1
|
Muñoz‐Moreno L, Carmena MJ, Prieto JC, Schally AV, Bajo AM. Tumorigenic transformation of human prostatic epithelial cell line RWPE-1 by growth hormone-releasing hormone (GHRH). Prostate 2022; 82:933-941. [PMID: 35322894 PMCID: PMC9310601 DOI: 10.1002/pros.24339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Growth hormone-releasing hormone (GHRH) and its receptors have been implicated in the progression of various tumors. In this study, we analyzed the carcinogenetic potential of exposure to GHRH of a nontumor human prostate epithelial cell line (RWPE-1) as well as its transforming effect in a xenograft model. METHODS We performed cell viability, cell proliferation, adhesion and migration assays. In addition, metalloprotease (MMP)-2 activity by means gelatin zymography, GHRH-R subcellular location using confocal immunofluorescence microscopy and vascular endothelial growth factor (VEGF) levels by enzyme-linked immunoassay were assessed. Besides, we developed an in vivo model in order vivo model to determine the role of GHRH on tumorigenic transformation of RWPE-1 cells. RESULTS In cell cultures, we observed development of a migratory phenotype consistent with the gelatinolytic activity of MMP-2, expression of VEGF, as well as E-cadherin-mediated cell-cell adhesion and increased cell motility. Treatment with 0.1 µM GHRH for 24 h significantly increased cell viability and cell proliferation. Similar effects of GHRH were seen in RWPE-1 tumors developed by subcutaneous injection of GHRH-treated cells in athymic nude mice, 49 days after inoculation. CONCLUSIONS Thus, GHRH appears to act as a cytokine in the transformation of RWPE-1 cells by mechanisms that likely involve epithelial-mesenchymal transition, thus reinforcing the role of GHRH in tumorigenesis of prostate.
Collapse
Affiliation(s)
- Laura Muñoz‐Moreno
- Grupo de Investigación Cánceres de Origen Epitelial, Área de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - M. José Carmena
- Grupo de Investigación Cánceres de Origen Epitelial, Área de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - Juan C. Prieto
- Grupo de Investigación Cánceres de Origen Epitelial, Área de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - Andrew V. Schally
- Endocrine, Polypeptide and Cancer InstituteVeterans Affairs Medical CenterMiamiFloridaUSA
- Division of Hematology/Oncology, Departments of Pathology and Medicine, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Ana M. Bajo
- Grupo de Investigación Cánceres de Origen Epitelial, Área de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la SaludUniversidad de AlcaláAlcalá de HenaresMadridSpain
| |
Collapse
|
2
|
Jeanne Dit Fouque K, Salgueiro LM, Cai R, Sha W, Schally AV, Fernandez-Lima F. Structural Motif Descriptors as a Way To Elucidate the Agonistic or Antagonistic Activity of Growth Hormone-Releasing Hormone Peptide Analogues. ACS OMEGA 2018; 3:7432-7440. [PMID: 31458901 PMCID: PMC6644384 DOI: 10.1021/acsomega.8b00375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/21/2018] [Indexed: 05/05/2023]
Abstract
The synthesis of analogues of hypothalamic neuropeptide growth hormone-releasing hormone (GHRH) is an efficient strategy for designing new therapeutic agents. Several promising synthetic agonist and antagonist analogues of GHRH have been developed based on amino acid mutations of the GHRH (1-29) sequence. Because structural information on the activity of the GHRH agonists or antagonists is limited, there is a need for more effective analytical workflows capable of correlating the peptide sequence with biological activity. In the present work, three GHRH agonists-MR-356, MR-406, and MR-409-and three GHRH antagonists-MIA-602, MIA-606, and MIA-690-were investigated to assess the role of substitutions in the amino acid sequence on structural motifs and receptor binding affinities. The use of high resolution trapped ion mobility spectrometry coupled to mass spectrometry allowed the observation of a large number of peptide-specific mobility bands (or structural motif descriptors) as a function of the amino acid sequence and the starting solution environment. A direct correlation was observed between the amino acid substitutions (i.e., basic residues and d/l-amino acids), the structural motif descriptors, and the biological function (i.e., receptor binding affinities of the GHRH agonists and antagonists). The simplicity, ease, and high throughput of the proposed workflow based on the structural motif descriptors can significantly reduce the cost and time during screening of new synthetic peptide analogues.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department
of Chemistry and Biochemistry, Florida International
University, 11200 SW 8th Street, AHC4-233, Miami, Florida 33199, United States
| | - Luis M. Salgueiro
- Veterans
Affairs Medical Center, 1201 NW 16th Street, Research Service (151), Room
2A103C, Miami, Florida 33125, United States
- Departments
of Pathology and Medicine, Divisions of Hematology/Oncology and Endocrinology,
Miller School of Medicine, University of
Miami, 1600 NW 10th Avenue
#1140, Miami, Florida 33136, United States
| | - Renzhi Cai
- Veterans
Affairs Medical Center, 1201 NW 16th Street, Research Service (151), Room
2A103C, Miami, Florida 33125, United States
- Departments
of Pathology and Medicine, Divisions of Hematology/Oncology and Endocrinology,
Miller School of Medicine, University of
Miami, 1600 NW 10th Avenue
#1140, Miami, Florida 33136, United States
| | - Wei Sha
- Veterans
Affairs Medical Center, 1201 NW 16th Street, Research Service (151), Room
2A103C, Miami, Florida 33125, United States
- Departments
of Pathology and Medicine, Divisions of Hematology/Oncology and Endocrinology,
Miller School of Medicine, University of
Miami, 1600 NW 10th Avenue
#1140, Miami, Florida 33136, United States
| | - Andrew V. Schally
- Veterans
Affairs Medical Center, 1201 NW 16th Street, Research Service (151), Room
2A103C, Miami, Florida 33125, United States
- Departments
