1
|
Structural Analysis of Hen Egg Lysozyme Refolded after Denaturation at Acidic pH. Protein J 2022; 41:71-78. [PMID: 35094218 DOI: 10.1007/s10930-021-10036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 10/19/2022]
Abstract
Protein structures fluctuate in solution; therefore, proteins have multiple stable structures that are slightly different from each other. In this study, we determined the crystal structure of hen egg lysozyme refolded after denaturation at acidic pH (rHEL) and found a structure different from native HEL (nHEL). The different local conformations of the peptide bond between Asp101 and Gly102 found in the crystal structure was supported by the NMR results for nHEL and rHEL. The NMR experiments also showed shifts in the heteronuclear single quantum coherence signals derived from Thr43 and Asp52. The chemical shift change of Asp52 could be explained by the crystal structure of rHEL, showing the conformational change of Tyr53, whose phenol ring directly lies on the main chain of Asp52. The catalytic activity of rHEL was similar to that of nHEL, indicating that the conformational change had little effect on activity. In contrast, conformational changes could be detected by the binding of monoclonal antibodies against HEL. Using multiple methods, we successfully detected the unusual structure of HEL, which might be another stable structure of HEL in solution.
Collapse
|
2
|
Yamaguchi T, Akao K, Koutsioubas A, Frielinghaus H, Kohzuma T. Open-Bundle Structure as the Unfolding Intermediate of Cytochrome c' Revealed by Small Angle Neutron Scattering. Biomolecules 2022; 12:95. [PMID: 35053243 PMCID: PMC8774185 DOI: 10.3390/biom12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022] Open
Abstract
The dynamic structure changes, including the unfolding, dimerization, and transition from the compact to the open-bundle unfolding intermediate structure of Cyt c', were detected by a small-angle neutron scattering experiment (SANS). The structure of Cyt c' was changed into an unstructured random coil at pD = 1.7 (Rg = 25 Å for the Cyt c' monomer). The four-α-helix bundle structure of Cyt c' at neutral pH was transitioned to an open-bundle structure (at pD ~13), which is given by a numerical partial scattering function analysis as a joint-clubs model consisting of four clubs (α-helices) connected by short loops. The compactly folded structure of Cyt c' (radius of gyration, Rg = 18 Å for the Cyt c' dimer) at neutral or mildly alkaline pD transited to a remarkably larger open-bundle structure at pD ~13 (Rg = 25 Å for the Cyt c' monomer). The open-bundle structure was also supported by ab initio modeling.
Collapse
Affiliation(s)
- Takahide Yamaguchi
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Ibaraki, Japan; (T.Y.); (K.A.)
- Frontier Research Center of Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai 319-1106, Ibaraki, Japan
| | - Kouhei Akao
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Ibaraki, Japan; (T.Y.); (K.A.)
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science JCNS-4 at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, D-85747 Garching, Germany; (A.K.); (H.F.)
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science JCNS-4 at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, D-85747 Garching, Germany; (A.K.); (H.F.)
| | - Takamitsu Kohzuma
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Ibaraki, Japan; (T.Y.); (K.A.)
- Frontier Research Center of Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai 319-1106, Ibaraki, Japan
| |
Collapse
|
3
|
Mansour AM, Radacki K, Shehab OR. Sulfonate improves water solubility and cell selective toxicity and alters the lysozyme binding activity of half sandwich Rh(iii) complexes. Dalton Trans 2021; 50:10701-10706. [PMID: 34337627 DOI: 10.1039/d1dt00979f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of the propyl-sulfonic acid group at N1 of the coordinated 2-(2-pyridyl)benzimidazole ligand (L) in [RhCl(η5-C5Me5)L](CF3SO3) gives rise to a water-soluble complex, which can bind to the model protein lysozyme via non-covalent interactions. The complex shows selective moderate toxicity against Cryptococcus neoformans (MIC = 21.6-43.3 μM) and exhibits no cytotoxicity to healthy HEK293 cells.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| |
Collapse
|
4
|
Charoensuk D, Brannan RG, Chaiyasit W, Chanasattru W. Physico-chemical and gel properties of heat-induced pasteurized liquid egg white gel: effect of alkyl chain length of alcohol. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1960371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Danai Charoensuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| | - Robert G. Brannan
- School of Applied Health Science and Wellness, Ohio University, E170 Grover Center, Athens, OH, United States
| | - Wilailuk Chaiyasit
- Division of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Wanlop Chanasattru
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| |
Collapse
|
5
|
Bendre AD, Shukla E, Ramasamy S. Functional Stability and Structural Transitions of a Kunitz trypsin Inhibitor from Chickpea (CaTI2). Protein J 2020; 39:350-357. [PMID: 32671517 DOI: 10.1007/s10930-020-09911-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes are important tools for various applications. We have studied structural transitions and functional stability of a Kunitz trypsin inhibitor from Chickpea (CaTI2), a potent insect gut-protease inhibitor, under different stress conditions like non-neutral pH, elevated temperature and co-solvent concentrations. CaTI2 was cloned and expressed in an eukaryotic system P. pastoris and was investigated for conformational transitions using circular dichroism spectroscopy, differential scanning fluorimetry and activity assay. Native CaTI2 has a sheet dominant structure with 40% β sheets and possess a single tryptophan residue situated in the hydrophobic core of the enzyme. The recombinant inhibitor maintained its maximum activity under alkaline pH with its secondary structure intact between pH 6-10. CaTI2 was observed to be thermally stable up to 55 °C with a Tm of 61.3 °C above which the protein unfolds. On treating with chemical denaturant (urea), the CaTI2 lost its inhibitory potential and native conformation beyond 2 M urea concentration. Moreover, the protein unfolded at lower temperatures as the concentration of denaturant increased, suggesting more complex structural changes. Further, the stability of the inhibitor was found to be directly proportional to the solvent polarity. The data, herein offers significant information of inhibitor stability and activity which could be exploited for its further development into an effective pesticide.
Collapse
Affiliation(s)
- Ameya D Bendre
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. .,National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| | - Ekta Shukla
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,National Centre for Cell Science, Ganeshkhind, Pune, 411007, India
| | - Sureshkumar Ramasamy
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Delasoie J, Pavic A, Voutier N, Vojnovic S, Crochet A, Nikodinovic-Runic J, Zobi F. Identification of novel potent and non-toxic anticancer, anti-angiogenic and antimetastatic rhenium complexes against colorectal carcinoma. Eur J Med Chem 2020; 204:112583. [PMID: 32731186 DOI: 10.1016/j.ejmech.2020.112583] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022]
Abstract
Combination therapy targeting both tumor growth and vascularization is considered to be a cornerstone for colorectal carcinomas (CRC) treatment. However, the major obstacles of most clinical anticancer drugs are their weak selective activity towards cancer cells and inherent inner organs toxicity, accompanied with fast drug resistance development. In our effort to discover novel selective and non-toxic agents effective against CRC, we designed, synthesized and characterized a series of rhenium(I) tricarbonyl-based complexes with increased lipophilicity. Two of these novel compounds were discovered to possess remarkable anticancer, anti-angiogenic and antimetastatic activity in vivo (zebrafish-human HCT-116 xenograft model), being effective at very low doses (1-3 μM). At doses as high as 250 μM the complexes did not provoke toxicity issues encountered in clinical anticancer drugs (cardio-, hepato-, and myelotoxicity). In vivo assays showed that the two compounds exceed the anti-tumor and anti-angiogenic activity of clinical drugs cisplatin and sunitinib malate, and display a large therapeutic window.
