1
|
Alu hypomethylation in naturally and surgically postmenopausal women; a cross-sectional study. PLoS One 2022; 17:e0273403. [PMID: 36006936 PMCID: PMC9409535 DOI: 10.1371/journal.pone.0273403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Menopause, which may accelerate the hallmarks of the natural aging process, represents a point in time characterized by the permanent cessation of menstruation following the loss of ovarian estrogen production. Unlike natural menopause, which is characterized by a gradual decrease in estrogen production, when both ovaries are removed before the natural age of menopause, the onset of estrogen deprivation is abrupt. Further, a decrease in genome methylation frequently occurs in aging cells, and the major interspersed repetitive DNA elements in humans are Alu elements. In blood cells, Alu demethylation starts at an age of approximately 40 years, and increases with age. Here, we explored the Alu methylation levels corresponding to age-matched pre-menopausal, naturally postmenopausal, and surgically postmenopausal women aged 45–55 years (n = 60 in each group). Our results indicated that the body mass index (BMI), time-since-menopause, and Alu methylation levels corresponding to the three groups were significantly different. However, no correlations between Alu methylation level and BMI, time-since-menopause, or age were observed. Additionally, the Alu methylation level corresponding to the natural post-menopause group was significantly lower those corresponding to the pre-menopausal (p = 0.001) and surgical post-menopausal (p = 0.037) groups. In conclusion, Alu hypomethylation occurs in naturally postmenopausal women, implying that when women reach the age of natural menopause, the cell aging process may progress significantly with genome hypomethylation. These findings, notwithstanding, further studies are necessary to clarify whether bilateral oophorectomy before the age of menopause affects the cell aging process to a greater extent than natural menopause, and whether estrogen therapy or other interventions can delay cell aging in this regard.
Collapse
|
2
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
3
|
Brzoskwinia M, Pardyak L, Kaminska A, Tworzydlo W, Hejmej A, Marek S, Bilinski SM, Bilinska B. Flutamide treatment reveals a relationship between steroidogenic activity of Leydig cells and ultrastructure of their mitochondria. Sci Rep 2021; 11:13772. [PMID: 34215832 PMCID: PMC8253797 DOI: 10.1038/s41598-021-93292-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
Our present knowledge on interrelation between morphology/ultrastructure of mitochondria of the Leydig cell and its steroidogenic function is far from satisfactory and needs additional studies. Here, we analyzed the effects of blockade of androgen receptor, triggered by exposure to flutamide, on the expression of steroidogenic proteins (1) and ultrastructure of Leydig cells' constituents (2). We demonstrated that increase in the expression level of steroidogenic (StAR, CYP11A1, 3β-HSD, and CYP19A1) proteins (and respective mRNAs) in rat testicular tissue as well as elevation of intratesticular sex steroid hormone (testosterone and estradiol) levels observed in treated animals correspond well to morphological alterations of the Leydig cell ultrastructure. Most importantly, up-regulation of steroidogenic proteins' expression apparently correlates with considerable multiplication of Leydig cell mitochondria and subsequent formation of local mitochondrial networks. Interestingly, we showed also that the above-mentioned processes were associated with elevated transcription of Drp1 and Mfn2 genes, encoding proteins implicated in mitochondrial dynamics. Collectively, our studies emphasize the importance of mitochondrial homeostasis to the steroidogenic function of Leydig cells.
Collapse
Affiliation(s)
- Malgorzata Brzoskwinia
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248, Kraków, Poland
| | - Alicja Kaminska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland
| | - Wacław Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland
| | - Anna Hejmej
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland
| | - Sylwia Marek
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Kraków, Poland.