of Pathology and Medicine, Divisions of Hematology/Oncology and Endocrinology,
Miller School of Medicine, University of
Miami, 1600 NW 10th Avenue
#1140, Miami, Florida 33136, United States
| | - Francisco Fernandez-Lima
- Department
of Chemistry and Biochemistry, Florida International
University, 11200 SW 8th Street, AHC4-233, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, 11200 SW 8th Street, AHC4-211, Miami, Florida 33199, United States
- E-mail:
| |
Collapse
|
3
|
Cui T, Jimenez JJ, Block NL, Badiavas EV, Rodriguez-Menocal L, Vila Granda A, Cai R, Sha W, Zarandi M, Perez R, Schally AV. Agonistic analogs of growth hormone releasing hormone (GHRH) promote wound healing by stimulating the proliferation and survival of human dermal fibroblasts through ERK and AKT pathways. Oncotarget 2018; 7:52661-52672. [PMID: 27494841 PMCID: PMC5288139 DOI: 10.18632/oncotarget.11024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/23/2016] [Indexed: 12/22/2022] Open
Abstract
Decreased or impaired proliferation capability of dermal fibroblasts interferes with successful wound healing. Several growth factors tested failed to fully restore the growth of fibroblasts, possibly due to their rapid degradation by proteases. It is therefore critical to find new agents which have stimulatory effects on fibroblasts while being highly resistant to degradation. In such a scenario, the activities of two agonistic analogs of growth hormone releasing hormone (GHRH), MR-409 and MR-502, were evaluated for their impact on proliferation and survival of primary human dermal fibroblasts. In vitro, both analogs significantly stimulated cell growth by more than 50%. Under serum-depletion induced stress, fibroblasts treated with MR-409 or MR-502 demonstrated better survival rates than control. These effects can be inhibited by either PD98059 or wortmannin. Signaling through MEK/ERK1/2 and PI3K/AKT in an IGF-1 receptor-independent manner is required. In vivo, MR-409 promoted wound closure. Animals treated topically with MR-409 healed earlier than controls in a dose-dependent manner. Histologic examination revealed better wound contraction and less fibrosis in treated groups. In conclusion, MR-409 is a potent mitogenic and anti-apoptotic factor for primary human dermal fibroblasts. Its beneficial effects on wound healing make it a promising agent for future development.
Collapse
Affiliation(s)
- Tengjiao Cui
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA.,South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, USA.,Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joaquin J Jimenez
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Norman L Block
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Evangelos V Badiavas
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Luis Rodriguez-Menocal
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ailin Vila Granda
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Renzhi Cai
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA.,South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, USA.,Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA.,South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, USA.,Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marta Zarandi
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA.,South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, USA
| | - Roberto Perez
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA.,South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, USA
| | - Andrew V Schally
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA.,South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, USA.,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.,Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.,Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Muñoz-Moreno L, Bajo AM, Prieto JC, Carmena MJ. Growth hormone-releasing hormone (GHRH) promotes metastatic phenotypes through EGFR/HER2 transactivation in prostate cancer cells. Mol Cell Endocrinol 2017; 446:59-69. [PMID: 28193499 DOI: 10.1016/j.mce.2017.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
Abstract
The involvement of growth hormone-releasing hormone (GHRH) in several relevant processes that contribute to prostate cancer progression was analyzed. Firstly, we evaluated GHRH effects on cell proliferation and adhesion in human cancer prostate cell lines, LNCaP and PC3, by using specific assays (BrdU incorporation and collagen adhesion). The expression levels of the main marker molecules of these processes were measured by RT-PCR, Western blotting and zymography assays. GHRH increased both cell proliferation and proliferating cell nuclear antigen (PCNA) levels in LNCaP cells and in PC3 cells; however, such a rise was faster in the PC3 cells that represent the most aggressive stage of prostate cancer. Furthermore, GHRH significantly reduced cell adhesion and E-cadherin levels in LNCaP and PC3 cells and up-regulated the total and nuclear expression of β-catenin in PC3 cells. In addition, we assessed cell cycle, cell migration and VEGF secretion in PC3 cells. GHRH augmented the number of cells in G2/M-phase but diminished that corresponding to G1-phase. Cell-cycle specific markers were evaluated since GHRH effects may be related to their differential expression; we observed a decrease of p53, p21, and Bax/Bcl2 ratio. Furthermore, GHRH increased the expression of CD44, c-myc and cyclin D1, MMP-2 and MMP-9 activity, and VEGF secretion. We also observed that EGFR and/or HER2 transactivation is involved in cell adhesion, cell migration and VEGF secretion produced by GHRH. Consequently, present results define GHRH as a proliferative, anti-apoptotic and migratory agent in prostate cancer.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares 28871, Spain
| | - Ana M Bajo
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares 28871, Spain
| | - Juan C Prieto
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares 28871, Spain.