Collapse
Affiliation(s)
- Joachim Delasoie
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia.
| | - Noémie Voutier
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland.
| |
Collapse
|
7
|
Flanagan JC, Baiz CR. Ultrafast pH-jump two-dimensional infrared spectroscopy. OPTICS LETTERS 2019; 44:4937-4940. [PMID: 31613233 DOI: 10.1364/ol.44.004937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
We present a pH-jump two-dimensional infrared (2D IR) spectrometer to probe pH-dependent conformational changes from nanoseconds to milliseconds. The design incorporates a nanosecond 355 nm source into a pulse-shaper-based 2D IR spectrometer to trigger dissociation of a caged proton prior to probing subsequent conformational changes with femtosecond 2D IR spectroscopy. We observe a blue shift in the amide I mode (C═O stretch) of diglycine induced by protonation of the terminal amine. This method combines the bond-specific structural sensitivity of ultrafast 2D IR with triggered conformational dynamics, providing structural access to multiscale biomolecular transformations such as protein folding.
Collapse
|
8
|
Shukla E, Agrawal SB, Gaikwad SM. Conformational and functional transitions and in silico analysis of a serine protease from Conidiobolus brefeldianus (MTCC 5185). Int J Biol Macromol 2017; 98:387-397. [PMID: 28153464 DOI: 10.1016/j.ijbiomac.2017.01.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/06/2017] [Accepted: 01/27/2017] [Indexed: 11/25/2022]
Abstract
This work describes functional and structural transitions of a novel protease isolated from Conidiobolus brefeldianus MTCC 5185 (Cprot), in detail using biophysical and bioinformatics tools. The commercial importance of Cprot in silk and leather industries made it an interesting candidate for structural investigations. Cprot possesses 8.2% α-helix, 31.1% β-sheet and 23.8% turns. The enzyme was found to be active over a wide pH range and up to 55°C. The protease was also stable in organic solvents up to 50% (v/v) concentration of alcohols and DMSO for >24h and in 2M guanidine hydrochloride for >12h. Cprot was also resistant to trypsin, chymotrypsin, proteinase K and fluorinated alcohols (5-10%). The melting temperatures observed for the native Cprot and for the enzyme treated under various stress conditions correlated well with the corresponding structural and functional transitions obtained. The structural information was supported by the homology model of its closest homologue from C. coronatus; revealing its similarity to PA clan of proteases (Proteases of mixed nucleophile, superfamily A), with His-64, Asp-113 and Ser-208 as putative catalytic triad. Three tryptophan residues in Cprot are surrounded by positively charged residues, as evident from solute quenching studies and homology model.
Collapse
Affiliation(s)
- Ekta Shukla
- Academy of Scientific and Innovative Research (AcSIR), Division of Biochemical Sciences, CSIR-National Chemical laboratory, Pune 411008, India
| | - Sanskruthi B Agrawal
- Academy of Scientific and Innovative Research (AcSIR), Division of Biochemical Sciences, CSIR-National Chemical laboratory, Pune 411008, India
| | - Sushama M Gaikwad
- Academy of Scientific and Innovative Research (AcSIR), Division of Biochemical Sciences, CSIR-National Chemical laboratory, Pune 411008, India.
| |
Collapse
|
9
|
Lee JW, Kim HI. Investigating acid-induced structural transitions of lysozyme in an electrospray ionization source. Analyst 2015; 140:661-9. [PMID: 25429398 DOI: 10.1039/c4an01794c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of acids on the structure of lysozyme (Lyz) during electrospray ionization (ESI) was studied by comparing the solution and gas-phase structures of Lyz. Investigation using circular dichroism spectroscopy and small-angle X-ray scattering demonstrated that the folded conformation of Lyz was maintained in pH 2.2 solutions containing different acids. On the other hand, analysis of the charge state distributions and ion mobility (IM) distributions, combined with molecular dynamics simulations, demonstrated that the gas phase structures of Lyz depend on the pKa of the acid used to acidify the protein solution. Formic acid and acetic acid, which are weak acids (pKa > 3.5), induce unfolding of Lyz during ESI, presumably because the undissociated weak acids provide protons to maintain the acidic groups within Lyz protonated and prevent the formation of salt bridges. However, HCl suppressed the formation of the unfolded conformers because the acid is already dissociated in solution, and chloride anions within the ESI droplet can interact with Lyz to reduce the intramolecular electrostatic repulsion. These trends in the IM distributions are observed for all charge states, demonstrating the significance of the acid effect on the structure of Lyz during ESI.
Collapse
Affiliation(s)
- Jong Wha Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea.
| | | |
Collapse
|
10
|
Lee JW, Kim HI. Solvent-induced structural transitions of lysozyme in an electrospray ionization source. Analyst 2015; 140:3573-80. [PMID: 25854591 DOI: 10.1039/c5an00235d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structural characterization of proteins using electrospray ionization mass spectrometry (ESI-MS) has become an important method for understanding protein structural dynamics. The correlation between the structures of proteins in solution and gas phase needs to be understood for the application of ESI-MS to protein structural studies. Hen egg white lysozyme (Lyz) is a small protein with a stable compact structure in solution. Although it was known that denatured Lyz in solution undergoes compaction during transfer into the gas phase via ESI, detailed characterization of the process was not available. In the present study, we show that the organic cosolvent, which denatures Lyz in solution, induces the collapse of the extended Lyz structure into compact structures during ESI. This process is further facilitated by the presence of acids, whose conjugate bases can interact with Lyz to reduce its charge state and the electrostatic repulsion between its charged residues (Analyst, 2015, 140, 661-669). Exposure of ESI droplets to acid and solvent vapors confirms that the overall process most probably occurs in the charged droplets from ESI. This study provides a detailed understanding of the possible influence of the solvent environment on protein structure during transfer into the gas phase.
Collapse
Affiliation(s)
- Jong Wha Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | | |
Collapse
|
11
|
Jain R, Sharma D, Kumar R. Effects of alcohols on the stability and low-frequency local motions that control the slow changes in structural dynamics of ferrocytochrome c. J Biochem 2013; 154:341-54. [DOI: 10.1093/jb/mvt059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Chai J, Xu Q, Dai J, Liu R. Investigation on potential enzyme toxicity of clenbuterol to trypsin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 105:200-206. [PMID: 23314212 DOI: 10.1016/j.saa.2012.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
Clenbuterol (CLB) is a kind of β2-adrenergic agonists which was illegally used as feed additives nowadays. The toxic interaction of CLB with trypsin, an important digestive enzyme, was studied in vitro using multi-spectroscopic methods and molecular modeling methods. CLB was proved to bind with trypsin in S1 pocket, forming a complex driven by the dominant force of H-bond. The binding constant was calculated to be 1.79887×10(5) L mol(-1) at 289 K and 0.32584×10(5) L mol(-1) at 310 K, respectively. The skeleton of trypsin became loosened and unfolded with the amino residues microenvironment changed. The secondary and tertiary structure of trypsin also varied. Molecular modeling studies illustrated specific display of the binding information and explained most of the experiment phenomena. The binding site of CLB induced the fluorescence quenching as well as inhibition of enzyme activity of trypsin. The study confirmed that CLB had potential toxicity on both the structure and function of trypsin and the effects enhanced with the increasing concentration of CLB.
