1
|
Omeis F, Santos Seica AF, Ermolova N, Kaback HR, Hellwig P. Monoclonal antibody 4B1 influences the pK a of Glu325 in lactose permease (LacY) from Escherichia coli: evidence from SEIRAS. FEBS Lett 2020; 594:3356-3362. [PMID: 32780424 DOI: 10.1002/1873-3468.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/11/2022]
Abstract
The monoclonal antibody 4B1 binds to a conformational epitope on the periplasmic side of lactose permease (LacY) of Escherichia coli and inhibits H+ /lactose symport and lactose efflux under nonenergized conditions. At the same time, ligand binding and translocation reactions that do not involve net H+ translocation remain unaffected by 4B1. In this study, surface-enhanced infrared absorption spectroscopy applied to the immobilized LacY was used to study the pH-dependent changes in LacY and to access in situ the effect of the 4B1 antibody on the pKa of Glu325, the primary functional H+ -binding site in LacY. A small shift of the pK value from 10.5 to 9.5 was identified that can be corroborated with the inactivation of LacY upon 4B1 binding.
Collapse
Affiliation(s)
- Fatima Omeis
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, Strasbourg, France.,University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg, France
| | - Ana Filipa Santos Seica
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, Strasbourg, France
| | - Natalia Ermolova
- Department of Physiology, University of California, Los Angeles, CA, USA
| | - H Ronald Kaback
- Department of Physiology, University of California, Los Angeles, CA, USA.,Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, Strasbourg, France.,University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg, France
| |
Collapse
|
2
|
Borrell JH, Domènech Ò, Keough KMW. Molecular Membrane Biochemistry. MEMBRANE PROTEIN – LIPID INTERACTIONS: PHYSICS AND CHEMISTRY IN THE BILAYER 2016. [DOI: 10.1007/978-3-319-30277-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
3
|
Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli. Proc Natl Acad Sci U S A 2010; 107:15057-62. [PMID: 20696931 DOI: 10.1073/pnas.1006286107] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylcholine (PC) has been widely used in place of naturally occurring phosphatidylethanolamine (PE) in reconstitution of bacterial membrane proteins. However, PC does not support native structure or function for several reconstituted transport proteins. Lactose permease (LacY) of Escherichia coli, when reconstituted in E. coli phospholipids, exhibits energy-dependent uphill and energy-independent downhill transport function and proper conformation of periplasmic domain P7, which is tightly linked to uphill transport function. LacY expressed in cells lacking PE and containing only anionic phospholipids exhibits only downhill transport and lacks native P7 conformation. Reconstitution of LacY in the presence of E. coli-derived PE, but not dioleoyl-PC, results in uphill transport. We now show that LacY exhibits uphill transport and native conformation of P7 when expressed in a mutant of E. coli in which PC completely replaces PE even though the structure is not completely native. E. coli-derived PC and synthetic PC species containing at least one saturated fatty acid also support the native conformation of P7 dependent on the presence of anionic phospholipids. Our results demonstrate that the different effects of PE and PC species on LacY structure and function cannot be explained by differences in the direct interaction of the lipid head groups with specific amino acid residues alone but are due to more complex effects of the physical and chemical properties of the lipid environment on protein structure. This conclusion is supported by the effect of different lipids on the proper folding of domain P7, which indirectly influences uphill transport function.
Collapse
|
4
|
Rimon A, Hunte C, Michel H, Padan E. Epitope mapping of conformational monoclonal antibodies specific to NhaA Na+/H+ antiporter: structural and functional implications. J Mol Biol 2008; 379:471-81. [PMID: 18452948 DOI: 10.1016/j.jmb.2008.03.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 03/31/2008] [Indexed: 11/26/2022]
Abstract
The recently determined crystal structure of NhaA, the Na(+)/H(+) antiporter of Escherichia coli, showed that the previously constructed series of NhaA-alkaline phosphatase (PhoA) fusions correctly predicted the topology of NhaA's 12 transmembrane segments (TMS), with the C- and N-termini pointing to the cytoplasm. Here, we show that these NhaA-PhoA fusions provide an excellent tool for mapping the epitopes of three NhaA-specific conformational monoclonal antibodies (mAbs), of which two drastically inhibit the antiporter. By identifying which of the NhaA fusions is bound by the respective mAb, the epitopes were localized to small stretches of NhaA. Then precise mapping was conducted by targeted Cys scanning mutagenesis combined with chemical modifications. Most interestingly, the epitopes of the inhibitory mAbs, 5H4 and 2C5, were identified in loop X-XI (cytoplasmic) and loop XI-XII (periplasmic), which are connected by TMS XI on the cytoplasmic and periplasmic sides of the membrane, respectively. The revealed location of the mAbs suggests that mAb binding distorts the unique NhaA TMS IV/XI assembly and thus inhibits the activity of NhaA. The noninhibitory mAb 6F9 binds to the functionally dispensable C-terminus of NhaA.
Collapse
Affiliation(s)
- Abraham Rimon
- Department of Biochemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
5
|
Tavoulari S, Frillingos S. Substrate Selectivity of the Melibiose Permease (MelY) from Enterobacter cloacae. J Mol Biol 2008; 376:681-93. [DOI: 10.1016/j.jmb.2007.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 12/01/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|
6
|
Ermolova N, Guan L, Kaback HR. Intermolecular thiol cross-linking via loops in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A 2003; 100:10187-92. [PMID: 12934015 PMCID: PMC193537 DOI: 10.1073/pnas.1434239100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous experiments using intermolecular thiol cross-linking to determine surface-exposed positions in the transmembrane helices of the lactose permease suggest that only positions accessible from the aqueous phase are susceptible to cross-linking. This approach is now extended to most of the remaining positions in the molecule. Of an additional 143 single-Cys mutants studied, homodimer formation is observed with both a 5-A- and a 21-A-long crosslinking agent containing bis-methane thiosulfonate reactive groups in 33 mutants and exclusively with the 21-A-long reagent in 43 mutants. Furthermore, intermolecular cross-linking has little or no effect on transport activity, thereby providing further support for the argument that lactose permease is functionally, as well as structurally, a monomer in the membrane. In addition, evidence is presented indicating that reentrance loops are unlikely in this polytopic membrane transport protein.
