1
|
Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants (Basel) 2023; 12:antiox12040815. [PMID: 37107190 PMCID: PMC10135064 DOI: 10.3390/antiox12040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Common to all biological systems and living organisms are molecular interactions, which may lead to specific physiological events. Most often, a cascade of events occurs, establishing an equilibrium between possibly competing and/or synergistic processes. Biochemical pathways that sustain life depend on multiple intrinsic and extrinsic factors contributing to aging and/or diseases. This article deals with food antioxidants and human proteins from the circulation, their interaction, their effect on the structure, properties, and function of antioxidant-bound proteins, and the possible impact of complex formation on antioxidants. An overview of studies examining interactions between individual antioxidant compounds and major blood proteins is presented with findings. Investigating antioxidant/protein interactions at the level of the human organism and determining antioxidant distribution between proteins and involvement in the particular physiological role is a very complex and challenging task. However, by knowing the role of a particular protein in certain pathology or aging, and the effect exerted by a particular antioxidant bound to it, it is possible to recommend specific food intake or resistance to it to improve the condition or slow down the process.
Collapse
Affiliation(s)
- Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
- Correspondence:
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Simeon Minić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
2
|
McGillivray P, Clarke D, Meyerson W, Zhang J, Lee D, Gu M, Kumar S, Zhou H, Gerstein M. Network Analysis as a Grand Unifier in Biomedical Data Science. Annu Rev Biomed Data Sci 2018. [DOI: 10.1146/annurev-biodatasci-080917-013444] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomedical data scientists study many types of networks, ranging from those formed by neurons to those created by molecular interactions. People often criticize these networks as uninterpretable diagrams termed hairballs; however, here we show that molecular biological networks can be interpreted in several straightforward ways. First, we can break down a network into smaller components, focusing on individual pathways and modules. Second, we can compute global statistics describing the network as a whole. Third, we can compare networks. These comparisons can be within the same context (e.g., between two gene regulatory networks) or cross-disciplinary (e.g., between regulatory networks and governmental hierarchies). The latter comparisons can transfer a formalism, such as that for Markov chains, from one context to another or relate our intuitions in a familiar setting (e.g., social networks) to the relatively unfamiliar molecular context. Finally, key aspects of molecular networks are dynamics and evolution, i.e., how they evolve over time and how genetic variants affect them. By studying the relationships between variants in networks, we can begin to interpret many common diseases, such as cancer and heart disease.
Collapse
Affiliation(s)
- Patrick McGillivray
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Declan Clarke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - William Meyerson
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Jing Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Donghoon Lee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Mengting Gu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
| | - Sushant Kumar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Holly Zhou
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
3
|
Halakou F, Kilic ES, Cukuroglu E, Keskin O, Gursoy A. Enriching Traditional Protein-protein Interaction Networks with Alternative Conformations of Proteins. Sci Rep 2017; 7:7180. [PMID: 28775330 PMCID: PMC5543104 DOI: 10.1038/s41598-017-07351-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Traditional Protein-Protein Interaction (PPI) networks, which use a node and edge representation, lack some valuable information about the mechanistic details of biological processes. Mapping protein structures to these PPI networks not only provides structural details of each interaction but also helps us to find the mutual exclusive interactions. Yet it is not a comprehensive representation as it neglects the conformational changes of proteins which may lead to different interactions, functions, and downstream signalling. In this study, we proposed a new representation for structural PPI networks inspecting the alternative conformations of proteins. We performed a large-scale study by creating breast cancer metastasis network and equipped it with different conformers of proteins. Our results showed that although 88% of proteins in our network has at least two structures in Protein Data Bank (PDB), only 22% of them have alternative conformations and the remaining proteins have different regions saved in PDB. However, using even this small set of alternative conformations we observed a considerable increase in our protein docking predictions. Our protein-protein interaction predictions increased from 54% to 76% using the alternative conformations. We also showed the benefits of investigating structural data and alternative conformations of proteins through three case studies.