Collapse
Affiliation(s)
- Jun Chai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | | | | | | |
Collapse
|
13
|
Polyproline fold—In imparting kinetic stability to an alkaline serine endopeptidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:708-16. [DOI: 10.1016/j.bbapap.2012.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 11/20/2022]
|
14
|
Sashi P, Yasin UM, Bhuyan AK. Unfolding action of alcohols on a highly negatively charged state of cytochrome C. Biochemistry 2012; 51:3273-83. [PMID: 22439732 DOI: 10.1021/bi201716r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well-known that hydrophobic effect play a major role in alcohol-protein interactions leading to structure unfolding. Studies with extremely alkaline cytochrome c (U(B) state, pH 13) in the presence of the first four alkyl alcohols suggests that the hydrophobic effect persistently overrides even though the protein carries a net charge of -17 under these conditions. Equilibrium unfolding of the U(B) state is accompanied by an unusual expansion of the chain involving an intermediate, I(alc), from which water is preferentially excluded, the extent of water exclusion being greater with the hydrocarbon content of the alcohol. The mobility and environmental averaging of side chains in the I(alc) state are generally constrained relative to those in the U(B) state. A few nuclear magnetic resonance-detected tertiary interactions are also found in the I(alc) state. The fact that the I(alc) state populates at low concentrations of methanol and ethanol and the fact that the extent of chain expansion in this state approaches that of the U(B) state indicate a definite influence of electrostatic repulsion severed by the low dielectric of the water/alcohol mixture. Interestingly, the U(B) ⇌ I(alc) segment of the U(B) ⇌ I(alc) ⇌ U equilibrium, where U is the unfolded state, accounts for roughly 85% of the total number of water molecules preferentially excluded in unfolding. Stopped-flow refolding results report on a submillisecond hydrophobic collapse during which almost the entire buried surface area associated with the U(B) state is recovered, suggesting the overwhelming influence of hydrophobic interaction over electrostatic repulsions.
Collapse
Affiliation(s)
- Pulikallu Sashi
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | | | |
Collapse
|
15
|
Matsuo K, Sakurada Y, Tate SI, Namatame H, Taniguchi M, Gekko K. Secondary-structure analysis of alcohol-denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy. Proteins 2011; 80:281-93. [DOI: 10.1002/prot.23206] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/07/2011] [Accepted: 09/19/2011] [Indexed: 11/07/2022]
|
16
|
Cavity hydration as a gateway to unfolding: An NMR study of hen lysozyme at high pressure and low temperature. Biophys Chem 2011; 156:24-30. [DOI: 10.1016/j.bpc.2011.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 01/25/2011] [Indexed: 11/18/2022]
|
17
|
Fowler CB, Evers DL, O'Leary TJ, Mason JT. Antigen retrieval causes protein unfolding: evidence for a linear epitope model of recovered immunoreactivity. J Histochem Cytochem 2011; 59:366-81. [PMID: 21411808 DOI: 10.1369/0022155411400866] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antigen retrieval (AR), in which formalin-fixed paraffin-embedded tissue sections are briefly heated in buffers at high temperature, often greatly improves immunohistochemical staining. An important unresolved question regarding AR is how formalin treatment affects the conformation of protein epitopes and how heating unmasks these epitopes for subsequent antibody binding. The objective of the current study was to use model proteins to determine the effect of formalin treatment on protein conformation and thermal stability in relation to the mechanism of AR. Sodium dodecyl sulfate polyacrylamide gel electrophoresis was used to identify the presence of protein formaldehyde cross-links, and circular dichroism spectropolarimetry was used to determine the effect of formalin treatment and high-temperature incubation on the secondary and tertiary structure of the model proteins. Results revealed that for some proteins, formalin treatment left the native protein conformation unaltered, whereas for others, formalin denatured tertiary structure, yielding a molten globule protein. In either case, heating to temperatures used in AR methods led to irreversible protein unfolding, which supports a linear epitope model of recovered protein immunoreactivity. Consequently, the core mechanism of AR likely centers on the restoration of normal protein chemical composition coupled with improved accessibility to linear epitopes through protein unfolding.
Collapse
Affiliation(s)
- Carol B Fowler
- Department of Biophysics, Armed Forces Institute of Pathology, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
18
|
Goyal MK, Roy I, Amin A, Banerjee UC, Bansal AK. Stabilization of Lysozyme by Benzyl Alcohol: Surface Tension and Thermodynamic Parameters. J Pharm Sci 2010; 99:4149-61. [DOI: 10.1002/jps.22129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Voets IK, Cruz WA, Moitzi C, Lindner P, Arêas EPG, Schurtenberger P. DMSO-Induced Denaturation of Hen Egg White Lysozyme. J Phys Chem B 2010; 114:11875-83. [DOI: 10.1021/jp103515b] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilja K. Voets
- Adolphe Merkle Institute, University of Fribourg, Route de l’Ancienne Papeterie, P.O. Box 209, CH-1723 Marly 1, Switzerland, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000 São Paulo, SP, Brazil, and Institut Max von Laue-Paul Langevin, F-38042 Grenoble Cedex 9, France
| | - Willemberg A. Cruz
- Adolphe Merkle Institute, University of Fribourg, Route de l’Ancienne Papeterie, P.O. Box 209, CH-1723 Marly 1, Switzerland, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000 São Paulo, SP, Brazil, and Institut Max von Laue-Paul Langevin, F-38042 Grenoble Cedex 9, France
| | - Christian Moitzi
- Adolphe Merkle Institute, University of Fribourg, Route de l’Ancienne Papeterie, P.O. Box 209, CH-1723 Marly 1, Switzerland, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000 São Paulo, SP, Brazil, and Institut Max von Laue-Paul Langevin, F-38042 Grenoble Cedex 9, France
| | - Peter Lindner
- Adolphe Merkle Institute, University of Fribourg, Route de l’Ancienne Papeterie, P.O. Box 209, CH-1723 Marly 1, Switzerland, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000 São Paulo, SP, Brazil, and Institut Max von Laue-Paul Langevin, F-38042 Grenoble Cedex 9, France
| | - Elizabeth P. G. Arêas
- Adolphe Merkle Institute, University of Fribourg, Route de l’Ancienne Papeterie, P.O. Box 209, CH-1723 Marly 1, Switzerland, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000 São Paulo, SP, Brazil, and Institut Max von Laue-Paul Langevin, F-38042 Grenoble Cedex 9, France
| | - Peter Schurtenberger
- Adolphe Merkle Institute, University of Fribourg, Route de l’Ancienne Papeterie, P.O. Box 209, CH-1723 Marly 1, Switzerland, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000 São Paulo, SP, Brazil, and Institut Max von Laue-Paul Langevin, F-38042 Grenoble Cedex 9, France
| |
Collapse
|
20
|
Wang YQ, Chen TT, Zhang HM. Investigation of the interactions of lysozyme and trypsin with biphenol A using spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 75:1130-1137. [PMID: 20093070 DOI: 10.1016/j.saa.2009.12.071] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/19/2009] [Accepted: 12/31/2009] [Indexed: 05/28/2023]
Abstract
The interaction between bisphenol A (BPA) and lysozyme (or trypsin) was investigated by UV-vis absorption, fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques under physiological pH 7.40. BPA effectively quenched the intrinsic fluorescence of lysozyme and trypsin via static quenching. H-bonds and van der Waals interactions played a major role in stabilizing the BPA-proteinase complex. The distance r between donor and acceptor was obtained to be 1.65 and 2.26 nm for BPA-lysozyme and BPA-trypsin complexes, respectively. The effect of BPA on the conformation of lysozyme and trypsin was analyzed using synchronous fluorescence and three-dimensional fluorescence spectra.