| |
Collapse
|
4
|
Oxidative Stress and Gene Expression Modifications Mediated by Extracellular Vesicles: An In Vivo Study of the Radiation-Induced Bystander Effect. Antioxidants (Basel) 2021; 10:antiox10020156. [PMID: 33494540 PMCID: PMC7911176 DOI: 10.3390/antiox10020156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/27/2022] Open
Abstract
Radiation-induced bystander effect is a biological response in nonirradiated cells receiving signals from cells exposed to ionising radiation. The aim of this in vivo study was to analyse whether extracellular vesicles (EVs) originating from irradiated mice could induce modifications in the redox status and expression of radiation-response genes in bystander mice. C57BL/6 mice were whole-body irradiated with 0.1-Gy and 2-Gy X-rays, and EVs originating from mice irradiated with the same doses were injected into naïve, bystander mice. Lipid peroxidation in the spleen and plasma reactive oxygen metabolite (ROM) levels increased 24 h after irradiation with 2 Gy. The expression of antioxidant enzyme genes and inducible nitric oxide synthase 2 (iNOS2) decreased, while cell cycle arrest-, senescence- and apoptosis-related genes were upregulated after irradiation with 2 Gy. In bystander mice, no significant alterations were observed in lipid peroxidation or in the expression of genes connected to cell cycle arrest, senescence and apoptosis. However, there was a systemic increase in the circulating ROM level after an intravenous EV injection, and EVs originating from 2-Gy-irradiated mice caused a reduced expression of antioxidant enzyme genes and iNOS2 in bystander mice. In conclusion, we showed that ionising radiation-induced alterations in the cellular antioxidant system can be transmitted in vivo in a bystander manner through EVs originating from directly irradiated animals.
Collapse
|
5
|
Extracellular Vesicles in Modifying the Effects of Ionizing Radiation. Int J Mol Sci 2019; 20:ijms20225527. [PMID: 31698689 PMCID: PMC6888126 DOI: 10.3390/ijms20225527] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-coated nanovesicles actively secreted by almost all cell types. EVs can travel long distances within the body, being finally taken up by the target cells, transferring information from one cell to another, thus influencing their behavior. The cargo of EVs comprises of nucleic acids, lipids, and proteins derived from the cell of origin, thereby it is cell-type specific; moreover, it differs between diseased and normal cells. Several studies have shown that EVs have a role in tumor formation and prognosis. It was also demonstrated that ionizing radiation can alter the cargo of EVs. EVs, in turn can modulate radiation responses and they play a role in radiation-induced bystander effects. Due to their biocompatibility and selective targeting, EVs are suitable nanocarrier candidates of drugs in various diseases, including cancer. Furthermore, the cargo of EVs can be engineered, and in this way they can be designed to carry certain genes or even drugs, similar to synthetic nanoparticles. In this review, we describe the biological characteristics of EVs, focusing on the recent efforts to use EVs as nanocarriers in oncology, the effects of EVs in radiation therapy, highlighting the possibilities to use EVs as nanocarriers to modulate radiation effects in clinical applications.
Collapse
|
6
|
Sehl ME, Ganz PA. Potential Mechanisms of Age Acceleration Caused by Estrogen Deprivation: Do Endocrine Therapies Carry the Same Risks? JNCI Cancer Spectr 2018; 2:pky035. [PMID: 31360862 PMCID: PMC6649786 DOI: 10.1093/jncics/pky035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Longer duration of endocrine therapy decreases breast cancer recurrence and mortality, but these benefits need to be weighed against potential risks to overall health. Notable side effects of endocrine therapy include cataracts, uterine cancer, thromboembolic events, osteoporosis and fracture risk, chronic musculoskeletal complaints, as well as vaginal dryness and discharge, and vasomotor symptoms. Estrogen deprivation in healthy women younger than 50 years undergoing bilateral oophorectomy has been shown to accelerate the development of diseases related to aging, including coronary artery disease, cardiac arrhythmias, stroke, dementia, and osteoporosis, raising concern that even less dramatic modulation of estrogen homeostasis may adversely affect health outcomes. Diminished available estrogen at the cellular and molecular level may facilitate mechanisms that underlie the aging process, often termed the hallmarks of aging. In this review, we describe estrogen's role in normal physiology across tissues, review the effects of estrogen deprivation on health outcomes in the setting of both surgical and natural menopause, and examine the hallmarks of aging with attention to the effects of estrogen and estrogen blockade on each molecular mechanism underlying the aging process.