Collapse
Affiliation(s)
- Farideh Halakou
- Department of Computer Engineering, Koc University, Istanbul, 34450, Turkey
| | - Emel Sen Kilic
- Department of Chemical and Biological Engineering, Koc University, Istanbul, 34450, Turkey.,Microbiology, Immunology and Cell Biology Department, West Virginia University, Morgantown, 26505, WV, USA
| | - Engin Cukuroglu
- Computational Sciences and Engineering, Graduate School of Sciences and Engineering, Koc University, Istanbul, 34450, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, 34450, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, 34450, Turkey.
| |
Collapse
|
4
|
Sethi A, Clarke D, Chen J, Kumar S, Galeev TR, Regan L, Gerstein M. Reads meet rotamers: structural biology in the age of deep sequencing. Curr Opin Struct Biol 2015; 35:125-34. [PMID: 26658741 DOI: 10.1016/j.sbi.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/07/2023]
Abstract
Structure has traditionally been interrelated with sequence, usually in the framework of comparing sequences across species sharing a common fold. However, the nature of information within the sequence and structure databases is evolving, changing the type of comparisons possible. In particular, we now have a vast amount of personal genome sequences from human populations and a greater fraction of new structures contain interacting proteins within large complexes. Consequently, we have to recast our conception of sequence conservation and its relation to structure-for example, focusing more on selection within the human population. Moreover, within structural biology there is less emphasis on the discovery of novel folds and more on relating structures to networks of protein interactions. We cover this changing mindset here.
Collapse
Affiliation(s)
- Anurag Sethi
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Declan Clarke
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Jieming Chen
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Sushant Kumar
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Timur R Galeev
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Lynne Regan
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States
| | - Mark Gerstein
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States.
| |
Collapse
|
5
|
Soner S, Ozbek P, Garzon JI, Ben-Tal N, Haliloglu T. DynaFace: Discrimination between Obligatory and Non-obligatory Protein-Protein Interactions Based on the Complex's Dynamics. PLoS Comput Biol 2015; 11:e1004461. [PMID: 26506003 PMCID: PMC4623975 DOI: 10.1371/journal.pcbi.1004461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Protein-protein interfaces have been evolutionarily-designed to enable transduction between the interacting proteins. Thus, we hypothesize that analysis of the dynamics of the complex can reveal details about the nature of the interaction, and in particular whether it is obligatory, i.e., persists throughout the entire lifetime of the proteins, or not. Indeed, normal mode analysis, using the Gaussian network model, shows that for the most part obligatory and non-obligatory complexes differ in their decomposition into dynamic domains, i.e., the mobile elements of the protein complex. The dynamic domains of obligatory complexes often mix segments from the interacting chains, and the hinges between them do not overlap with the interface between the chains. In contrast, in non-obligatory complexes the interface often hinges between dynamic domains, held together through few anchor residues on one side of the interface that interact with their counterpart grooves in the other end. In automatic analysis, 117 of 139 obligatory (84.2%) and 203 of 246 non-obligatory (82.5%) complexes are correctly classified by our method: DynaFace. We further use DynaFace to predict obligatory and non-obligatory interactions among a set of 300 putative protein complexes. DynaFace is available at: http://safir.prc.boun.edu.tr/dynaface.