Collapse
Affiliation(s)
- Yan-Qing Wang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng City, Jiangsu Province, People's Republic of China.
| | | | | |
Collapse
|
21
|
Zhang X, Chen Y. A light-modulated chemosensor for methanol with ratiometry and colorimetry. Anal Chim Acta 2009; 650:254-7. [DOI: 10.1016/j.aca.2009.07.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/16/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
|
22
|
Eby DM, Schaeublin NM, Farrington KE, Hussain SM, Johnson GR. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS NANO 2009; 3:984-94. [PMID: 19344124 DOI: 10.1021/nn900079e] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hen egg white lysozyme acted as the sole reducing agent and catalyzed the formation of silver nanoparticles in the presence of light. Stable silver colloids formed after mixing lysozyme and silver acetate in methanol and the resulting nanoparticles were concentrated and transferred to aqueous solution without any significant changes in physical properties. Activity and antimicrobial assays demonstrated lysozyme-silver nanoparticles retained the hydrolase function of the enzyme and were effective in inhibiting growth of Escherichia coli, Staphylococcus aureus, Bacillus anthracis, and Candida albicans. Remarkably, lysozyme-silver nanoparticles demonstrated a strong antimicrobial effect against silver-resistant Proteus mirabilis strains and a recombinant E. coli strain containing the multiple antibiotic- and silver-resistant plasmid, pMG101. Results of toxicological studies using human epidermal keratinocytes revealed that lysozyme-silver nanoparticles are nontoxic at concentrations sufficient to inhibit microbial growth. Overall, the ability of lysozyme to assemble silver nanoparticles in a one-step reaction offers a simple and environmentally friendly approach to form stable colloids of nontoxic silver nanoparticles that combine the antimicrobial properties of lysozyme and silver. The results expand the functionality of nanomaterials for biological systems and represent a novel antimicrobial composite for potential aseptics and therapeutic use in the future.
Collapse
Affiliation(s)
- D Matthew Eby
- Universal Technology Corporation, Materials and Manufacturing Directorate, Air Force Research Laboratory, 139 Barnes Drive, Suite 2, Tyndall Air Force Base, Florida 32403, USA.
| | | | | | | | | |
Collapse
|
23
|
Role of benzyl alcohol in the prevention of heat-induced aggregation and inactivation of hen egg white lysozyme. Eur J Pharm Biopharm 2009; 71:367-76. [DOI: 10.1016/j.ejpb.2008.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/19/2008] [Accepted: 09/13/2008] [Indexed: 11/21/2022]
|
24
|
Fowler CB, O'Leary TJ, Mason JT. Modeling formalin fixation and histological processing with ribonuclease A: effects of ethanol dehydration on reversal of formaldehyde cross-links. J Transl Med 2008; 88:785-91. [PMID: 18490897 DOI: 10.1038/labinvest.2008.43] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Understanding the chemistry of protein modification by formaldehyde fixation and subsequent tissue processing is central to developing improved methods for antigen retrieval in immunohistochemistry and for recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissues for proteomic analysis. Our initial studies of single proteins, such as bovine pancreatic ribonuclease A (RNase A), in 10% buffered formalin solution revealed that upon removal of excess formaldehyde, monomeric RNase A exhibiting normal immunoreactivity could be recovered by heating at 60 degrees C for 30 min at pH 4. We next studied tissue surrogates, which are gelatin-like plugs of fixed proteins that have sufficient physical integrity to be processed using normal tissue histology. Following histological processing, proteins could be extracted from the tissue surrogates by combining heat, detergent, and a protein denaturant. However, gel electrophoresis revealed that the surrogate extracts contained a mixture of monomeric and multimeric proteins. This suggested that during the subsequent steps of tissue processing protein-formaldehyde adducts undergo further modifications that are not observed in aqueous proteins. As a first step toward understanding these additional modifications we have performed a comparative evaluation of RNase A following fixation in buffered formaldehyde alone and after subsequent dehydration in 100% ethanol by combining gel electrophoresis, chemical modification, and circular dichroism spectroscopic studies. Our results reveal that ethanol-induced rearrangement of the conformation of fixed RNase A leads to protein aggregation through the formation of large geometrically compatible hydrophobic beta-sheets that are likely stabilized by formaldehyde cross-links, hydrogen bonds, and van der Waals interactions. It requires substantial energy to reverse the formaldehyde cross-links within these sheets and regenerate protein monomers free of formaldehyde modifications. Accordingly, the ethanol-dehydration step in tissue histology may be important in confounding the successful recovery of proteins from FFPE tissues for immunohistochemical and proteomic analysis.
Collapse
Affiliation(s)
- Carol B Fowler
- Department of Biophysics, Armed Forces Institute of Pathology, Rockville, MD 20850, USA
| | | | | |
Collapse
|
25
|
Halim AAA, Kadir HA, Tayyab S. Bromophenol Blue Binding as a Probe to Study Urea and Guanidine Hydrochloride Denaturation of Bovine Serum Albumin. J Biochem 2008; 144:33-38. [DOI: 10.1093/jb/mvn036] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|
26
|
Effect of solvation on the structure conformation of human serum albumin in aqueous–alcohol mixed solvents. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2007.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Jansson H, Bergman R, Swenson J. Relation between solvent and protein dynamics as studied by dielectric spectroscopy. J Phys Chem B 2006; 109:24134-41. [PMID: 16375405 DOI: 10.1021/jp052418v] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present results obtained by dielectric spectroscopy in wide frequency (10(-2)-10(9) Hz) and temperature ranges on human hemoglobin in the three different solvents water, glycerol, and methanol, at a solvent level of 0.8 g of solvent/g of protein. In this broad frequency region, there are motions on several time-scales in the measured temperature range (110-370 K for water, 170-410 K for glycerol, and 110-310 K for methanol). For all samples, the dielectric data shows at least four relaxation processes, with frequency dependences that are well described by the Havriliak-Negami or Cole-Cole functions. The fastest and most pronounced process in the dielectric spectra of hemoglobin in glycerol and methanol solutions is similar to the alpha-relaxation of the corresponding bulk solvent (but shifted to slower dynamics due to surface interactions). For water solutions, however, this process corresponds to earlier results obtained for water confined in various systems and it is most likely due to a local beta-relaxation. The slowing down of the glycerol and methanol relaxations and the good agreement with earlier results on confined water show that this process is affected by the interaction with the protein surface. The second fastest process is attributed to motions of polar side groups on the protein, with a possible contribution from tightly bound solvent molecules. This process is shifted to slower dynamics with increasing solvent viscosity, and it shows a crossover in its temperature dependence from Arrhenius behavior at low temperatures to non-Arrhenius behavior at higher temperatures where there seems to be an onset of cooperativity effects. The origins of the two slowest relaxation processes (visible at high temperatures and low frequencies), which show saddlelike temperature dependences for the solvents water and methanol, are most likely due to motions of the polypeptide backbone and an even more global motion in the protein molecule.