Collapse
Affiliation(s)
- Mary E Sehl
- Medicine, Hematology-Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.,Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Patricia A Ganz
- Medicine, Hematology-Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.,Health Policy and Management, School of Public Health, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
Androgen signaling disruption during fetal and postnatal development affects androgen receptor and connexin 43 expression and distribution in adult boar prostate. BIOMED RESEARCH INTERNATIONAL 2013; 2013:407678. [PMID: 24151599 PMCID: PMC3789303 DOI: 10.1155/2013/407678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/29/2013] [Accepted: 08/07/2013] [Indexed: 12/05/2022]
Abstract
To date, limited knowledge exists regarding the role of the androgen signaling during specific periods of development in the regulation of androgen receptor (AR) and connexin 43 (Cx43) in adult prostate. Therefore, in this study we examined mRNA and protein expression, and tissue distribution of AR and Cx43 in adult boar prostates following fetal (GD20), neonatal (PD2), and prepubertal (PD90) exposure to an antiandrogen flutamide (50 mg/kg bw). In GD20 and PD2 males we found the reduction of the luminal compartment, inflammatory changes, decreased AR and increased Cx43 expression, and altered localization of both proteins. Moreover, enhanced apoptosis and reduced proliferation were detected in the prostates of these animals. In PD90 males the alterations were less evident, except that Cx43 expression was markedly upregulated. The results presented herein indicate that in boar androgen action during early fetal and neonatal periods plays a key role in the maintenance of normal phenotype and functions of prostatic cells at adulthood. Furthermore, we demonstrated that modulation of Cx43 expression in the prostate could serve as a sensitive marker of hormonal disruption during different developmental stages.
Collapse
|
8
|
Six-transmembrane epithelial antigen of the prostate-1 plays a role for in vivo tumor growth via intercellular communication. Exp Cell Res 2013; 319:2617-26. [PMID: 23916873 DOI: 10.1016/j.yexcr.2013.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 07/05/2013] [Accepted: 07/26/2013] [Indexed: 11/22/2022]
Abstract
Six-transmembrane epithelial antigen of the prostate-1 (STEAP-1) is a novel cell surface protein overexpressed only in the prostate among normal tissues and various types of cancer including prostate, bladder, lung, and ovarian cancer. Although its function in prostate and tumor cells has been remained unclear, due to its unique and restricted expression, STEAP-1 is expected to be an attractive target for cancer therapy. Here, we show that knockdown of STEAP-1 in human cancer cells caused the retardation of tumor growth compared with wild type in vivo. In contrast, STEAP-1 introduced tumor cells augmented the tumor growth compared with STEAP-1-negative wild type cells. Using dye transfer assay, we demonstrate that the STEAP-1 is involved in intercellular communication between tumor cells and adjacent tumor stromal cells and therefore may play a key role for the tumor growth in vivo. These data indicate the inhibition of the STEAP-1 function or expression can be a new strategy for cancer therapy.
Collapse
|
9
|
Bijnsdorp IV, Rozendaal L, van Moorselaar RJA, Geldof AA. A predictive role for noncancerous prostate cells: low connexin-26 expression in radical prostatectomy tissues predicts metastasis. Br J Cancer 2012; 107:1963-8. [PMID: 23169284 PMCID: PMC3516687 DOI: 10.1038/bjc.2012.500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: It is important to identify markers that predict whether prostate cancer will metastasise. The adjacent noncancerous cells (influenced by the tumour cells) may also express potential markers. The objective of this study was to determine the influence of cancer cells on noncancerous cells and to assess the value of the cell-communication protein connexin-26 (Cx26) as a marker to predict the development of metastasis. Methods: The effect of conditioned medium (CM) from PrCa cells on in vitro noncancerous cell proliferation, migration and invasion and Cx26 expression was determined. Connexin-26 expression was investigated in prostatectomy tissues from 51 PrCa patients by immunohistochemistry and compared with various clinicopathological parameters. Results: Proliferation, migration and invasion of noncancerous cells were influenced by CM from the PrCa cell lines. Importantly, a clear relation was found between low Cx26 expression in the noncancerous tissue in prostatectomy sections and the risk of development of metastasis (P<0.0002). Kaplan–Meier analysis showed a relation between low Cx26 expression in noncancerous tissues and time to biochemical recurrence (P=0.0002). Conclusion: Measuring Cx26 expression in the adjacent noncancerous tissues (rather than cancer tissues) of prostatectomy sections could help to identify high-risk patients who may benefit from adjuvant therapy to decrease the risk of metastasis.
