1
|
Pignon JC, Koopmansch B, Nolens G, Delacroix L, Waltregny D, Winkler R. Androgen receptor controls EGFR and ERBB2 gene expression at different levels in prostate cancer cell lines. Cancer Res 2009; 69:2941-9. [PMID: 19318561 DOI: 10.1158/0008-5472.can-08-3760] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
EGFR or ERBB2 contributes to prostate cancer (PCa) progression by activating the androgen receptor (AR) in hormone-poor conditions. Here, we investigated the mechanisms by which androgens regulate EGFR and ERBB2 expression in PCa cells. In steroid-depleted medium (SDM), EGFR protein was less abundant in androgen-sensitive LNCaP than in androgen ablation-resistant 22Rv1 cells, whereas transcript levels were similar. Dihydrotestosterone (DHT) treatment increased both EGFR mRNA and protein levels and stimulated RNA polymerase II recruitment to the EGFR gene promoter, whereas it decreased ERBB2 transcript and protein levels in LNCaP cells. DHT altered neither EGFR or ERBB2 levels nor the abundance of prostate-specific antigen (PSA), TMEPA1, or TMPRSS2 mRNAs in 22Rv1 cells, which express the full-length and a shorter AR isoform deleted from the COOH-terminal domain (ARDeltaCTD). The contribution of both AR isoforms to the expression of these genes was assessed by small interfering RNAs targeting only the full-length or both AR isoforms. Silencing of both isoforms strongly reduced PSA, TMEPA1, and TMPRSS2 transcript levels. Inhibition of both AR isoforms did not affect EGFR and ERBB2 transcript levels but decreased EGFR and increased ERBB2 protein levels. Proliferation of 22Rv1 cells in SDM was inhibited in the absence of AR and ARDeltaCTD. A further decrease was obtained with PKI166, an EGFR/ERBB2 kinase inhibitor. Overall, we showed that ARDeltaCTD is responsible for constitutive EGFR expression and ERBB2 repression in 22Rv1 cells and that ARDeltaCTD and tyrosine kinase receptors are necessary for sustained 22Rv1 cell growth.
Collapse
Affiliation(s)
- Jean-Christophe Pignon
- Laboratory of Molecular Oncology, GIGA-Cancer, CRCE, University of Liege, Liege, Belgium.
| | | | | | | | | | | |
Collapse
|
2
|
Zimmerman RA, Dozmorov I, Nunlist EH, Tang Y, Li X, Cowan R, Centola M, Frank MB, Culkin DJ, Lin HK. 5alpha-Androstane-3alpha,17beta-diol activates pathway that resembles the epidermal growth factor responsive pathways in stimulating human prostate cancer LNCaP cell proliferation. Prostate Cancer Prostatic Dis 2005; 7:364-74. [PMID: 15452555 DOI: 10.1038/sj.pcan.4500761] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
5alpha-Androstane-3alpha,17beta-diol (3alpha-diol) is considered to have no androgenic effects in androgen target organs unless it is oxidized to 5alpha-dihydrotestosterone (5alpha-DHT). We used microarray and bioinformatics to identify and compare 3alpha-diol and 5alpha-DHT responsive gene in human prostate LNCaP cells. Through a procedure called 'hypervariable determination', a similar set of 30 responsive genes involving signal transduction, transcription regulation, and cell proliferation were selected in 5alpha-DHT-, 3alpha-diol-, and epidermal growth factor (EGF)-treated samples. F-means cluster and networking procedures showed that the responsive pattern of these genes was more closely related between 3alpha-diol and EGF than between 5alpha-DHT and 3alpha-diol treatments. We conclude that 3alpha-diol is capable of stimulating prostate cell proliferation by eliciting EGF-like pathway in conjunction with androgen receptor pathway.