Collapse
Affiliation(s)
- Helén Jansson
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | | | | |
Collapse
|
28
|
Sasahara K, Nitta K. Effect of ethanol on folding of hen egg-white lysozyme under acidic condition. Proteins 2006; 63:127-35. [PMID: 16411236 DOI: 10.1002/prot.20782] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The equilibrium and kinetics of folding of hen egg-white lysozyme were studied by means of CD spectroscopy in the presence of varying concentrations of ethanol under acidic condition. The equilibrium transition curves of guanidine hydrochloride-induced unfolding in 13 and 26% (v/v) ethanol have shown that the unfolding significantly deviates from a two-state mechanism. The kinetics of denaturant-induced refolding and unfolding of hen egg-white lysozyme were investigated by stopped-flow CD at three ethanol concentrations: 0, 13, and 26% (v/v). Immediately after dilution of the denaturant, the refolding curves showed a biphasic time course in the far-UV region, with a burst phase with a significant secondary structure and a slower observable phase. However, when monitored by the near-UV CD, the burst phase was not observed and all refolding kinetics were monophasic. To clarify the effect of nonnative secondary structure induced by the addition of ethanol on the folding/unfolding kinetics, the kinetic m values were estimated from the chevron plots obtained for the three ethanol concentrations. The data indicated that the folding/unfolding kinetics of hen lysozyme in the presence of varying concentrations of ethanol under acidic condition is explained by a model with both on-pathway and off-pathway intermediates of protein folding.
Collapse
Affiliation(s)
- Kenji Sasahara
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan.
| | | |
Collapse
|
29
|
Abstract
We study the effect of pH and temperature on fibril formation from hen egg white lysozyme. Fibril formation is promoted by low pH and temperatures close to the midpoint temperature for protein unfolding (detected using far-ultraviolet circular dichroism). At the optimal conditions for fibril formation (pH 2.0, T = 57 degrees C), on-line static light-scattering shows the formation of fibrils after a concentration-independent lag time of approximately 48 h. Nucleation presumably involves a change in the conformation of individual lysozyme molecules. Indeed, long-term circular dichroism measurements at pH 2.0, T = 57 degrees C show a marked change of the secondary structure of lysozyme molecules after approximately 48 h of heating. From atomic force microscopy we find that most of the fibrils have a thickness of approximately 4 nm. These fibrils have a coiled structure with a periodicity of approximately 30 nm and show characteristic defects after every four or five turns.
Collapse
Affiliation(s)
- Luben N Arnaudov
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
30
|
Tsumura K, Kugimiya W, Kuwada M, Shimura Y, Hasumi H. Kinetic study on conformational change in a single molecular species, beta3, of beta-conglycinin in an acidic ethanol solution. Protein J 2004; 23:361-9. [PMID: 15517983 DOI: 10.1023/b:jopc.0000039550.61082.d4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The conformational change in a single molecular species, beta3, of beta-conglycinin in an acidic ethanol solution was kinetically studied by the stopped-flow technique, utilizing the intrinsic fluorescence of proteins and the fluorescence of 1-anilinonaphthalene-8-sulfonic acid (ANS) bound to the proteins. The time-course of the intrinsic fluorescence changes clearly showed the rate of conformational change below and above 25% ethanol to be quite different from each other. ANS could bind well to the protein in an ethanol concentration range of 15-25%. However, the rate of conformational change of the protein corresponding to that for ANS binding could not be obtained at less than 25% ethanol, while the rate of conformational change agreed well with that for ANS binding at more than 25% ethanol. In addition, the process showing the greatest and slowest ANS binding was not apparent in the denaturation of beta-conglycinin under the conditions employed. These results lead to the conclusions that the beta-conglycinin structure could be maintained in the mild molten globule-like denaturation state, and that various tertiary structural changes could take place without any significant effect on the high sensitivity of intrinsic fluorescence after the secondary structural changes.
Collapse
Affiliation(s)
- Kazunobu Tsumura
- New Ingredients Research Institute, Tsukuba R&D Center, Fuji Oil Co. Ltd., 4-3 Kinunodai, Yawara, Tsukuba-gun, Ibaraki 300-2497, Japan.
| | | | | | | | | |
Collapse
|
31
|
Jacob J, Krantz B, Dothager RS, Thiyagarajan P, Sosnick TR. Early collapse is not an obligate step in protein folding. J Mol Biol 2004; 338:369-82. [PMID: 15066438 DOI: 10.1016/j.jmb.2004.02.065] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 02/23/2004] [Accepted: 02/24/2004] [Indexed: 11/16/2022]
Abstract
The dimensions and secondary structure content of two proteins which fold in a two-state manner are measured within milliseconds of denaturant dilution using synchrotron-based, stopped-flow small-angle X-ray scattering and far-UV circular dichroism spectroscopy. Even upon a jump to strongly native conditions, neither ubiquitin nor common-type acylphosphatase contract prior to the major folding event. Circular dichroism and fluorescence indicate that negligible amounts of secondary and tertiary structures form in the burst phase. Thus, for these two denatured states, collapse and secondary structure formation are not energetically downhill processes even under aqueous, low-denaturant conditions. In addition, water appears to be as good a solvent as that with high concentrations of denaturant, when considering the over-all dimensions of the denatured state. However, the removal of denaturant does subtly alter the distribution of backbone dihedral phi,psi angles, most likely resulting in a shift from the polyproline II region to the helical region of the Ramachandran map. We consider the thermodynamic origins of these behaviors along with implications for folding mechanisms and computer simulations thereof.
Collapse
Affiliation(s)
- Jaby Jacob
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
32
|
Samalikova M, Matecko I, Müller N, Grandori R. Interpreting conformational effects in protein nano-ESI-MS spectra. Anal Bioanal Chem 2003; 378:1112-23. [PMID: 14663547 DOI: 10.1007/s00216-003-2339-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 10/07/2003] [Accepted: 10/10/2003] [Indexed: 10/26/2022]
Abstract
Nano-electrospray-ionization mass spectrometry (nano-ESI-MS) is employed here to describe equilibrium protein conformational transitions and to analyze the influence of instrumental settings, pH, and solvent surface tension on the charge-state distributions (CSD). A first set of experiments shows that high flow rates of N(2) as curtain gas can induce unfolding of cytochrome c (cyt c) and myoglobin (Mb), under conditions in which the stability of the native protein structure has already been reduced by acidification. However, it is possible to identify conditions under which the instrumental settings are not limiting factors for the conformational stability of the protein inside ESI droplets. Under such conditions, equilibrium unfolding transitions described by ESI-MS are comparable with those obtained by other established biophysical methods. Experiments with the very stable proteins ubiquitin (Ubq) and lysozyme (Lyz) enable testing of the influence of extreme pH changes on the ESI process, uncoupled from acid-induced unfolding. When HCl is used for acidification, Ubq and Lyz mass spectra do not change between pH~7 and pH 2.2, indicating that the CSD is highly characteristic of a given protein conformation and not directly affected by even large pH changes. Use of formic or acetic acid for acidification of Ubq solutions results in major spectral changes that can be interpreted in terms of protein unfolding as a result of the increased hydrophobicity of the solvent. On the other hand, Lyz, cyt c, and Mb enable direct comparison of protein CSD (corresponding to either the folded or the unfolded protein) in HCl or acetic acid solutions at low pH. The values of surface tension for these solutions differ significantly. Confirming indications already present in the literature, we observe very similar CSD under these solvent conditions for several proteins in either compact or disordered conformations. The same is true for comparison between water and water-acetic acid for folded cyt c and Lyz. Thus, protein CSD from water-acetic solutions do not seem to be limited by the low surface tension of acetic acid as previously suggested. This result could reflect a general lack of dependence of protein CSD on the surface tension of the solvent. However, it is also possible that the effect of acetic acid on the precursor ESI droplets is smaller than generally assumed.