Collapse
Affiliation(s)
- Seren Soner
- Department of Computer Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Jose Ignacio Garzon
- Departments of Biochemistry and Molecular Biophysics and Systems Biology and Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
6
|
Evolution of specificity in protein-protein interactions. Biophys J 2015; 107:1686-96. [PMID: 25296322 DOI: 10.1016/j.bpj.2014.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/22/2014] [Accepted: 08/01/2014] [Indexed: 11/23/2022] Open
Abstract
Hub proteins are proteins that maintain promiscuous molecular recognition. Because they are reported to play essential roles in cellular control, there has been a special interest in the study of their structural and functional properties, yet the mechanisms by which they evolve to maintain functional interactions are poorly understood. By combining biophysical simulations of coarse-grained proteins and analysis of proteins-complex crystallographic structures, we seek to elucidate those mechanisms. We focus on two types of hub proteins: Multi hubs, which interact with their partners through different interfaces, and Singlish hubs, which do so through a single interface. We show that loss of structural stability is required for the evolution of protein-protein-interaction (PPI) networks, and it is more profound in Singlish hub systems. In addition, different ratios of hydrophobic to electrostatic interfacial amino acids are shown to support distinct network topologies (i.e., Singlish and Multi systems), and therefore underlie a fundamental design principle of PPI in a crowded environment. We argue that the physical nature of hydrophobic and electrostatic interactions, in particular, their favoring of either same-type interactions (hydrophobic-hydrophobic), or opposite-type interactions (negatively-positively charged) plays a key role in maintaining the network topology while allowing the protein amino acid sequence to evolve.
Collapse
|
7
|
Nedić O, Rogowska-Wrzesinska A, Rattan SIS. Standardization and quality control in quantifying non-enzymatic oxidative protein modifications in relation to ageing and disease: Why is it important and why is it hard? Redox Biol 2015; 5:91-100. [PMID: 25909343 PMCID: PMC4412909 DOI: 10.1016/j.redox.2015.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 11/03/2022] Open
Abstract
Post-translational modifications (PTM) of proteins determine the activity, stability, specificity, transportability and lifespan of a protein. Some PTM are highly specific and regulated involving various enzymatic pathways, but there are other non-enzymatic PTM (nePTM), which occur stochastically, depend on the ternary structure of proteins and can be damaging. It is often observed that inactive and abnormal proteins accumulate in old cells and tissues. The nature, site and extent of nePTM give rise to a population of that specific protein with alterations in structure and function ranging from being fully active to totally inactive molecules. Determination of the type and the amount (abundance) of nePTM is essential for establishing connection between specific protein structure and specific biological role. This article summarizes analytical demands for reliable quantification of nePTM, including requirements for the assay performance, standardization and quality control, and points to the difficulties, uncertainties and un-resolved issues.
Collapse
Affiliation(s)
- Olgica Nedić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
| | | | - Suresh I S Rattan
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Clancy T, Hovig E. From proteomes to complexomes in the era of systems biology. Proteomics 2014; 14:24-41. [PMID: 24243660 DOI: 10.1002/pmic.201300230] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/22/2013] [Accepted: 11/06/2013] [Indexed: 01/16/2023]
Abstract
Protein complexes carry out almost the entire signaling and functional processes in the cell. The protein complex complement of a cell, and its network of complex-complex interactions, is referred to here as the complexome. Computational methods to predict protein complexes from proteomics data, resulting in network representations of complexomes, have recently being developed. In addition, key advances have been made toward understanding the network and structural organization of complexomes. We review these bioinformatics advances, and their discovery-potential, as well as the merits of integrating proteomics data with emerging methods in systems biology to study protein complex signaling. It is envisioned that improved integration of proteomics and systems biology, incorporating the dynamics of protein complexes in space and time, may lead to more predictive models of cell signaling networks for effective modulation.