| | - María J Carmena
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares 28871, Spain
| |
Collapse
|
5
|
Growth Hormone-Releasing Hormone and Its Analogues: Significance for MSCs-Mediated Angiogenesis. Stem Cells Int 2016; 2016:8737589. [PMID: 27774107 PMCID: PMC5059609 DOI: 10.1155/2016/8737589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/19/2016] [Accepted: 07/03/2016] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for regenerative medicine because of their multipotency, immune-privilege, and paracrine properties including the potential to promote angiogenesis. Accumulating evidence suggests that the inherent properties of cytoprotection and tissue repair by native MSCs can be enhanced by various preconditioning stimuli implemented prior to cell transplantation. Growth hormone-releasing hormone (GHRH), a stimulator in extrahypothalamus systems including tumors, has attracted great attentions in recent years because GHRH and its agonists could promote angiogenesis in various tissues. GHRH and its agonists are proangiogenic in responsive tissues including tumors, and GHRH antagonists have been tested as antitumor agents through their ability to suppress angiogenesis and cell growth. GHRH-R is expressed by MSCs and evolving work from our laboratory indicates that treatment of MSCs with GHRH agonists prior to cell transplantation markedly enhanced the angiogenic potential and tissue reparative properties of MSCs through a STAT3 signaling pathway. In this review we summarized the possible effects of GHRH analogues on cell growth and development, as well as on the proangiogenic properties of MSCs. We also discussed the relationship between GHRH analogues and MSC-mediated angiogenesis. The analyses provide new insights into molecular pathways of MSCs-based therapies and their augmentation by GHRH analogues.
Collapse
|
6
|
Chu HL, Chen HW, Tseng SH, Hsu MH, Ho LP, Chou FH, Li MPHY, Chang YC, Chen PH, Tsai LY, Chou CC, Chen JS, Cheng TM, Chang CC. Development of a growth-hormone-conjugated nanodiamond complex for cancer therapy. ChemMedChem 2014; 9:1023-9. [PMID: 24677633 DOI: 10.1002/cmdc.201300541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 01/28/2023]
Abstract
It is highly desirable to develop a therapeutic, observable nanoparticle complex for specific targeting in cancer therapy. Growth hormone (GH) and its antagonists have been explored as cancer cell-targeting molecules for both imaging and therapeutic applications. In this study, a low toxicity, biocompatible, therapeutic, and observable GH-nanoparticle complex for specifically targeting growth hormone receptor (GHR) in cancer cells was synthesized by conjugating GH with green fluorescence protein and carboxylated nanodiamond. Moreover, we have shown that this complex can be triggered by laser irradiation to create a "nanoblast" and induce cell death in the A549 non-small-cell lung cancer cell line via the apoptotic pathway. This laser-mediated, cancer-targeting platform can be widely used in cancer therapy.