Collapse
Affiliation(s)
- Maria Samalikova
- Institute of Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria
| | | | | | | |
Collapse
|
33
|
Mao D, Babu KR, Chen YL, Douglas DJ. Conformations of gas-phase lysozyme ions produced from two different solution conformations. Anal Chem 2003; 75:1325-30. [PMID: 12659192 DOI: 10.1021/ac020647x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Near pH 2.0, lysozyme in water is in its native conformation, and in water/methanol (2/8) it adopts a helical denatured conformation (Kamatari et al. Protein Sci. 1998, 7, 681-688). Hydrogen/deuterium (H/D) exchange of lysozyme in solution confirms that it is partially unfolded at pH 2.0 in water/methanol (v/v = 2/8). With electrospray ionization (ESI) mass spectrometry (MS), lysozyme in water produces ions with charges +7 to +12, with the greatest intensity at +10, whereas lysozyme in water/methanol (2/8) produces ions with charges +6 to +12 with the greatest intensity at +7. Thus, lysozyme is an exception to the rule that a protein denatured in solution forms higher charge states than the same protein in its folded native conformations in solution. Because the same charge states are produced from these two solution conformations, a direct comparison of the properties of the gas-phase ions produced from two very different solution conformations is possible. The conformations of lysozyme ions in the gas phase were studied using cross section measurements and gas-phase H/D exchange. Similar cross sections and H/D exchange levels were observed for same-charge states of lysozyme ions formed from the native and helical denatured conformations in solution. Cross sections show that the ions have compact structures. Thus, disulfide-intact gaseous lysozyme ions generated from the denatured state in water/methanol (2/8) refold into compact structures in the gas phase on a time scale of milliseconds or less.
Collapse
Affiliation(s)
- Dunmin Mao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | |
Collapse
|
34
|
Lassalle MW, Li H, Yamada H, Akasaka K, Redfield C. Pressure-induced unfolding of the molten globule of all-Ala alpha-lactalbumin. Protein Sci 2003; 12:66-72. [PMID: 12493829 PMCID: PMC2312399 DOI: 10.1110/ps.0221303] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Revised: 09/13/2002] [Accepted: 10/04/2002] [Indexed: 10/27/2022]
Abstract
Pressure-induced unfolding of a molten globule (MG) was studied in a residue-specific manner with (1)H-(15)N two-dimensional NMR spectroscopy using a variant of human alpha-lactalbumin (alpha-LA), in which all eight cysteines had been replaced with alanines (all-Ala alpha-LA). The NMR spectrum underwent a series of changes from 30 to 2000 bar at 20 degrees C and from -18 degrees C to 36 degrees C at 2000 bar, showing a highly heterogeneous unfolding pattern according to the secondary structural elements of the native structure. Unfolding began in the loop part of the beta-domain, and then extended to the remainder of the beta-domain, after which the alpha-domain began to unfold. Within the alpha-domain, the pressure stability decreased in the order: D-helix approximately 3(10)-helix > C-helix approximately B-helix > A-helix. The D-helix, C-terminal 3(10)-helix and a large part of B- and C-helices did not unfold at 2000 bar, even at 36 degrees C or at -18 degrees C. The results verify that the MG state consists of a mixture of variously unfolded conformers from the mostly folded to the nearly totally unfolded that differ in stability and partial molar volume. Not only heat but also cold denaturation was observed, supporting the view that the MG state is stabilized by hydrophobic interactions.
Collapse
Affiliation(s)
- Michael W Lassalle
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
35
|
Shiba K, Shirai T, Honma T, Noda T. Translated products of tandem microgene repeats exhibit diverse properties also seen in natural proteins. Protein Eng Des Sel 2003; 16:57-63. [PMID: 12646693 DOI: 10.1093/proeng/gzg003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Repetitiousness is often observed in the primary and tertiary structures of proteins. We are intrigued by the potential role played by periodicity in the evolution of proteins and have created artificial repetitious proteins from repeats of short DNA sequences (microgenes). In this paper we characterize the physicochemical properties of six such artificially created proteins, which are the translated products of repeats of three microgenes. Three of the six proteins contain beta-sheet-like structures and are rather hydrophobic in nature. These proteins form macroscopic membranous structures in the presence of monovalent cationic ions, suggesting they have the capacity to promote strong intermolecular interactions. Of the other three proteins, one is comprised of alpha-helices and two have disordered structures. Small angle X-ray scattering analysis indicates that the artificial proteins do not fold as tightly as natural proteins, but are more compact than if completely denatured. One alpha-helical protein whose microgene unit was designed from coiled coil proteins was crystallized, demonstrating that repetitious artificial proteins can undergo transition to a more ordered state under appropriate conditions. Application of this approach to the development of a novel protein engineering system is discussed.
Collapse
Affiliation(s)
- Kiyotaka Shiba
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Toshima, Tokyo 170-8455, Japan.
| | | | | | | |
Collapse
|
36
|
Misumi Y, Terui N, Yamamoto Y. Structural characterization of non-native states of sperm whale myoglobin in aqueous ethanol or 2,2,2-trifluoroethanol media. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1601:75-84. [PMID: 12429505 DOI: 10.1016/s1570-9639(02)00426-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of aqueous ethanol or 2,2,2-trifluoroethanol media on the structure of sperm whale myoglobin have been investigated by absorption, CD, and NMR spectra. The structural properties of myoglobin such as heme environments, helix contents, protein folding, and interactions between heme and the protein moiety have been sharply manifested in these spectra. The characterization demonstrated that alcohol-induced conformational change of myoglobin depends on the nature of alcohol and its concentration. It was shown for the first time that, upon the alcohol-induced denaturation of myoglobin, heme is released from partially denatured protein of which helix contents is altered by only about 20% relative to that of native state. Myoglobin has shown to unfold and refold reversibly by controlling the alcohol concentration. Novel methods for the preparation of apomyoglobin and in situ reconstitution of apomyoglobin with heme, based on the alcohol-induced denaturation of the protein, were presented.
Collapse
Affiliation(s)
- Youhei Misumi
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | |
Collapse
|
37
|
Yonezawa Y, Tanaka S, Kubota T, Wakabayashi K, Yutani K, Fujiwara S. An Insight into the pathway of the amyloid fibril formation of hen egg white lysozyme obtained from a small-angle X-ray and neutron scattering study. J Mol Biol 2002; 323:237-51. [PMID: 12381318 DOI: 10.1016/s0022-2836(02)00941-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is known that hen egg white lysozyme (HEWL) forms amyloid fibrils. Since HEWL is one of the proteins that have been studied most extensively and is closely related to human lysozyme, the variants of which form the amyloid fibrils that are related to hereditary systemic amyloidosis, this protein is an ideal model to study the mechanism of amyloid fibril formation. In order to gain an insight into the mechanism of amyloid fibril formation, systematic and detailed studies to detect and characterize various structural states of HEWL were conducted. Since HEWL forms amyloid fibrils in highly concentrated ethanol solutions, solutions of various concentrations of HEWL in various concentrations of ethanol were prepared, and the structures of HEWL in these solutions were investigated by small-angle X-ray and neutron scattering. It was shown that the structural states of HEWL were distinguished as the monomer state, the state of the dimer formation, the state of the protofilament formation, the protofilament state, and the state towards the formation of amyloid fibrils. A phase diagram of these structural states was obtained as a function of protein, water and ethanol concentrations. It was found that under the monomer state the structural changes of HEWL were not gross changes in shape but local conformational changes, and the dimers, formed by the association at the end of the long axis of HEWL, had an elongated shape. Circular dichroism measurements showed that the large changes in the secondary structures of HEWL occurred during dimer formation. The protofilaments were formed by stacking of the dimers with their long axis (nearly) perpendicular to and rotated around the protofilament axis to form a helical structure. These protofilaments were characterized by their radius of gyration of the cross-section of 2.4nm and the mass per unit length of 16,000(+/-2300)Da/nm. It was shown that the changes of the structural states towards the amyloid fibril formation occurred via lateral association of the protofilaments. A pathway of the amyloid fibril formation of HEWL was proposed from these results.