Collapse
Affiliation(s)
- R A Zimmerman
- Department of Urology, University of Oklahoma Health Sciences Center, 920 Stanton L Young Blvd, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Shih A, Zhang S, Cao HJ, Boswell S, Wu YH, Tang HY, Lennartz MR, Davis FB, Davis PJ, Lin HY. Inhibitory effect of epidermal growth factor on resveratrol-induced apoptosis in prostate cancer cells is mediated by protein kinase C-α. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1355.3.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Resveratrol, a naturally occurring stilbene with antitumor properties, caused mitogen-activated protein kinase [MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2)] activation, nuclear translocation of Ser15-phosphorylated p53, and p53-dependent apoptosis in hormone-insensitive DU145 prostate cancer cells. Exposure of these cells to epidermal growth factor (EGF) for up to 4 hours resulted in brief activation of MAPK followed by inhibition of resveratrol-induced signal transduction, p53 phosphorylation, and apoptosis. Resveratrol stimulated c-fos and c-jun expression in DU145 cells, an effect also suppressed by EGF. An inhibitor of protein kinase C (PKC)-α, -β, and -γ (CGP41251) enhanced Ser15 phosphorylation of p53 by resveratrol in the absence of EGF and blocked EGF inhibition of the resveratrol effect. EGF caused PKC-α/β phosphorylation in DU145 cells, an effect reversed by CGP41251. Activation of PKC by phorbol ester (phorbol 12-myristate 13-acetate) enhanced EGF action on ERK1/2 phosphorylation without significantly altering p53 phosphorylation by resveratrol. DU145 cells transfected with a dominant-negative PKC-α construct showed resveratrol-induced ERK1/2 phosphorylation and Ser15 phosphorylation of p53 but were unresponsive to EGF. Thus, resveratrol and EGF activate MAPK by discrete mechanisms in DU145 cells. The stilbene promoted p53-dependent apoptosis, whereas EGF opposed induction of apoptosis by resveratrol via a PKC-α-mediated mechanism. Resveratrol also induced p53 phosphorylation in LNCaP prostate cancer cells, an effect also inhibited by EGF. Inhibition of PKC activation in LNCaP cells, however, resulted in a reduction, rather than increase, in p53 activation and apoptosis, suggesting that resveratrol-induced apoptosis in these two cell lines occurs through different PKC-mediated and MAPK-dependent pathways.
Collapse
Affiliation(s)
- Ai Shih
- 1Research Service, Stratton Veterans Affairs Medical Center,
| | | | | | | | | | - Heng-Yuan Tang
- 1Research Service, Stratton Veterans Affairs Medical Center,
| | | | | | - Paul J. Davis
- 1Research Service, Stratton Veterans Affairs Medical Center,
- 2Ordway Research Institute,
- 4Wadsworth Center, New York State Department of Health, Albany, New York
| | - Hung-Yun Lin
- 1Research Service, Stratton Veterans Affairs Medical Center,
| |
Collapse
|
4
|
Angelucci A, Festuccia C, Gravina GL, Muzi P, Bonghi L, Vicentini C, Bologna M. Osteopontin enhances the cell proliferation induced by the epidermal growth factor in human prostate cancer cells. Prostate 2004; 59:157-66. [PMID: 15042616 DOI: 10.1002/pros.20008] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Susceptibility to extracellular matrix and growth factors has been demonstrated to play a critical role in the development of prostate cancer (PCa) metastases. The aim of this study was to elucidate some mechanisms by which stroma controls tumor progression. METHODS In our study we tested the growth ability of the LNCaP human prostatic cell line in steroid-free culture conditions in response to osteopontin (OPN), a non-collageneous matrix protein, localized in large amounts in the bone. RESULTS In the LNCaP cell model, OPN stimulates cell proliferation in serum-free medium and colony growth at high dilution but this effect is visible only in presence of epidermal growth factor (EGF). Proliferation induced by OPN is accompanied by a sustained activation of EGF receptor (EGFR) whose phosphorylation is detectable up to 12 hr after treatment in association with EGF. The colocalization of integrin beta1, a ligand of OPN, and of EGFR on the cellular membrane, suggests that the association of these cell surface receptors may be the principal mechanism involved in the long-term activation of the EGFR. CONCLUSIONS Our data describe a new possible mechanism involved in the establishment of bone metastases which may also account for the formation of androgen-independent cellular clones, frequently responsible of the clinical progression of PCa.