Collapse
Affiliation(s)
- Trevor Clancy
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
9
|
Goebels F, Frishman D. Prediction of protein interaction types based on sequence and network features. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 6:S5. [PMID: 24564924 PMCID: PMC4029746 DOI: 10.1186/1752-0509-7-s6-s5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Protein interactions mediate a wide spectrum of functions in various cellular contexts. Functional versatility of protein complexes is due to a broad range of structural adaptations that determine their binding affinity, the number of interaction sites, and the lifetime. In terms of stability it has become customary to distinguish between obligate and non-obligate interactions dependent on whether or not the protomers can exist independently. In terms of spatio-temporal control protein interactions can be either simultaneously possible (SP) or mutually exclusive (ME). In the former case a network hub interacts with several proteins at the same time, offering each of them a separate interface, while in the latter case the hub interacts with its partners one at a time via the same binding site. So far different types of interactions were distinguished based on the properties of the corresponding binding interfaces derived from known three-dimensional structures of protein complexes. RESULTS Here we present PiType, an accurate 3D structure-independent computational method for classifying protein interactions into simultaneously possible (SP) and mutually exclusive (ME) as well as into obligate and non-obligate. Our classifier exploits features of the binding partners predicted from amino acid sequence, their functional similarity, and network topology. We find that the constituents of non-obligate complexes possess a higher degree of structural disorder, more short linear motifs, and lower functional similarity compared to obligate interaction partners while SP and ME interactions are characterized by significant differences in network topology. Each interaction type is associated with a distinct set of biological functions. Moreover, interactions within multi-protein complexes tend to be enriched in one type of interactions. CONCLUSION PiType does not rely on atomic structures and is thus suitable for characterizing proteome-wide interaction datasets. It can also be used to identify sub-modules within protein complexes. PiType is available for download as a self-installing package from http://webclu.bio.wzw.tum.de/PiType/PiType.zip.
Collapse
|
10
|
Moal IH, Torchala M, Bates PA, Fernández-Recio J. The scoring of poses in protein-protein docking: current capabilities and future directions. BMC Bioinformatics 2013; 14:286. [PMID: 24079540 PMCID: PMC3850738 DOI: 10.1186/1471-2105-14-286] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/25/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Protein-protein docking, which aims to predict the structure of a protein-protein complex from its unbound components, remains an unresolved challenge in structural bioinformatics. An important step is the ranking of docked poses using a scoring function, for which many methods have been developed. There is a need to explore the differences and commonalities of these methods with each other, as well as with functions developed in the fields of molecular dynamics and homology modelling. RESULTS We present an evaluation of 115 scoring functions on an unbound docking decoy benchmark covering 118 complexes for which a near-native solution can be found, yielding top 10 success rates of up to 58%. Hierarchical clustering is performed, so as to group together functions which identify near-natives in similar subsets of complexes. Three set theoretic approaches are used to identify pairs of scoring functions capable of correctly scoring different complexes. This shows that functions in different clusters capture different aspects of binding and are likely to work together synergistically. CONCLUSIONS All functions designed specifically for docking perform well, indicating that functions are transferable between sampling methods. We also identify promising methods from the field of homology modelling. Further, differential success rates by docking difficulty and solution quality suggest a need for flexibility-dependent scoring. Investigating pairs of scoring functions, the set theoretic measures identify known scoring strategies as well as a number of novel approaches, indicating promising augmentations of traditional scoring methods. Such augmentation and parameter combination strategies are discussed in the context of the learning-to-rank paradigm.
Collapse
Affiliation(s)
- Iain H Moal
- Joint BSC-IRB Research Program in Computational Biology, Life Science Department, Barcelona Super computing Center, Barcelona 08034, Spain
| | - Mieczyslaw Torchala
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Juan Fernández-Recio
- Joint BSC-IRB Research Program in Computational Biology, Life Science Department, Barcelona Super computing Center, Barcelona 08034, Spain
| |
Collapse
|
11
|
Fornili A, Pandini A, Lu HC, Fraternali F. Specialized Dynamical Properties of Promiscuous Residues Revealed by Simulated Conformational Ensembles. J Chem Theory Comput 2013; 9:5127-5147. [PMID: 24250278 PMCID: PMC3827836 DOI: 10.1021/ct400486p] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Indexed: 12/13/2022]
Abstract
![]()
The
ability to interact with different partners is one of the most
important features in proteins. Proteins that bind a large number
of partners (hubs) have been often associated with intrinsic disorder.