Collapse
Affiliation(s)
- I V Bijnsdorp
- Department of Urology, VU University Medical Center, De Boelelaan 1117 4F12, Amsterdam 1081 HV, The Netherlands.
| | | | | | | |
Collapse
|
10
|
Czyż J, Szpak K, Madeja Z. The role of connexins in prostate cancer promotion and progression. Nat Rev Urol 2012; 9:274-82. [PMID: 22349655 DOI: 10.1038/nrurol.2012.14] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a prevalent disease that is characterized by a presumably long latency period and a moderate propensity to metastasize. Although a range of mechanisms have been implicated in prostate carcinogenesis, the factors determining the initiation of metastasis remain obscure. The synchronized function of prostate cells depends on their metabolic and electrical coupling; disturbance of these functions has long been suggested to be integral to prostate carcinogenesis. However, although connexins form intercellular channels involved in gap-junction-mediated intercellular coupling (GJIC), whether these proteins also have GJIC-independent roles in cancer progression and metastasis remains a matter of debate. Some data indicate a correlation between connexin expression and the invasive potential of prostate cancer cells, which points to stage-specific functions of connexins during prostate cancer development. For example, restoration of connexin expression seems to be crucial for the formation of invasive cell subsets within heterogeneous prostate cancer cell populations that have undergone aberrant differentiation. Consequently, the clinical application of therapeutic and prophylactic approaches focused on the modulation of connexin expression in prostate cancer cells should be reconsidered.
Collapse
Affiliation(s)
- Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | |
Collapse
|
11
|
Das S, Hahn Y, Nagata S, Willingham MC, Bera TK, Lee B, Pastan I. NGEP, a Prostate-Specific Plasma Membrane Protein that Promotes the Association of LNCaP Cells. Cancer Res 2007; 67:1594-601. [PMID: 17308099 DOI: 10.1158/0008-5472.can-06-2673] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NGEP is a prostate-specific gene identified by analysis of expressed sequence tag databases. RNA analysis revealed two spliced forms of NGEP mRNA: a short form encoding a soluble protein (NGEP-S) and a long form encoding a polytopic membrane protein (NGEP-L). Transient expression of myc epitope-tagged NGEP-L showed that it was localized to the plasma membrane. We have now produced a specific antibody to the COOH terminus of NGEP-L and showed that it detects an approximately 100-kDa protein in extracts of normal prostate and prostate cancers that contain high levels of NGEP mRNA. The antibody detects a protein that is highly expressed on the apical and the lateral surfaces of normal prostate and prostate cancer cells by immunohistochemistry. The antibody does not detect a protein in the prostate cancer cell line LNCaP, which has very low NGEP mRNA levels. To study NGEP function, two stable LNCaP cell lines were prepared by transfection with NGEP-L and shown to contain similar amounts of NGEP-L protein as human prostate. Confocal immunofluorescence showed that NGEP-L is present on the plasma membrane of the transfected LNCaP cells and is highly concentrated at cell:cell contact regions. Furthermore, as the cell density increased, the cells formed large aggregates. A specific RNA interference that lowered NGEP-L levels prevented formation of cell aggregates. Our results suggest that NGEP-L has a role in promoting cell contact-dependent interactions of LNCaP prostate cancer cells and also that NGEP is a promising immunotherapy target for prostate cancer.
Collapse
Affiliation(s)
- Sudipto Das
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute/NIH, 37 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Wei N, Mi MT, Zhou Y. Influences of lovastatin on membrane ion flow and intracellular signaling in breast cancer cells. Cell Mol Biol Lett 2006; 12:1-15. [PMID: 17103090 PMCID: PMC6275703 DOI: 10.2478/s11658-006-0050-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 06/28/2006] [Indexed: 11/24/2022] Open
Abstract
Lovastatin, an inhibitor of cellular cholesterol synthesis, has an apparent anti-cancer property, but the detailed mechanisms of its anti-cancer effects remain poorly understood. We investigated the molecular mechanism of Lovastatin anti-tumor function through the study of its effect on membrane ion flow, gap junctional intercellular communication (GJIC), and the pathways of related signals in MCF-7 mammary cancer cells. After treatment for 24–72 h with 4, 8 or 16 μmol/L Lovastatin, cellular proliferation was examined via the MTT assay, and changes in membrane potential and cellular [Ca2+]i were monitored using confocal laser microscopy. In addition, the expression of plasma membrane calcium ATPase isoform 1 (PMCA1) mRNA was analyzed via RT-PCR, the GJIC function was examined using the scrape-loading dye transfer (SLDT) technique, and MAPK phosphorylation levels were tested with the kinase activity assay. The results showed that Lovastatin treatment significantly inhibited the growth of MCF-7 breast cancer cells. It also increased the negative value of the membrane potential, leading to the hyperpolarization of cells. Moreover, Lovastatin treatment continuously enhanced [Ca2+]i, although the levels of PMCA1 mRNA were unchanged. GJIC was also upregulated in MCF-7 cells, with transfer of LY Fluorescence reaching 4 to 5 rows of cells from the scraped line after treatment with 16 μmol/L Lovastatin for 72 h. Finally, downregulation of ERK1 and p38MAPK phosphorylation were found in Lovastatin-treated MCF-7 cells. It could be deduced that Lovastatin can induce changes in cellular hyperpolarization and intracellular Ca2+ distributions, and increase GJIC function. These effects may result in changes in the downstream signal cascade, inhibiting the growth of MCF-7 cells.