Collapse
Affiliation(s)
- Adriano Angelucci
- Department of Experimental Medicine, University of L'Aquila, Medical School, Coppito-2, L'Aquila, Italy.
| | | | | | | | | | | | | |
Collapse
|
5
|
Ratan HL, Gescher A, Steward WP, Mellon JK. ErbB receptors: possible therapeutic targets in prostate cancer? BJU Int 2003; 92:890-5. [PMID: 14632841 DOI: 10.1111/j.1464-410x.2003.04503.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- H L Ratan
- Division of Urology, Leicester General Hospital, Leicester, UK
| | | | | | | |
Collapse
|
6
|
Gee JMW, Harper ME, Hutcheson IR, Madden TA, Barrow D, Knowlden JM, McClelland RA, Jordan N, Wakeling AE, Nicholson RI. The antiepidermal growth factor receptor agent gefitinib (ZD1839/Iressa) improves antihormone response and prevents development of resistance in breast cancer in vitro. Endocrinology 2003; 144:5105-17. [PMID: 12960029 DOI: 10.1210/en.2003-0705] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although many estrogen receptor-positive breast cancers initially respond to antihormones, responses are commonly incomplete with resistance ultimately emerging. Delineation of signaling mechanisms underlying these phenomena would allow development of therapies to improve antihormone response and compromise resistance. This in vitro investigation in MCF-7 breast cancer cells examines whether epidermal growth factor receptor (EGFR) signaling limits antiproliferative and proapoptotic activity of antihormones and ultimately supports development of resistance. It addresses whether the anti-EGFR agent gefitinib (ZD1839/Iressa; TKI: 1 mum) combined with the antihormones 4-hydroxytamoxifen (TAM: 0.1 mum) or fulvestrant (Faslodex; 0.1 mum) enhances growth inhibition and prevents resistance. TAM significantly suppressed MCF-7 growth over wk 2-5, reducing proliferation detected by immunocytochemistry and fluorescence-activated cell sorter cell cycle analysis. A modest apoptotic increase was observed by fluorescence-activated cell sorter and fluorescence microscopy, with incomplete bcl-2 suppression. EGFR induction occurred during TAM response, as measured by immunocytochemistry and Western blotting, with EGFR-positive, highly proliferative resistant growth subsequently emerging. Although TKI alone was ineffective on growth, TAM plus TKI cotreatment exhibited superior antigrowth activity vs. TAM, with no viable cells by wk 12. Cotreatment was more effective in inhibiting proliferation, promoting apoptosis, and eliminating bcl-2. Cotreatment blocked EGFR induction, markedly depleted ERK1/2 MAPK and protein kinase B phosphorylation, and prevented emergence of EGFR-positive resistance. Faslodex plus TKI cotreatment was also a superior antitumor strategy. Thus, increased EGFR evolves during treatment with antihormones, limiting their efficacy and promoting resistance. Gefitinib addition to antihormonal therapy could prove more effective in treating estrogen receptor-positive breast cancer and may combat development of resistance.
Collapse
Affiliation(s)
- J M W Gee
- Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3XF, Wales, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yacoub A, McKinstry R, Hinman D, Chung T, Dent P, Hagan MP. Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res 2003; 159:439-52. [PMID: 12643788 DOI: 10.1667/0033-7587(2003)159[0439:egfair]2.0.co;2] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This work examined the importance of radiation-induced and ligand-induced EGFR-ERK signaling for the regulation of DNA repair proteins XRCC1 and ERCC1 in prostate carcinoma cells, DU145 (TP53(mut)), displaying EGFR-TGFA-dependent autocrine growth and high MAPK (ERK1/2) activity, and LNCaP (TP53(wt)) cells expressing low constitutive levels of ERK1/2 activity. Using quantitative RT-PCR and Western analyses, we determined that ionizing radiation activated the DNA repair genes XRCC1 and ERCC1 in an ERK1/2-dependent fashion for each cell line. After irradiation, a rapid increase followed by a decrease in ERK1/2 activity preceded the increase in XRCC1/ERCC1 expression in DU145 cells, while only the rapid decrease in ERK1/2 preceded the increase in XRCC1/ERCC1 expression in LNCaP cells. Administration of EGF, however, markedly increased the up-regulation of phospho-ERK, ERCC1 and XRCC1 in both cell lines. Although the EGFR inhibitor tyrphostin (AG-1478) and the MEK inhibitor PD90859 both attenuated EGF-induced levels of the ERCC1 and XRCC1 protein, PD98059 blocked the induction of ERCC1 and XRCC1 by radiation more effectively in both cell lines. Inhibition of ERK at a level that reduced the up-regulation of DNA repair led to the persistence of apurinic/apyrimidinic (AP) sites of DNA damage and increased cell killing. Taken together, these data imply a complex control of DNA repair activation that may be more generally dependent on MAPK (ERK1/2) signaling than was previously noted. These data provide novel insights into the capacity of the EGFR-ERK signaling to modulate DNA repair in cancer cells and into the functional significance of this signaling.
