of retinol, 3,7-dimethyl-9-(1-pyryl)-2E,4E,6E,8E-nonatetr aene-1-ol (referred to as pyrylretinol, or 1) has been synthesized. The fluorescence properties (e.g. quantum yield, lifetime, steady-state anisotropy, and excitation/emission spectra) of this compound in various organic solvents and in dimyristoylphosphatidylcholine (DMPC) liposomes have been studied, and the results are compared with those obtained from 3-methyl-5-(1-pyryl)-2E,4E-pentadiene-1-ol (2), which has the same fused aromatic ring system but a much shorter acyclic chain. 1 and 2 form excimer in aqueous media and fluorescence anisotropies of both 1 and 2 in DMPC liposomes exhibit an abrupt decrease at approximately 21-23 degrees C, which coincides with the main phase transition temperature of DMPC liposomes, indicating that both compounds may be a useful membrane probe. In addition, the binding and quenching capability of pyrylretinol (1) to bovine serum albumin has been investigated. Pyrylretinol (1) binds with BSA with a binding constant of 3.6 x 10(4) M-1, although the value is somewhat lower than that obtained for retinol (3.06 x 10(5) M-1). Pyrylretinol (1) also quenches the BSA intrinsic fluorescence with the quenching rate constant of 1.67 x 10(13) M-1 s-1 and the value is lower than that obtained for retinol (4.06 x 10(13) M-1 s-1). The binding and quenching studies suggest that pyrylretinol (1) may serve as a useful fluorescence probe for structure/function studies of different retinoid binding proteins.
Collapse
Affiliation(s)
- J Das
- Department of Ophthalmology, Medical University of South Carolina, Charleston 29403, USA.
| | | | | |
Collapse
|
13
|
Takeuchi T, Kawai K, Kitamaki Y, Miwa T. Indirect fluorimetric detection of proteins via postcolumn mixing with fluorescence probe in size-exclusion chromatography. Chromatographia 2000. [DOI: 10.1007/bf02490794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Affiliation(s)
- Toyohide TAKEUCHI
- Department of Chemistry,Faculty of Engineering,Gifu University,Gifu 501-1193
| |
Collapse
|