Collapse
Affiliation(s)
- Yasushige Yonezawa
- Tsukuba College of Technology, 4-12-7 Kasuga, Tsukuba, 305-0821, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Effect of divalent cations on the volume of a maleic acid copolymer gel examined by incorporating lysozyme. Eur Polym J 2002. [DOI: 10.1016/s0014-3057(01)00283-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Onuma K, Kubota T, Tanaka S, Kanzaki N, Ito A, Tsutsui K. Dynamic Light Scattering Investigation in Aqueous Solutions of bc1-Complex Membrane Protein. J Phys Chem B 2002. [DOI: 10.1021/jp0143387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuo Onuma
- Tissue Engineering Research Center, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan, Institute of Molecular and Cell Biology, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan, Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan, and Otsuka
| | - Tomomi Kubota
- Tissue Engineering Research Center, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan, Institute of Molecular and Cell Biology, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan, Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan, and Otsuka
| | - Shinpei Tanaka
- Tissue Engineering Research Center, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan, Institute of Molecular and Cell Biology, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan, Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan, and Otsuka
| | - Noriko Kanzaki
- Tissue Engineering Research Center, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan, Institute of Molecular and Cell Biology, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan, Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan, and Otsuka
| | - Atsuo Ito
- Tissue Engineering Research Center, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan, Institute of Molecular and Cell Biology, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan, Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan, and Otsuka
| | - Kazunori Tsutsui
- Tissue Engineering Research Center, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan, Institute of Molecular and Cell Biology, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan, Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan, and Otsuka
| |
Collapse
|
40
|
Seki Y, Tomizawa T, Khechinashvili NN, Soda K. Contribution of solvent water to the solution X-ray scattering profile of proteins. Biophys Chem 2002; 95:235-52. [PMID: 12062383 DOI: 10.1016/s0301-4622(01)00260-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theoretical framework is presented to analyze how solvent water contributes to the X-ray scattering profile of protein solution. Molecular dynamics simulations were carried out on pure water and an aqueous solution of myoglobin to determine the spatial distribution of water molecules in each of them. Their solution X-ray scattering (SXS) profiles were numerically evaluated with obtained atomic-coordinate data. It is shown that two kinds of contributions from solvent water must be considered to predict the SXS profile of a solution accurately. One is the excluded solvent scattering originating in exclusion of water molecules from the space occupied by solutes. The other is the hydration effect resulting from formation of a specific distribution of water around solutes. Explicit consideration of only two molecular layers of water is practically enough to incorporate the hydration effect. Care should be given to using an approximation in which an averaged electron density distribution is assumed for the structure factor because it may predict profiles considerably deviating from the correct profile at large K.
Collapse
Affiliation(s)
- Yasutaka Seki
- Department of Bioengineering, Nagaoka University of Technology, Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan
| | | | | | | |
Collapse
|
41
|
Kundrotas PJ, Karshikoff A. Model for calculation of electrostatic interactions in unfolded proteins. PHYSICAL REVIEW E 2002; 65:011901. [PMID: 11800712 DOI: 10.1103/physreve.65.011901] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Indexed: 11/07/2022]
Abstract
An approach for the calculation of electrostatic interactions and titration properties of unfolded polypeptide chains (denatured proteins) is proposed. It is based on a simple representation of the denatured proteins as a state with titratable sites distributed on the surface of a sphere, radius of which is assumed to be equal to the radius of gyration, R(g), of an unfolded molecule. Distances between the charges, d, obey constraints arising from the protein sequence. Criteria for evaluation of the parameters R(g) and d were obtained from computer simulations on a polypeptide consisting of 20 identical amino acids (polylysine). The model was applied for calculation of titration curves of denatured barnase and staphylococcal nuclease. It was demonstrated that the approach proposed gives considerably better agreement with the experimental data than the commonly used null approximation. It was also found that titration properties of denatured proteins are slightly, but distinguishably influenced by the amino-acid sequence of the protein.
Collapse
Affiliation(s)
- P J Kundrotas
- Department of Biosciences at Novum Research Park, Karolinska Institutet, SE-141 57 Huddinge, Stockholm, Sweden
| | | |
Collapse
|
42
|
Bongiovanni C, Sinibaldi F, Ferri T, Santucci R. Glycerol-induced formation of the molten globule from acid-denatured cytochrome c: implication for hierarchical folding. JOURNAL OF PROTEIN CHEMISTRY 2002; 21:35-41. [PMID: 11902665 DOI: 10.1023/a:1014179031881] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
At high concentration (98% or higher, v/v), glycerol induces collapse of acid-denatured cytochrome c into a compact state, the G(U) state, showing a molten globule character. The G(U) state possesses a nativelike alpha-helix structure but a tertiary conformation less packed with respect to the native state. The spectroscopic properties of the G(U) state closely resemble those of the molten globule stabilized by the organic solvent from the native protein (called the G(N) state), indicating that glycerol can stabilize the molten globule of cytochrome c either from the native or the acid-denatured protein. The G(U) and the G(N) states show spectroscopic (and, thus, structural) properties and stabilities comparable to those of molten globules stabilized by different effectors, despite the fact that the mechanisms involved in the molten globule formation may significantly differ. This implies in cytochrome c a hierarchy for the rupture (native-to-molten globule) or the formation (unfolded-to-molten globule) of intramolecular interactions leading to the stabilization of the molten globule state of the protein, independently from the effector responsible for the structural transition, in accord with the sequential model proposed by Englander and collaborators.
Collapse
Affiliation(s)
- Cristiana Bongiovanni
- Università di Roma Tor Vergata, Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Italy
| | | | | | | |
Collapse
|
43
|
Tanaka S, Oda Y, Ataka M, Onuma K, Fujiwara S, Yonezawa Y. Denaturation and aggregation of hen egg lysozyme in aqueous ethanol solution studied by dynamic light scattering. Biopolymers 2001; 59:370-9. [PMID: 11514940 DOI: 10.1002/1097-0282(20011015)59:5<370::aid-bip1034>3.0.co;2-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We applied dynamic light scattering technique on the model system of hen egg lysozyme in salt-free aqueous ethanol solution to study the mechanism of denaturation and aggregation of protein. At low ethanol concentration [0-63% (v/v)], the fast relaxation mode was observed, which was caused by lysozyme molecules in the solution interacting with each other with strong repulsive electrostatic force. At 45 and 63% (v/v) ethanol, the slow relaxation mode was also observed, which showed translational diffusive nature, similar to that observed in salt-free polyelectrolyte solution. At 72 or 81% (v/v) ethanol, the slow mode disappeared, leaving only the fast mode. However, the mutual diffusion coefficients obtained from the fast mode at 72 and 81% (v/v) ethanol decreased by about one order of magnitude compared with those from the fast mode at 0-63% (v/v). The reported alcohol-induced conformational transformation of lysozyme molecules at >60% (v/v) ethanol from their native structure to an alpha-helix-rich structure might cause such drastic decrease in the mutual diffusion coefficients. At the highest ethanol concentration of 90% (v/v), the slow mode reappeared, and its relaxation rate was decreasing with elapsed time, which is possibly due to the growth of aggregates of lysozyme molecules. X-ray diffraction results suggested that the intermolecular beta-sheet formation caused the aggregation. Thus, our results indicated that the change in molecular structure of lysozyme closely relates to the diffusion of molecules and their aggregation.