Collapse
Affiliation(s)
- Hsueh-Liang Chu
- Department of Biological Science & Technology, National Chiao Tung, University, 75 Bo Ai Street, Hsinchu, Taiwan, 30068 (R.O.C.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rick FG, Schally AV, Block NL, Abi-Chaker A, Krishan A, Szalontay L. Mechanisms of synergism between antagonists of growth hormone-releasing hormone and antagonists of luteinizing hormone-releasing hormone in shrinking experimental benign prostatic hyperplasia. Prostate 2013; 73:873-83. [PMID: 23280565 DOI: 10.1002/pros.22633] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/03/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) affects aging men. Combined therapy with antagonists of growth hormone-releasing hormone (GHRH) and of luteinizing hormone-releasing hormone (LHRH or GnRH) induces prostate shrinkage in rat models. We investigated the mechanisms of action of this combination on cell cycle traverse and expression of prostatic genes. METHODS Effects of GHRH antagonist, JMR-132 (40 µg/day), the LHRH antagonist, cetrorelix (0.625 mg/kg), and their combination were evaluated on testosterone-induced benign prostatic hyperplasia in male Wistar rats. Influence of JMR-132, cetrorelix, and their combinations on cell viability was assessed by MTS assay in BPH-1 human prostate epithelial cells and WPMY-1 normal prostate stromal cells. Cell cycle was analyzed by laser flow cytometry. Real-time PCR arrays were performed. RESULTS The combination of antagonists caused marked shrinkage of rat prostate (29.5%). In vitro, JMR-132 plus cetrorelix (both 5µM) produced synergistic (57.4%) inhibition of growth of BPH-1 cells, but a lesser inhibition (46%) of WPMY-1 cells. Co-treatment of with JMR-132 plus cetrorelix induced a significant increase of BPH-1 cells blocked in S-phase plus cells with lower G0 /G1 and G2 /M DNA content. Significant changes in expression of >40 gene transcripts related to growth factors, inflammatory cytokines, and signal transduction were identified. CONCLUSIONS GHRH antagonist and LHRH antagonist combination potentiates rat prostate weight reduction and synergistically inhibits of growth of BPH-1 leading to cell cycle arrest in S-phase. These effects were lesser in normal stromal prostate cell line, WPMY-1. Our findings suggest that GHRH antagonists could be useful for BPH therapy, possibly in combination with LHRH antagonists.
Collapse
Affiliation(s)
- Ferenc G Rick
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida 33125, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW We provide new viewpoints of hormonal control of benign prostatic hyperplasia (BPH). The latest treatment findings with 5-alpha reductase inhibitors (5-ARIs) finasteride and dutasteride, refined indications, efficacy, and safety are discussed and compared. We also discuss potential new 5-ARIs and other hormonal treatments. RECENT FINDINGS Finasteride and dutasteride have equal efficacy and safety for the treatment and prevention of progression of BPH. 5-ARIs are especially recommended for prostates greater than 40 ml and PSA greater than 1.5 ng/ml. Combination therapy is the treatment of choice in these patients, but with prostate volume greater than 58 ml or International Prostate Symptom Score of at least 20, combinations have no advantage over 5-ARI monotherapy. Updates on the recent developments on BPH therapy with luteinizing hormone-releasing hormone (LHRH) antagonist are also reviewed and analyzed. Preclinical studies suggest that growth hormone-releasing hormone (GHRH) antagonists effectively shrink experimentally enlarged prostates alone or in combination with LHRH antagonists. SUMMARY New 5-ARIs seem to be the promising agents that need further study. Preclinical studies revealed that GHRH and LHRH antagonists both can cause a reduction in prostate volume. Recent data indicate that prostate shrinkage is induced by the direct inhibitory action of GHRH and of LHRH antagonists exerted through prostatic receptors. The adverse effects of 5ARIs encourage alternative therapy.
Collapse
|
9
|
Chopin LK, Seim I, Walpole CM, Herington AC. The ghrelin axis--does it have an appetite for cancer progression? Endocr Rev 2012; 33:849-91. [PMID: 22826465 DOI: 10.1210/er.2011-1007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHSR), is a peptide hormone with diverse physiological roles. Ghrelin regulates GH release, appetite and feeding, gut motility, and energy balance and also has roles in the cardiovascular, immune, and reproductive systems. Ghrelin and the GHSR are expressed in a wide range of normal and tumor tissues, and a fluorescein-labeled, truncated form of ghrelin is showing promise as a biomarker for prostate cancer. Plasma ghrelin levels are generally inversely related to body mass index and are unlikely to be useful as a biomarker for cancer, but may be useful as a marker for cancer cachexia. Some single nucleotide polymorphisms in the ghrelin and GHSR genes have shown associations with cancer risk; however, larger studies are required. Ghrelin regulates processes associated with cancer, including cell proliferation, apoptosis, cell migration, cell invasion, inflammation, and angiogenesis; however, the role of ghrelin in cancer is currently unclear. Ghrelin has predominantly antiinflammatory effects and may play a role in protecting against cancer-related inflammation. Ghrelin and its analogs show promise as treatments for cancer-related cachexia. Further studies using in vivo models are required to determine whether ghrelin has a role in cancer progression.
Collapse
Affiliation(s)
- Lisa K Chopin
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Queensland University of Technology and Australian Prostate Cancer Research Centre-Queensland, Brisbane, Queensland 4001, Australia.
| | | | | | | |
Collapse
|
10
|
Xu Y, Jiang Y, Wu B. New Agonist- and Antagonist-Based Treatment Approaches for Advanced Prostate Cancer. J Int Med Res 2012; 40:1217-26. [PMID: 22971474 DOI: 10.1177/147323001204000401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Increased understanding of prostate cancer biology has led to new treatment strategies and promising new agents for treating prostate cancer, in particular peptide-based agonists and antagonists. In this review article, new therapy modalities and potential approaches for the treatment of advanced prostate cancer are discussed, including agonists and antagonists of luteinizing hormone-releasing hormone, antagonists of bombesin/gastrin-releasing peptide, and growth hormone-releasing hormone and somatostatin analogues. Though the prognosis of patients with prostate cancer is much improved by some of these treatment approaches, including combination treatment methods, extensive side-effects are still reported. These include sexual dysfunction, functional lesions of the liver and renal system, osteoporosis, anaemia and diarrhoea. Future studies should focus on new treatment agents and treatment approaches that can eliminate side-effects and improve quality of life in patients with prostate cancer on the basis of potent treatment efficacy.