However, many examples exist of hubs with an ordered structure, and
evidence of a general mechanism promoting promiscuity in ordered proteins
is still elusive. An intriguing hypothesis is that promiscuous binding
sites have specific dynamical properties, distinct from the rest of
the interface and pre-existing in the protein isolated state. Here,
we present the first comprehensive study of the intrinsic dynamics
of promiscuous residues in a large protein data set. Different computational
methods, from coarse-grained elastic models to geometry-based sampling
methods and to full-atom Molecular Dynamics simulations, were used
to generate conformational ensembles for the isolated proteins. The
flexibility and dynamic correlations of interface residues with a
different degree of binding promiscuity were calculated and compared
considering side chain and backbone motions, the latter both on a
local and on a global scale. The study revealed that (a) promiscuous
residues tend to be more flexible than nonpromiscuous ones, (b) this
additional flexibility has a higher degree of organization, and (c)
evolutionary conservation and binding promiscuity have opposite effects
on intrinsic dynamics. Findings on simulated ensembles were also validated
on ensembles of experimental structures extracted from the Protein
Data Bank (PDB). Additionally, the low occurrence of single nucleotide
polymorphisms observed for promiscuous residues indicated a tendency
to preserve binding diversity at these positions. A case study on
two ubiquitin-like proteins exemplifies how binding promiscuity in
evolutionary related proteins can be modulated by the fine-tuning
of the interface dynamics. The interplay between promiscuity and flexibility
highlighted here can inspire new directions in protein–protein
interaction prediction and design methods.
Collapse
Affiliation(s)
- Arianna Fornili
- Randall Division of Cell and Molecular Biophysics, King's College London , New Hunt's House, London SE1 1UL, United Kingdom
| | | | | | | |
Collapse
|
12
|
Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 2013; 138:333-408. [PMID: 23384594 PMCID: PMC3647006 DOI: 10.1016/j.pharmthera.2013.01.016] [Citation(s) in RCA: 512] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 02/02/2023]
Abstract
Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only give a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The "central hit strategy" selectively targets central nodes/edges of the flexible networks of infectious agents or cancer cells to kill them. The "network influence strategy" works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved by targeting the neighbors of central nodes/edges. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest 8, Hungary.
| | | | | | | | | |
Collapse
|
13
|
Duran-Frigola M, Mosca R, Aloy P. Structural Systems Pharmacology: The Role of 3D Structures in Next-Generation Drug Development. ACTA ACUST UNITED AC 2013; 20:674-84. [DOI: 10.1016/j.chembiol.2013.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 01/12/2023]
|
14
|
Abstract
There is a wide gap between the generation of large-scale biological data sets and more-detailed, structural and mechanistic studies. However, recent studies that explicitly combine data from systems and structural biological approaches are having a profound effect on our ability to predict how mutations and small molecules affect atomic-level mechanisms, disrupt systems-level networks, and ultimately lead to changes in organismal fitness. In fact, we argue that a shared framework for analysis of nonadditive genetic and thermodynamic responses to perturbations will accelerate the integration of reductionist and global approaches. A stronger bridge between these two areas will allow for a deeper and more-complete understanding of complex biological phenomenon and ultimately provide needed breakthroughs in biomedical research.