Collapse
Affiliation(s)
- Na Wei
- Department of Nutrition and Food Hygiene, Third Military Medical University, Chongqing, 400038 P.R. China
| | - Man Tian Mi
- Department of Nutrition and Food Hygiene, Third Military Medical University, Chongqing, 400038 P.R. China
| | - Yong Zhou
- Department of Nutrition and Food Hygiene, Third Military Medical University, Chongqing, 400038 P.R. China
| |
Collapse
|
13
|
Mesnil M, Crespin S, Avanzo JL, Zaidan-Dagli ML. Defective gap junctional intercellular communication in the carcinogenic process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:125-45. [PMID: 16359943 DOI: 10.1016/j.bbamem.2005.11.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/07/2005] [Accepted: 11/10/2005] [Indexed: 01/07/2023]
Abstract
Gap junctions are membrane structures made of intercellular channels which permit the diffusion from cytoplasm to cytoplasm of small hydrophilic molecules. Nearly 40 years ago, the loss of functional gap junctions has been described in cancer cells and led to the hypothesis that such type of intercellular communication is involved in the carcinogenesis process. From this time, a lot of data has been accumulated confirming that gap junctions are frequently decreased or absent in cancer cells whatever their tissue and species origins. Here, we review such data by insisting on the possible links existing between altered gap-junctional intercellular communication capacity (or the altered expression of their constitutive proteins, the connexins) and the stages of cancer progression in various cancer models. Then, we analyse particular aspects of the disturbance of connexin-mediated communication in cancer such as the cytoplasmic localization of connexins, the lack of heterologous communication between cancer cells and normal cells, the role of connexin gene mutations in cancer. In a separate part of the review, we also analyse the disturbance of gap-junctional intercellular communication during the late stages of cancer (invasion and metastasis processes).
Collapse
Affiliation(s)
- Marc Mesnil
- Equipe Interactions et Communications Cellulaires, Institut de Physiologie et Biologie Cellulaires, CNRS-UMR 6187, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers cedex, France.
| | | | | | | |
Collapse
|
14
|
Pointis G, Fiorini C, Defamie N, Segretain D. Gap junctional communication in the male reproductive system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:102-16. [PMID: 16259941 DOI: 10.1016/j.bbamem.2005.09.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/20/2005] [Accepted: 09/21/2005] [Indexed: 01/10/2023]
Abstract
Male fertility is a highly controlled process that allows proliferation, meiosis and differentiation of male germ cells in the testis, final maturation in the epididymis and also requires functional male accessory glands: seminal vesicles, prostate and corpus cavernosum. In addition to classical endocrine and paracrine controls, mainly by gonadotropins LH and FSH and steroids, there is now strong evidence that all these processes are dependent upon the presence of homocellular or heterocellular junctions, including gap junctions and their specific connexins (Cxs), between the different cell types that structure the male reproductive tract. The present review is focused on the identification of Cxs, their distribution in the testis and in different structures of the male genital tract (epididymis, seminal vesicle, prostate, corpus cavernosum), their crucial role in the control of spermatogenesis and their implication in the function of the male accessory glands, including functional smooth muscle tone. Their potential dysfunctions in some testis (spermatogenic arrest, seminoma) and prostate (benign hyperplasia, adenocarcinoma) diseases and in the physiopathology of the human erectile function are also discussed.