Collapse
Affiliation(s)
- Y Xu
- Department of Urology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yf Jiang
- Department of Urology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - B Wu
- Department of Urology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| |
Collapse
|
11
|
Rick FG, Szalontay L, Schally AV, Block NL, Nadji M, Szepeshazi K, Vidaurre I, Zarandi M, Kovacs M, Rekasi Z. Combining growth hormone-releasing hormone antagonist with luteinizing hormone-releasing hormone antagonist greatly augments benign prostatic hyperplasia shrinkage. J Urol 2012; 187:1498-504. [PMID: 22341819 DOI: 10.1016/j.juro.2011.11.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Indexed: 12/20/2022]
Abstract
PURPOSE Benign prostatic hyperplasia often affects aging men. Antagonists of the neuropeptide growth hormone-releasing hormone reduced prostate weight in an androgen induced benign prostatic hyperplasia model in rats. Luteinizing hormone-releasing hormone antagonists also produce marked, protracted improvement in lower urinary tract symptoms, reduced prostate volume and an increased urinary peak flow rate in men with benign prostatic hyperplasia. We investigated the influence of a combination of antagonists of growth hormone-releasing hormone and luteinizing hormone-releasing hormone on animal models of benign prostatic hyperplasia. MATERIALS AND METHODS We evaluated the effects of the growth hormone-releasing hormone antagonist JMR-132, given at a dose of 40 μg daily, the luteinizing hormone-releasing hormone antagonist cetrorelix, given at a dose of 0.625 mg/kg, and their combination on testosterone induced benign prostatic hyperplasia in adult male Wistar rats in vivo. Prostate tissue was examined biochemically and histologically. Serum levels of growth hormone, luteinizing hormone, insulin-like growth factor-1, dihydrotestosterone and prostate specific antigen were determined. RESULTS Marked shrinkage of the rat prostate (30.3%) occurred in response to the combination of growth hormone-releasing hormone and luteinizing hormone-releasing hormone antagonists (p<0.01). The combination strongly decreased prostatic prostate specific antigen, 6-transmembrane epithelial antigen of the prostate, interleukin-1β, nuclear factor-κβ and cyclooxygenase-2, and decreased serum prostate specific antigen. CONCLUSIONS A combination of growth hormone-releasing hormone antagonist with luteinizing hormone-releasing hormone antagonist potentiated a reduction in prostate weight in an experimental benign prostatic hyperplasia model. Results suggest that this shrinkage in prostate volume was induced by the direct inhibitory effects of growth hormone-releasing hormone and luteinizing hormone-releasing hormone antagonists exerted through their respective prostatic receptors. These findings suggest that growth hormone-releasing hormone antagonists and/or their combination with luteinizing hormone-releasing hormone antagonists should be considered for further development as therapy for benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Ferenc G Rick
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida 33125, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Antagonists of growth hormone-releasing hormone inhibit growth of androgen-independent prostate cancer through inactivation of ERK and Akt kinases. Proc Natl Acad Sci U S A 2012; 109:1655-60. [PMID: 22307626 DOI: 10.1073/pnas.1120588109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The management of castration-resistant prostate cancer (CRPC) presents a clinical challenge because of limitations in efficacy of current therapies. Novel therapeutic strategies for the treatment of CRPC are needed. Antagonists of hypothalamic growth hormone-releasing hormone (GHRH) inhibit growth of various malignancies, including androgen-dependent and independent prostate cancer, by suppressing diverse tumoral growth factors, especially GHRH itself, which acts as a potent autocrine/paracrine growth factor in many tumors. We evaluated the effects of the GHRH antagonist, JMR-132, on PC-3 human androgen-independent prostate cancer cells in vitro and in vivo. JMR-132 suppressed the proliferation of PC-3 cells in vitro in a dose-dependent manner and significantly inhibited growth of PC-3 tumors by 61% (P < 0.05). The expression of GHRH, GHRH receptors, and their main splice variant, SV1, in PC-3 cells and tumor xenografts was demonstrated by RT-PCR and Western blot. The content of GHRH protein in PC-3 xenografts was lowered markedly, by 66.3% (P < 0.01), after treatment with JMR-132. GHRH induced a significant increase in levels of ERK, but JMR-132 abolished this outcome. Our findings indicate that inhibition of PC-3 prostate cancer by JMR-132 involves inactivation of Akt and ERK. The inhibitory effect produced by GHRH antagonist can result in part from inactivation of the PI3K/Akt/mammalian target of rapamycin and Raf/MEK/ERK pathways and from the reduction in GHRH produced by cancer cells. Our findings support the role of GHRH as an autocrine growth factor in prostate cancer and suggest that antagonists of GHRH should be considered for further development as therapy for CRPC.