Collapse
Affiliation(s)
- Adly Yacoub
- Department of Radiation Oncology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|
8
|
Harper ME, Goddard L, Glynne-Jones E, Assender J, Dutkowski CM, Barrow D, Dewhurst OL, Wakeling AE, Nicholson RI. Multiple responses to EGF receptor activation and their abrogation by a specific EGF receptor tyrosine kinase inhibitor. Prostate 2002; 52:59-68. [PMID: 11992620 DOI: 10.1002/pros.10069] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGF-R) autophosphorylation is essential for its intracellular mitogenic signaling via the MAPK pathway and for interaction in other cellular processes. Inhibition of this activity in tumor cells that predominantly utilise EGF-R therefore offers an alternative approach to therapy. METHODS The ability of a specific inhibitor of EGF-R tyrosine kinase, ZM 252868, (TKI) to alter various parameters related to growth in DU145 and PC3 cell lines was investigated, by immunocytochemistry, Northern blotting, Western blotting and invasion assays. RESULTS In DU145 cultures, the total cell population and number of cells in cell cycle decreased in the presence of TKI whilst the apoptotic rate was significantly increased. Reduction in autophosphorylation of the EGF-R, membrane expression of EGF-R, activation of the MAPK, p38, and JNK enzymes and the invasive capacity of DU145 cells was observed in the TKI treated cells. Under the same conditions, PC3 cell growth and EGF-R expression and MAPK activation were not affected. The use of inhibitors of intracellular signaling indicated that the DU145 cells, in contrast to PC3 cells, predominantly utilize EGF-R activation of the MAPK signaling pathway for growth. CONCLUSIONS In prostatic cancer patients, in whom androgen resistance has developed and whose tumors have upregulated EGF-R for growth, specific TKI's may offer an important therapy option.
Collapse
Affiliation(s)
- Maureen E Harper
- Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nicholson RI, Hutcheson IR, Harper ME, Knowlden JM, Barrow D, McClelland RA, Jones HE, Wakeling AE, Gee JMW. Modulation of epidermal growth factor receptor in endocrine-resistant, estrogen-receptor-positive breast cancer. Ann N Y Acad Sci 2002; 963:104-15. [PMID: 12095935 DOI: 10.1111/j.1749-6632.2002.tb04101.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An increasing body of evidence demonstrates that growth factor networks are highly interactive with estrogen receptor signaling in the control of breast cancer growth. As such, tumor responses to antihormones are likely to be a composite of the estrogen receptor and growth factor inhibitory activity of these agents. The modulation of growth factor networks during endocrine response is examined, and in vitro and clinical evidence is presented that epidermal growth factor receptor signaling, maintained in either an estrogen receptor-dependent or a receptor-independent manner, is critical to antihormone-resistant breast cancer cell growth. The considerable potential of the epidermal growth factor receptor-selective tyrosine kinase inhibitor Iressa (ZD 1839) to efficiently treat, and perhaps even prevent, endocrine-resistant breast cancer is highlighted.
Collapse
Affiliation(s)
- R I Nicholson
- Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff, Wales.
| | | | | | | | | | | | | | | | | |
Collapse
|