Collapse
Affiliation(s)
- S Tanaka
- Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda 563-8577, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Konno T, Iwashita J, Nagayama K. Fluorinated alcohol, the third group of cosolvents that stabilize the molten-globule state relative to a highly denatured state of cytochrome c. Protein Sci 2000; 9:564-9. [PMID: 10752618 PMCID: PMC2144567 DOI: 10.1110/ps.9.3.564] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The effects of 1,1,1,3,3,3-hexafluoro-isopropanol (HFIP) on the conformation of cytochrome c (cyt c) at pH 1.9 were studied using a combination of spectroscopic and physical methods. Analysis varying the HFIP concentration showed that a compact denatured conformation (M(HF)) accumulates in a low concentration range of HFIP in the middle of structural transition from the highly unstructured acid-denatured state to the highly helical alcohol-denatured state of cyt c. This contrasts clearly with the effect of isopropanol (IP), in which no compact conformation accompanied with the transition. Analysis varying concentrations of HFIP and NaCl concurrently showed that the M(HF) state of cyt c is essentially identical to the salt-induced molten-globule (M(G)) state, and the M(G) state in the presence of salt was also stabilized by a low concentration of HFIP. Furthermore, 2,2,2-trifluoroethanol stabilized M(HF) similarly to HFIP, supporting the proposition that the specific effect observed for HFIP is caused by fluorination of alcohol. The mechanism stabilizing compact conformation by HFIP remains unclear, but is probably distinct from that of salts and polyols, which are also known to stabilize the M(G)-like state.
Collapse
Affiliation(s)
- T Konno
- Center for Brain Experiment, National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan.
| | | | | |
Collapse
|
45
|
Goda S, Takano K, Yamagata Y, Nagata R, Akutsu H, Maki S, Namba K, Yutani K. Amyloid protofilament formation of hen egg lysozyme in highly concentrated ethanol solution. Protein Sci 2000; 9:369-75. [PMID: 10716189 PMCID: PMC2144556 DOI: 10.1110/ps.9.2.369] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutant human lysozymes (Ile56Thr & Asp67His) have been reported to form amyloid deposits in the viscera. From the standpoint of understanding the mechanism of amyloid formation, we searched for conditions of amyloid formation in vitro using hen egg lysozyme, which has been extensively studied from a physicochemical standpoint. It was found that the circular dichroism spectra in the far-ultraviolet region of the hen egg lysozyme changed to those characteristic of a beta-structure from the native alpha-helix rich spectrum in 90% ethanol solution. When the concentration of protein was increased to 10 mg/mL, the protein solution formed a gel in the presence of 90% ethanol, and precipitated on further addition of 10 mM NaCl. The precipitates were examined by electron microscopy, their ability to bind Congo red, and X-ray diffraction to determine whether amyloid fibrils were formed in the precipitates. Electron micrographs displayed unbranched protofilament with a diameter of approximately 70 A. The peak point of the difference spectrum for the Congo red binding assay was 541 nm, which is characteristic of amyloid fibrils. The X-ray diffraction pattern showed a sharp and intense diffraction ring at 4.7 A, a reflection that arises from the interstrand spacing in beta-sheets. These results indicate that the precipitates of hen egg lysozyme are amyloid protofilament, and that the amyloid protofilament formation of hen egg lysozyme closely follows upon the destruction of the helical and tertiary structures.
Collapse
Affiliation(s)
- S Goda
- Institute for Protein Research, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Doody MA, Baker GA, Pandey S, Bright FV. Effects of ethanol volume percent on fluorescein-labeled spinach apo- and holocalmodulin. Anal Chem 2000; 72:227-33. [PMID: 10655658 DOI: 10.1021/ac990551b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the effects of EtOH volume percent (0-70%) on spinach apo- and holocalmodulin that have been site-selectively labeled with fluorescein (F). In these experiments, calmodulin (CaM) has one F reporter group attached to Cys-26, and this site is located immediately adjacent to one of the four primary Ca(2+)-binding sites (EF hands). The optimum analytical CaM-F sensitivity to Ca2+ occurs between approximately 10 and 30% EtOH. Our results also show that added EtOH causes changes in CaM and these changes are surprisingly different for apo- and holo-CaM. Apo-CaM-F appears to lose one of its two waters of hydration at approximately 20% EtOH and retains one water of hydration between approximately 20 and 70% EtOH. In apo-CaM-F, the semiangle that describes the range over which the fluorescein reporter group can precess remains essentially constant (42 +/- 2 degrees) between 0 and 70% EtOH. This shows that the fluorescein reporter group precessional freedom in apo-CaM-F is not affected significantly by EtOH. Holo-CaM-F also appears to lose one water of hydration at approximately 20-30% EtOH but then appears to denature as the EtOH volume percent increases. The fluorescein reporter group semiangle within holo-CaM-F decreases from 43 +/- 1 degrees in neat aqueous buffer to 36 +/- 1 degrees at 70% EtOH. This shows that holo-CaM-F is less nativelike and the EF hand "closes down" about the fluorescein reporter group in holo-CaM-F as the EtOH volume percent increases.
Collapse
Affiliation(s)
- M A Doody
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, State University of New York 14260-3000, USA
| | | | | | | |
Collapse
|
47
|
Kamatari YO, Ohji S, Konno T, Seki Y, Soda K, Kataoka M, Akasaka K. The compact and expanded denatured conformations of apomyoglobin in the methanol-water solvent. Protein Sci 1999; 8:873-82. [PMID: 10211833 PMCID: PMC2144319 DOI: 10.1110/ps.8.4.873] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We have performed a detailed study of methanol-induced conformational transitions of horse heart apomyoglobin (apoMb) to investigate the existence of the compact and expanded denatured states. A combination of far- and near-ultraviolet circular dichroism, NMR spectroscopy, and small-angle X-ray scattering (SAXS) was used, allowing a phase diagram to be constructed as a function of pH and the methanol concentration. The phase diagram contains four conformational states, the native (N), acid-denatured (U(A)), compact denatured (I(M)), and expanded helical denatured (H) states, and indicates that the compact denatured state (I(M)) is stable under relatively mild denaturing conditions, whereas the expanded denatured states (U(A) and H) are realized under extreme conditions of pH (strong electric repulsion) or alcohol concentration (weak hydrophobic interaction). The results of this study, together with many previous studies in the literature, indicate the general existence of the compact denatured states not only in the salt-pH plane but also in the alcohol-pH plane. Furthermore, to determine the general feature of the H conformation we used several proteins including ubiquitin, ribonuclease A, alpha-lactalbumin, beta-lactoglobulin, and Streptomyces subtilisin inhibitor (SSI) in addition to apoMb. SAXS studies of these proteins in 60% methanol showed that the H states of these all proteins have expanded and nonglobular conformations. The qualitative agreement of the experimental data with computer-simulated Kratky profiles also supports this structural feature of the H state.
Collapse
Affiliation(s)
- Y O Kamatari
- The Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Shimizu S, Shimizu K. Alcohol Denaturation: Thermodynamic Theory of Peptide Unit Solvation. J Am Chem Soc 1999. [DOI: 10.1021/ja982560s] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seishi Shimizu
- Contribution from the Bioinformation Engineering Laboratory, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Shimizu
- Contribution from the Bioinformation Engineering Laboratory, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|