Collapse
|
13
|
Shishkin SS, Lisitskaya KV, Krakhmaleva IN. Biochemical polymorphism of the growth hormone system proteins and its manifestations in human prostate cells. BIOCHEMISTRY (MOSCOW) 2011; 75:1547-62. [PMID: 21417994 DOI: 10.1134/s0006297910130043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basic mechanisms are considered that are responsible for producing biochemical polymorphism of human proteins realized at three basic levels: the structures of genome and genes; the transcription and maturation of transcripts; the postsynthetic formation of functionally active protein products of gene expression. The data on biochemical polymorphism of growth hormone (GH) and some other proteins that are directly or indirectly necessary for its functioning and support this polymorphism by polylocus, polyallelism, alternative splicing, and various postsynthetic modifications are analyzed. The role of polymorphic proteins of the GH system is discussed in formation of a variety of oligomeric molecular structures of this system (multicomponent transport complexes, receptors, and endocellular protein ensembles involved in the regulation of gene expression). It is emphasized that such structural polymorphism significantly influences the biological effects in various parts of the GH system during physiological processes and in tumors, in particular in prostate cancer.
Collapse
Affiliation(s)
- S S Shishkin
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | |
Collapse
|
14
|
Antagonists of growth hormone-releasing hormone (GHRH) reduce prostate size in experimental benign prostatic hyperplasia. Proc Natl Acad Sci U S A 2011; 108:3755-60. [PMID: 21321192 DOI: 10.1073/pnas.1018086108] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Growth hormone-releasing hormone (GHRH), a hypothalamic polypeptide, acts as a potent autocrine/paracrine growth factor in many cancers. Benign prostatic hyperplasia (BPH) is a pathologic proliferation of prostatic glandular and stromal tissues; a variety of growth factors and inflammatory processes are inculpated in its pathogenesis. Previously we showed that potent synthetic antagonists of GHRH strongly inhibit the growth of diverse experimental human tumors including prostate cancer by suppressing various tumoral growth factors. The influence of GHRH antagonists on animal models of BPH has not been investigated. We evaluated the effects of the GHRH antagonists JMR-132 given at doses of 40 μg/d, MIA-313 at 20 μg/d, and MIA-459 at 20 μg/d in testosterone-induced BPH in Wistar rats. Reduction of prostate weights was observed after 6 wk of treatment with GHRH antagonists: a 17.8% decrease with JMR-132 treatment; a 17.0% decline with MIA-313 treatment; and a 21.4% reduction with MIA-459 treatment (P < 0.05 for all). We quantified transcript levels of genes related to growth factors, inflammatory cytokines, and signal transduction and identified significant changes in the expression of more than 80 genes (P < 0.05). Significant reductions in protein levels of IL-1β, NF-κβ/p65, and cyclooxygenase-2 (COX-2) also were observed after treatment with a GHRH antagonist. We conclude that GHRH antagonists can lower prostate weight in experimental BPH. This reduction is caused by the direct inhibitory effects of GHRH antagonists exerted through prostatic GHRH receptors. This study sheds light on the mechanism of action of GHRH antagonists in BPH and suggests that GHRH antagonists should be considered for further development as therapy for BPH.
Collapse
|
15
|
Abstract
Pituitary somatotrophs secrete growth hormone (GH) into the bloodstream, to act as a hormone at receptor sites in most, if not all, tissues. These endocrine actions of circulating GH are abolished after pituitary ablation or hypophysectomy, indicating its pituitary source. GH gene expression is, however, not confined to the pituitary gland, as it occurs in neural, immune, reproductive, alimentary, and respiratory tissues and in the integumentary, muscular, skeletal, and cardiovascular systems, in which GH may act locally rather than as an endocrine. These actions are likely to be involved in the proliferation and differentiation of cells and tissues prior to the ontogeny of the pituitary gland. They are also likely to complement the endocrine actions of GH and are likely to maintain them after pituitary senescence and the somatopause. Autocrine or paracrine actions of GH are, however, sometimes mediated through different signaling mechanisms to those mediating its endocrine actions and these may promote oncogenesis. Extrapituitary GH may thus be of physiological and pathophysiological significance.