Collapse
Affiliation(s)
- James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
15
|
Khurana E, Fu Y, Chen J, Gerstein M. Interpretation of genomic variants using a unified biological network approach. PLoS Comput Biol 2013; 9:e1002886. [PMID: 23505346 PMCID: PMC3591262 DOI: 10.1371/journal.pcbi.1002886] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/30/2012] [Indexed: 11/18/2022] Open
Abstract
The decreasing cost of sequencing is leading to a growing repertoire of personal genomes. However, we are lagging behind in understanding the functional consequences of the millions of variants obtained from sequencing. Global system-wide effects of variants in coding genes are particularly poorly understood. It is known that while variants in some genes can lead to diseases, complete disruption of other genes, called ‘loss-of-function tolerant’, is possible with no obvious effect. Here, we build a systems-based classifier to quantitatively estimate the global perturbation caused by deleterious mutations in each gene. We first survey the degree to which gene centrality in various individual networks and a unified ‘Multinet’ correlates with the tolerance to loss-of-function mutations and evolutionary conservation. We find that functionally significant and highly conserved genes tend to be more central in physical protein-protein and regulatory networks. However, this is not the case for metabolic pathways, where the highly central genes have more duplicated copies and are more tolerant to loss-of-function mutations. Integration of three-dimensional protein structures reveals that the correlation with centrality in the protein-protein interaction network is also seen in terms of the number of interaction interfaces used. Finally, combining all the network and evolutionary properties allows us to build a classifier distinguishing functionally essential and loss-of-function tolerant genes with higher accuracy (AUC = 0.91) than any individual property. Application of the classifier to the whole genome shows its strong potential for interpretation of variants involved in Mendelian diseases and in complex disorders probed by genome-wide association studies. The number of personal genomes sequenced has grown rapidly over the last few years and is likely to grow further. In order to use the DNA sequence variants amongst individuals for personalized medicine, we need to understand the functional impact of these variants. Deleterious variants in genes can have a wide spectrum of global effects, ranging from fatal for essential genes to no obvious damaging effect for loss-of-function tolerant genes. The global effect of a gene mutation is largely governed by the diverse biological networks in which the gene participates. Since genes participate in many networks, no singular network captures the global picture of gene interactions. Here we integrate the diverse modes of gene interactions (regulatory, genetic, phosphorylation, signaling, metabolic and physical protein-protein interactions) to create a unified biological network. We then exploit the unique properties of loss-of-function tolerant and essential genes in this unified network to build a computational model that can predict global perturbation caused by deleterious mutations in all genes. Our model can distinguish between these two gene sets with high accuracy and we further show that it can be used for interpretation of variants involved in Mendelian diseases and in complex disorders probed by genome-wide association studies.
Collapse
Affiliation(s)
- Ekta Khurana
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Molecular Biophysics and Biochemistry Department, Yale University, New Haven, Connecticut, United States of America
| | - Yao Fu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Jieming Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, United States of America
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Molecular Biophysics and Biochemistry Department, Yale University, New Haven, Connecticut, United States of America
- Department of Computer Science, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
16
|
Bertolazzi P, Bock ME, Guerra C. On the functional and structural characterization of hubs in protein–protein interaction networks. Biotechnol Adv 2013; 31:274-86. [DOI: 10.1016/j.biotechadv.2012.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/13/2012] [Accepted: 12/01/2012] [Indexed: 01/07/2023]
|
17
|
Kiel C, Serrano L. Structural Data in Synthetic Biology Approaches for Studying General Design Principles of Cellular Signaling Networks. Structure 2012; 20:1806-13. [DOI: 10.1016/j.str.2012.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/13/2022]
|
18
|
Pasi M, Tiberti M, Arrigoni A, Papaleo E. xPyder: a PyMOL plugin to analyze coupled residues and their networks in protein structures. J Chem Inf Model 2012; 52:1865-74. [PMID: 22721491 DOI: 10.1021/ci300213c] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A versatile method to directly identify and analyze short- or long-range coupled or communicating residues in a protein conformational ensemble is of extreme relevance to achieve a complete understanding of protein dynamics and structural communication routes. Here, we present xPyder, an interface between one of the most employed molecular graphics systems, PyMOL, and the analysis of dynamical cross-correlation matrices (DCCM). The approach can also be extended, in principle, to matrices including other indexes of communication propensity or intensity between protein residues, as well as the persistence of intra- or intermolecular interactions, such as those underlying protein dynamics. The xPyder plugin for PyMOL 1.4 and 1.5 is offered as Open Source software via the GPL v2 license, and it can be found, along with the installation package, the user guide, and examples, at http://linux.btbs.unimib.it/xpyder/.