Collapse
Affiliation(s)
- Georges Pointis
- INSERM U 670, Faculté de Médecine, 28 avenue de Valombrose, 06107 Nice cedex 02, France.
| | | | | | | |
Collapse
|
15
|
Vidulescu C, Clejan S, O'connor KC. Vesicle traffic through intercellular bridges in DU 145 human prostate cancer cells. J Cell Mol Med 2005; 8:388-96. [PMID: 15491514 PMCID: PMC6740136 DOI: 10.1111/j.1582-4934.2004.tb00328.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We detected cell-to-cell communication via intercellular bridges in DU 145 human prostate cancer cells by fluorescence microscopy. Since DU 145 cells have deficient gap junctions, intercellular bridges may have a prominent role in the transfer of chemical signals between these cells. In culture, DU 145 cells are contiguous over several cell diameters through filopodial extensions, and directly communicate with adjacent cells across intercellular bridges. These structures range from 100 nm to 5 microm in diameter, and from a few microns to at least 50-100 microm in length. Time-lapse imagery revealed that (1) filopodia rapidly move at a rate of microns per minute to contact neighboring cells and (2) intercellular bridges are conduits for transport of membrane vesicles (1-3 microm in diameter) between adjacent cells. Immunofluorescence detected alpha-tubulin in intercellular bridges and filopodia, indicative of microtubule bundles, greater than a micron in diameter. The functional meaning, interrelationship of these membrane extensions are discussed, along with the significance of these findings for other culture systems such as stem cells. Potential applications of this work include the development of anti-cancer therapies that target intercellular communication and controlling formation of cancer spheroids for drug testing.
Collapse
Affiliation(s)
- Cristina Vidulescu
- Deptartment of Chemical and Biomolecular Engineering, Tulane University and Health Sciences Center, New Orleans, LA 70118, USA
| | | | | |
Collapse
|
16
|
Arnold JM, Phipps MW, Chen J, Phipps J. Cellular sublocalization of Cx43 and the establishment of functional coupling in IMR-32 neuroblastoma cells. Mol Carcinog 2005; 42:159-69. [PMID: 15605363 DOI: 10.1002/mc.20072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuroblastoma (NB) is the most common solid pediatric tumor. IMR-32 cells are a highly malignant human NB cell line with uncontrolled proliferation but with the potential to be differentiated under specific conditions. Preliminary research indicated that connexin 43 (Cx43), the most widespread of the Cx family, is aberrantly located in IMR-32 cells, which renders these cells incapable of gap junction (GJ) intercellular communication. Functioning GJ intercellular communication has been strongly associated with growth control and a decrease in tumorigenicity. 8-br-cAMP, known to initiate the differentiation process in cancer cells, was used to examine changes in Cx43 localization and expression via immunocytochemistry, Western blot analysis, and flow cytometry. Exposure of IMR-32 cells to 8-br-cAMP decreased cell proliferation, restored the abnormally localized Cx43 from around the nucleus to the cell membrane, increased de novo Cx43 protein expression, and appeared to phosphorylate Cx43 on serine (Ser) 255 and Ser262. Forskolin, an activator of cAMP dependent protein kinase (PKA), produced identical results to 8-br-cAMP demonstrating the effect that was not unique to a cAMP analog. The use of a PKA inhibitor further confirmed the specificity of 8-br-cAMP and forskolin's effect on Cx43. The cellular relocation of Cx43, combined with the increased protein expression, established first ever GJ intercellular communication between IMR-32 cells as revealed by scrape loading. These results suggest that the GJ-mediated return of growth control, as a prerequisite for further differentiation, offers a new therapeutic avenue in the treatment of NB.