Collapse
Affiliation(s)
- S Harvey
- Department of Physiology, University of Alberta, 7-41 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada,
| |
Collapse
|
16
|
Stepień T, Sacewicz M, Lawnicka H, Krupiński R, Komorowski J, Siejka A, Stepień H. Stimulatory effect of growth hormone-releasing hormone (GHRH(1-29)NH2) on the proliferation, VEGF and chromogranin A secretion by human neuroendocrine tumor cell line NCI-H727 in vitro. Neuropeptides 2009; 43:397-400. [PMID: 19747727 DOI: 10.1016/j.npep.2009.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 07/14/2009] [Accepted: 08/14/2009] [Indexed: 11/23/2022]
Abstract
Growth hormone-releasing hormone (GHRH) and its receptors have been implicated in a variety of cellular processes like cell survival, proliferation, apoptosis, angiogenesis and neoplastic transformation of various non-pituitary tissues. Here, we investigated for the first time the in vitro effect of GHRH(1-29)NH2 on the proliferation and the secretion of vascular endothelial growth factor (VEGF) and chromogranin A by the human bronchial neuroendocrine tumor cells NCI-H727. GHRH(1-29)NH2 at the concentrations of 10(-8)-10(-6)M increased the proliferation of these cells and this effect was associated with a statistically significant increase in VEGF and chromogranin A secretion into the supernatants of the tested cells. Our findings indicate that GHRH functions as a trophic hormone for bronchial neuroendocrine (NET) tumors.
Collapse
Affiliation(s)
- Tomasz Stepień
- Department of General and Endocrinological Surgery, Copernicus Memorial Hospital, Pabianicka Street 62, 93-513 Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
17
|
Heinrich E, Schally AV, Buchholz S, Rick FG, Halmos G, Mile M, Groot K, Hohla F, Zarandi M, Varga JL. Dose-dependent growth inhibition in vivo of PC-3 prostate cancer with a reduction in tumoral growth factors after therapy with GHRH antagonist MZ-J-7-138. Prostate 2008; 68:1763-72. [PMID: 18729085 DOI: 10.1002/pros.20843] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of various cancers and affect tumoral growth factors. METHODS We investigated the effect of a new GHRH antagonist MZ-J-7-138 at doses of 1.25, 2.5, 5 and 10 microg/day s.c. on the growth of PC-3 human androgen independent prostate cancers xenografted s.c. into nude mice. Binding assays were used to investigate GHRH receptors. The levels of IGF-II and VEGF in tumors were measured by radioimmunoassays. RESULTS Treatment with 2.5, 5, and 10 microg/day MZ-J-7-138 caused a significant dose-dependent growth reduction of PC-3 tumors. The greatest inhibition of 78% was obtained with 10 microg/day. The suppression of IGF-II protein levels in tumors was seen at all doses of MZ-J-7-138, but only 10 microg dose induced a significant inhibition. MZ-J-7-138 also reduced VEGF protein levels, the inhibition being significant at doses of 5 and 10 microg. Specific high affinity binding sites for GHRH were found on PC-3 tumors using (125)I-labeled GHRH antagonist JV-1-42. MZ-J-7-138 displaced radiolabeled JV-1-42 with an IC(50) of 0.32 nM indicating its high affinity to GHRH receptors. Real-time PCR analyses detected splice variant 1 (SV1) of GHRH receptor (GHRH-R) as well as pituitary type of GHRH-R and GHRH ligand. CONCLUSION Our results demonstrate the efficacy of GHRH antagonist MZ-J-7-138 in suppressing growth of PC-3 prostate cancer at doses lower than previous antagonists. The reduction of levels of growth factors such as VEGF and IGF-II in tumors by GHRH antagonist was correlated with the suppression of tumor growth.
Collapse
Affiliation(s)
- Elmar Heinrich
- Veterans Affairs Medical Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Inhibition of proliferation, VEGF secretion of human neuroendocrine tumor cell line NCI-H727 by an antagonist of growth hormone-releasing hormone (GH-RH) in vitro. Cancer Lett 2008; 268:120-8. [DOI: 10.1016/j.canlet.2008.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/30/2022]
|
19
|
Köster F, Engel JB, Schally AV, Hönig A, Schröer A, Seitz S, Hohla F, Ortmann O, Diedrich K, Buchholz S. Triple-negative breast cancers express receptors for growth hormone-releasing hormone (GHRH) and respond to GHRH antagonists with growth inhibition. Breast Cancer Res Treat 2008; 116:273-9. [DOI: 10.1007/s10549-008-0120-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 07/01/2008] [Indexed: 11/24/2022]
|
20
|
Schally AV, Varga JL, Engel JB. Antagonists of growth-hormone-releasing hormone: an emerging new therapy for cancer. ACTA ACUST UNITED AC 2008; 4:33-43. [PMID: 18084344 DOI: 10.1038/ncpendmet0677] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 10/01/2007] [Indexed: 12/28/2022]
Abstract
This article reviews the potential clinical uses of antagonists of growth-hormone-releasing hormone (GHRH) for tumor therapy. GHRH antagonists suppress the growth of various human cancer lines xenografted into nude mice; such tumors include breast, ovarian, endometrial and prostate cancers, lung cancers (small-cell lung carcinomas and non-small-cell lung carcinomas), renal, pancreatic, gastric and colorectal carcinomas, brain tumors (malignant gliomas), osteogenic sarcomas and non-Hodgkin's lymphomas. The antitumor effects of GHRH antagonists are exerted in part indirectly through the inhibition of the secretion of GH from the pituitary and the resulting reduction in the levels of hepatic insulin-like growth factor I (IGF-I). The main effects of the GHRH antagonists are, however, exerted directly on tumors. GHRH ligand is present in various human cancers and might function as an autocrine and/or paracrine growth factor. Pituitary-type GHRH receptors and their splice variants are also found in many human cancers. The inhibitory effects of GHRH antagonists seem to be due to the blockade of action of tumoral GHRH. Antagonists of GHRH can also suppress cancer growth by blocking production of IGF-I and/or IGF-II by the tumor. Further development of GHRH antagonists that are still-more potent should lead to potential therapeutic agents for various cancers.