Collapse
Affiliation(s)
- Natalia Ermolova
- Howard Hughes Medical Institute, Department of Physiology and Microbiology, University of California, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
7
|
Barden JA, Sluyter R, Gu BJ, Wiley JS. Specific detection of non-functional human P2X(7) receptors in HEK293 cells and B-lymphocytes. FEBS Lett 2003; 538:159-62. [PMID: 12633871 DOI: 10.1016/s0014-5793(03)00172-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
P2X(7) receptor/channels mediate ATP-induced apoptosis in a range of cells including lymphocytes. HEK293 cells were transfected with wild-type human P2X(7) receptor or site-directed mutant constructs (K193A, K311A and E496A) known to be non-functional from measurements of barium/ethidium influx in the presence of ATP or 2',3'-O-(4-benzoylbenzoyl)-ATP. An antibody was designed against an epitope from a loop adjacent to the extracellular ATP site. The epitope was unavailable in cells expressing normal functional surface receptors. Non-functional surface receptors as well as intracellular receptors selectively bound the antibody. So did B-lymphocytes from chronic lymphocytic leukemia patients expressing non-functional (E496A) mutant receptor.
Collapse
Affiliation(s)
- J A Barden
- Department of Anatomy and Histology, Anderson Stuart Bldg, F13, The University of Sydney, Sydney 2006, NSW, Australia. julian@
| | | | | | | |
Collapse
|
8
|
Bailey-Kellogg C, Widge A, Kelley JJ, Berardi MJ, Bushweller JH, Donald BR. The NOESY jigsaw: automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data. J Comput Biol 2001; 7:537-58. [PMID: 11108478 DOI: 10.1089/106652700750050934] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High-throughput, data-directed computational protocols for Structural Genomics (or Proteomics) are required in order to evaluate the protein products of genes for structure and function at rates comparable to current gene-sequencing technology. This paper presents the JIGSAW algorithm, a novel high-throughput, automated approach to protein structure characterization with nuclear magnetic resonance (NMR). JIGSAW applies graph algorithms and probabilistic reasoning techniques, enforcing first-principles consistency rules in order to overcome a 5-10% signal-to-noise ratio. It consists of two main components: (1) graph-based secondary structure pattern identification in unassigned heteronuclear NMR data, and (2) assignment of spectral peaks by probabilistic alignment of identified secondary structure elements against the primary sequence. Deferring assignment eliminates the bottleneck faced by traditional approaches, which begin by correlating peaks among dozens of experiments. JIGSAW utilizes only four experiments, none of which requires 13C-labeled protein, thus dramatically reducing both the amount and expense of wet lab molecular biology and the total spectrometer time. Results for three test proteins demonstrate that JIGSAW correctly identifies 79-100% of alpha-helical and 46-65% of beta-sheet NOE connectivities and correctly aligns 33-100% of secondary structure elements. JIGSAW is very fast, running in minutes on a Pentium-class Linux workstation. This approach yields quick and reasonably accurate (as opposed to the traditional slow and extremely accurate) structure calculations. It could be useful for quick structural assays to speed data to the biologist early in an investigation and could in principle be applied in an automation-like fashion to a large fraction of the proteome.
Collapse
|
9
|
Bogdanov M, Dowhan W. Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO J 1998; 17:5255-64. [PMID: 9736605 PMCID: PMC1170853 DOI: 10.1093/emboj/17.18.5255] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previously we presented evidence that phosphatidylethanolamine (PE) acts as a molecular chaperone in the folding of the polytopic membrane protein lactose permease (LacY) of Escherichia coli. Here we provide more definitive evidence supporting the chaperone properties of PE. Membrane insertion of LacY prevents its irreversible aggregation, and PE participates in a late step of conformational maturation. The temporal requirement for PE was demonstrated in vitro using a coupled translation-membrane insertion assay that allowed the separation of membrane insertion from phospholipid-assisted folding. LacY was folded properly, as assessed by recognition with conformation-specific monoclonal antibodies, when synthesized in the presence of PE-containing inside-out membrane vesicles (IOVs) or in the presence of IOVs initially lacking PE but supplemented with PE synthesized in vitro either co- or post-translationally. The presence of IOVs lacking PE and containing anionic phospholipids or no addition of IOVs resulted in misfolded or aggregated LacY, respectively. Therefore, critical folding steps occur after membrane insertion dependent on the interaction of LacY with PE to prevent illicit interactions which lead to misfolding of LacY.
Collapse
Affiliation(s)
- M Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77225, USA
| | | |
Collapse
|
10
|
Kaback HR, Voss J, Wu J. Helix packing in polytopic membrane proteins: the lactose permease of Escherichia coli. Curr Opin Struct Biol 1997; 7:537-42. [PMID: 9266176 DOI: 10.1016/s0959-440x(97)80119-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent advances in protein engineering have facilitated the development of alternative approaches to determine helix packing in polytopic membrane proteins. Using the lac permease as a paradigm, several site-directed biophysical and biochemical techniques are described which should be generally applicable.
Collapse
Affiliation(s)
- H R Kaback
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1662, USA.
| | | | | |
Collapse
|