Collapse
Affiliation(s)
- Jennifer M Arnold
- SIMS, PharmaGap, National Research Council of Canada, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
17
|
Kalvelyte A, Imbrasaite A, Bukauskiene A, Verselis VK, Bukauskas FF. Connexins and apoptotic transformation. Biochem Pharmacol 2003; 66:1661-72. [PMID: 14555247 PMCID: PMC3689318 DOI: 10.1016/s0006-2952(03)00540-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We examined the influence of connexin (Cx) expression on the development of apoptosis in HeLa parental cells (coupling deficient cell line) and HeLa cells expressing wild-type Cx43 and Cxs fused with enhanced green fluorescent protein (EGFP). EGFP was attached to the C-terminus of Cx32 and Cx43, Cx32-EGFP and Cx43-EGFP, respectively, and to the N-terminus of Cx32, EGFP-Cx32. All fusion proteins assembled into junctional plaques (JPs) at areas of cell-cell contact, but only the C-terminal fusion proteins formed functional gap junction (GJ) channels as well as hemichannels. In each cell line, apoptosis was induced by treatment with various agents including anisomycin, camptothecin, cis-platinum, colchicine, cycloheximide, etoposide, staurosporin and taxol. Using fluorescence microscopy, time-lapse imaging and dual whole-cell voltage clamp techniques, we correlated the changes in functional properties of GJ channels and Cx distribution with the progression of apoptosis based on cells' labeling with acridine orange and ethidium bromide (EB). The early phase of apoptosis (a viable apoptotic (VA) state) was characterized by shrinkage of the cells and by increased internalization of JPs accompanied by decreased cell-cell coupling. The apoptotic reagents had no direct effect on electrical cell-cell coupling. Transformation from a VA to a nonviable apoptotic (NVA) state was faster in HeLa cells expressing Cx43 or Cx43-EGFP than in HeLa parental cells. The potent GJ uncoupler, octanol, slowed the transition of HelaCx43-EGFP cells into a NVA state. In the absence of apoptotic reagents, the rate of EB uptake was higher in HeLaCx43-EGFP than in HeLa parental cells consistent with the presence of open Cx43-EGFP hemichannels. However, in both cell lines the rate of EB uptake decreased proportionally during the development of apoptosis suggesting that membrane permeability ascribed to Cx hemichannels is reduced. Cells expressing Cx32-EGFP and EGFP-Cx32 demonstrate the same apoptotic patterns as HeLaCx43-EGFP and HeLa parental cells, respectively. Intracellular levels of ATP in HeLaCx43-EGFP cells were substantially lower than in HeLa parental cells, and ATP added to the medium abolished the accelerated transition from a VA to a NVA state in HeLaCx43-EGFP cells. In summary, Cx32 or Cx43 accelerates transformation of cells into a NVA state or secondary necrosis and this depends on the ability of Cxs to form functional GJ channels and hemichannels.
Collapse
Affiliation(s)
- Audrone Kalvelyte
- Laboratory of Developmental Biology, Institute of Biochemistry, 12
Mokslininku Str., LT-2600 Vilnius, Lithuania
| | - Ausra Imbrasaite
- Laboratory of Developmental Biology, Institute of Biochemistry, 12
Mokslininku Str., LT-2600 Vilnius, Lithuania
| | - Angele Bukauskiene
- Department of Neuroscience, Albert Einstein College of Medicine, 1300
Morris Park Avenue, New York, NY 10461, USA
| | - Vytas K. Verselis
- Department of Neuroscience, Albert Einstein College of Medicine, 1300
Morris Park Avenue, New York, NY 10461, USA
| | - Feliksas F. Bukauskas
- Department of Neuroscience, Albert Einstein College of Medicine, 1300
Morris Park Avenue, New York, NY 10461, USA
- Corresponding author. Tel.: +1-718-430-4130; fax:
+1-718-430-8944. (F.F. Bukauskas)
| |
Collapse
|
18
|
Spinella F, Rosanò L, Di Castro V, Nicotra MR, Natali PG, Bagnato A. Endothelin-1 decreases gap junctional intercellular communication by inducing phosphorylation of connexin 43 in human ovarian carcinoma cells. J Biol Chem 2003; 278:41294-301. [PMID: 12907686 DOI: 10.1074/jbc.m304785200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelin-1 (ET-1) is overexpressed in ovarian carcinoma and acts as an autocrine factor selectively through the ETA receptor (ETAR) to promote tumor cell proliferation, survival, neovascularization, and invasiveness. Loss of gap junctional intercellular communication (GJIC) is critical for tumor progression by allowing the cells to escape growth control. Exposure of HEY and OVCA 433 ovarian carcinoma cell lines to ET-1 led to a 50-75% inhibition in intercellular communication and to a decrease in the connexin 43 (Cx43)-based gap junction plaques. To investigate the phosphorylation state of Cx43, ovarian carcinoma cell lysates were immunoprecipitated and transient tyrosine phosphorylation of Cx43 was detected in ET-1-treated cells. BQ 123, a selective ETAR antagonist, blocked the ET-1-induced Cx43 phosphorylation and cellular uncoupling. Gap junction closure was prevented by tyrphostin 25 and by the selective c-Src inhibitor, PP2. Furthermore, the increased Cx43 tyrosine phosphorylation was correlated with ET-1-induced increase of c-Src activity, and PP2 suppressed the ET-1-induced Cx43 tyrosine phosphorylation, indicating that inhibition of Cx43-based GJIC is mainly mediated by the Src tyrosine kinase pathway. In vivo, the inhibition of human ovarian tumor growth in nude mice induced by the potent ETAR antagonist, ABT-627, was associated with a reduction of Cx43 phosphorylation. These findings indicate that the signaling mechanisms involved in GJIC disruption on ovarian carcinoma cells depend on ETAR activation, which leads to the Cx43 tyrosine phosphorylation mediated by c-Src, suggesting that ETAR blockade may contribute to the control of ovarian carcinoma growth and progression also by preventing the loss of GJIC.