Collapse
Affiliation(s)
- Marco Pasi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | | | | | | |
Collapse
|
19
|
Vidal M, Chan DW, Gerstein M, Mann M, Omenn GS, Tagle D, Sechi S. The human proteome - a scientific opportunity for transforming diagnostics, therapeutics, and healthcare. Clin Proteomics 2012; 9:6. [PMID: 22583803 PMCID: PMC3388576 DOI: 10.1186/1559-0275-9-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/14/2012] [Indexed: 11/16/2022] Open
Abstract
A National Institutes of Health (NIH) workshop was convened in Bethesda, MD on September 26–27, 2011, with representative scientific leaders in the field of proteomics and its applications to clinical settings. The main purpose of this workshop was to articulate ways in which the biomedical research community can capitalize on recent technology advances and synergize with ongoing efforts to advance the field of human proteomics. This executive summary and the following full report describe the main discussions and outcomes of the workshop.
Collapse
Affiliation(s)
- Marc Vidal
- University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kuzu G, Keskin O, Gursoy A, Nussinov R. Constructing structural networks of signaling pathways on the proteome scale. Curr Opin Struct Biol 2012; 22:367-77. [PMID: 22575757 DOI: 10.1016/j.sbi.2012.04.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/20/2012] [Accepted: 04/18/2012] [Indexed: 11/30/2022]
Abstract
Proteins function through their interactions, and the availability of protein interaction networks could help in understanding cellular processes. However, the known structural data are limited and the classical network node-and-edge representation, where proteins are nodes and interactions are edges, shows only which proteins interact; not how they interact. Structural networks provide this information. Protein-protein interface structures can also indicate which binding partners can interact simultaneously and which are competitive, and can help forecasting potentially harmful drug side effects. Here, we use a powerful protein-protein interactions prediction tool which is able to carry out accurate predictions on the proteome scale to construct the structural network of the extracellular signal-regulated kinases (ERK) in the mitogen-activated protein kinase (MAPK) signaling pathway. This knowledge-based method, PRISM, is motif-based, and is combined with flexible refinement and energy scoring. PRISM predicts protein interactions based on structural and evolutionary similarity to known protein interfaces.
Collapse
Affiliation(s)
- Guray Kuzu
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | | | | | | |
Collapse
|
21
|
Clarke D, Bhardwaj N, Gerstein MB. Novel insights through the integration of structural and functional genomics data with protein networks. J Struct Biol 2012; 179:320-6. [PMID: 22343087 DOI: 10.1016/j.jsb.2012.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 12/13/2022]
Abstract
In recent years, major advances in genomics, proteomics, macromolecular structure determination, and the computational resources capable of processing and disseminating the large volumes of data generated by each have played major roles in advancing a more systems-oriented appreciation of biological organization. One product of systems biology has been the delineation of graph models for describing genome-wide protein-protein interaction networks. The network organization and topology which emerges in such models may be used to address fundamental questions in an array of cellular processes, as well as biological features intrinsic to the constituent proteins (or "nodes") themselves. However, graph models alone constitute an abstraction which neglects the underlying biological and physical reality that the network's nodes and edges are highly heterogeneous entities. Here, we explore some of the advantages of introducing a protein structural dimension to such models, as the marriage of conventional network representations with macromolecular structural data helps to place static node and edge constructs in a biologically more meaningful context. We emphasize that 3D protein structures constitute a valuable conceptual and predictive framework by discussing examples of the insights provided, such as enabling in silico predictions of protein-protein interactions, providing rational and compelling classification schemes for network elements, as well as revealing interesting intrinsic differences between distinct node types, such as disorder and evolutionary features, which may then be rationalized in light of their respective functions within networks.
Collapse
Affiliation(s)
- Declan Clarke
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
22
|
Systematic control of protein interactions for systems biology. Proc Natl Acad Sci U S A 2011; 108:20279-80. [PMID: 22160691 DOI: 10.1073/pnas.1118084109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|