Collapse
Affiliation(s)
- Francesca Spinella
- Laboratories of Molecular Pathology and Ultrastructure and Immunology, Regina Elena Cancer Institute, Rome 00158, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Albanese J, Dainiak N. Modulation of intercellular communication mediated at the cell surface and on extracellular, plasma membrane-derived vesicles by ionizing radiation. Exp Hematol 2003; 31:455-64. [PMID: 12829020 DOI: 10.1016/s0301-472x(03)00050-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The plasma membrane is a dynamic organelle whose function includes receptor-mediated signal transduction into the cell. Conversely, the plasma membrane is the origin of inter-cellular signaling. In addition to expressing and releasing growth factors in a soluble form(through exocytosis) and via proteolysis of cell surface components, membrane ligands may signal nearby cells through juxtacrine stimulation or by the exfoliation or shedding of plasma membrane-derived vesicles. Ionizing radiation (IR) has a profound effect on plasma membrane structure and function. IR-induced ultrastructural alterations are mediated via lipid interaction with water radiolysis products (e.g., hydroxyl radicals, hydrogen radicals, and hydrated electrons). Ionizing radicals act directly on lipid molecules to promote lipid hydro-peroxides and lipid hydroperoxide breakdown products (e.g., alpha, beta unsaturated aldehydes) that contribute to altered plasma membrane lipid composition. A change in lipid composition increases membrane lipid microviscosity and results in membrane fenestrations that enhance permeability to small molecules and ions. Reactive ionizing species also stimulate sphingomyelinase activity, leading to sphingomyelin hydrolysis and ceramide generation that further contributes to altered membrane lipid composition and cellular apoptosis. In addition, exposure to IR results in impaired rate of and cumulative shedding of plasma membrane-associated growth factors. Mechanisms of exfoliation are reviewed for normal cells and the impact of radiation on modulating signal transduction mediated by exfoliation is summarized.
Collapse
|
20
|
Saladino F, Carruba G, Quader STA, Amoroso M, Di Cristina A, Webber MM, Castagnetta LAM. Connexin expression in nonneoplastic human prostate epithelial cells. Ann N Y Acad Sci 2002; 963:213-7. [PMID: 12095946 DOI: 10.1111/j.1749-6632.2002.tb04112.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of gap-junction proteins connexins (Cx), specifically Cx43, Cx32, and Cx26, in both nontumorigenic (RWPE-1) and tumorigenic (RWPE-2) human prostate epithelial cells as well as in two cell clones (WPEI-7 and WPEI-10) originating from the RWPE-1 cell line was investigated. The aim was to determine whether individual connexins are differentially expressed in cultured cells. Western blot analysis revealed striking differences in the expression of individual connexins in the cell lines studied. In particular, Cx43 is largely expressed in RWPE-1 and WPEI-10 cells, whereas Cx32 is expressed predominantly in RWPE-2 and WPEI-7 cells. In addition, both forskolin and estrone increase Cx43 expression levels in WPEI-10 cells, with no apparent effect on WPEI-7 cells. Conversely, forskolin and especially estrone induce a marked increase of Cx32 in WPEI-7 cells, whereas Cx32 expression is limitedly affected by both agents in WPEI-10 cells. Overall, expression levels of Cx43 and Cx32 appear to be inversely related, with RWPE-1 and WPEI-10 cells having a significantly higher Cx43 to Cx32 ratio than that observed in RWPE-2 and WPEI-7 cells. We recently reported that junctional communication could be rescued in RWPE-1 cells by either forskolin or estrone and that restoration of GJIC is associated with an increase of Cx43 or a decrease of Cx32, or both, eventually leading to a marked rise of the Cx43 to Cx32 ratio. Studies are currently ongoing in our laboratories to assess the potential effect of agents increasing the Cx43 to Cx32 ratio on GJIC activity in these systems.
Collapse
Affiliation(s)
- Francesca Saladino
- Department of Experimental Oncology and Clinical Application, University Medical School, Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|