Collapse
|
21
|
Stangelberger A, Schally AV, Djavan B. New treatment approaches for prostate cancer based on peptide analogues. Eur Urol 2007; 53:890-900. [PMID: 18201818 DOI: 10.1016/j.eururo.2007.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 12/04/2007] [Indexed: 12/01/2022]
Abstract
OBJECTIVES New therapy modalities for the treatment of advanced prostate cancer based on peptide analogues are reviewed. RESULTS Agonists and antagonists of luteinising hormone-releasing hormone (LHRH) lead to androgen deprivation, but direct effects on tumours may also play a role. Radiolabeled somatostatin analogues can be targeted to tumours expressing receptors for somatostatin and have been successfully applied for the localization of these tumours. Tumoural LHRH, growth hormone-releasing hormone (GHRH), and bombesin/gastrin-releasing peptide (BN/GRP) and their receptors appear to be involved in the proliferation of prostate cancer. On the basis of the recent advances in the understanding of the role of neuropeptides in tumour growth and progression, new therapeutic modalities are being developed that are based on antagonists of GHRH and of BN/GRP, which inhibit growth factors or their receptors. Another promising approach for the therapy of prostate cancer consists of the use of cytotoxic analogues of LHRH, bombesin, and somatostatin, which can be targeted to receptors for these peptides in prostate cancers and their metastases. CONCLUSIONS New promising forms of hormone therapy and targeted chemotherapy may improve therapy of advanced stage prostate cancer.
Collapse
|
22
|
Stangelberger A, Schally AV, Zarandi M, Heinrich E, Groot K, Havt A, Kanashiro CA, Varga JL, Halmos G. The combination of antagonists of LHRH with antagonists of GHRH improves inhibition of androgen sensitive MDA-PCa-2b and LuCaP-35 prostate cancers. Prostate 2007; 67:1339-53. [PMID: 17624923 DOI: 10.1002/pros.20605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Antagonists of growth hormone-releasing hormone (GHRH) could extend the duration of response of androgen sensitive prostate cancers to androgen deprivation. METHODS We investigated the effect of new GHRH antagonists MZ-J-7-118 and MZ-J-7-138 and luteinizing hormone-releasing hormone (LHRH) antagonist Cetrorelix or castration on androgen sensitive MDA-PCa-2b and LuCaP-35 prostate cancer models xenografted into nude mice. Animals bearing androgen-independent LuCaP-35V prostatic cancer model were also treated with MZ-J-7-118. RESULTS Receptors for LHRH and GHRH were present in MDA-PCA-2b, LuCaP-35, and LuCaP-35V tumors. GHRH antagonists increased the inhibitory effect of surgical castration and LHRH antagonists on androgen sensitive MDA-PCa-2b and LuCaP-35 tumors. The time to relapse of androgen-dependent LuCaP-35 tumors was extended by GHRH antagonists. Growth of androgen-independent LuCaP-35V xenografts was also significantly inhibited by MZ-J-7-118. In MDA-PCa-2b tumors treatment with MZ-J-7-118 caused a significant decrease of VEGF and Cetrorelix or its combination with MZ-J-7-118 reduced EGF. The B(max) of EGF receptors was significantly reduced by Cetrorelix, MZ-J-7-118 and their combination. CONCLUSIONS Our findings suggest that the use of a combination of antagonists of GHRH and LHRH could improve the therapy for androgen sensitive prostate cancer. Antagonists of GHRH could be also considered for treatment of androgen-independent prostate cancers.
Collapse
Affiliation(s)
- Anton Stangelberger
- Veterans Affairs Medical Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Buchholz S, Schally AV, Engel JB, Hohla F, Heinrich E, Koester F, Varga JL, Halmos G. Potentiation of mammary cancer inhibition by combination of antagonists of growth hormone-releasing hormone with docetaxel. Proc Natl Acad Sci U S A 2007; 104:1943-6. [PMID: 17261802 PMCID: PMC1794297 DOI: 10.1073/pnas.0610860104] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antagonists of growth hormone-releasing hormone (GHRH) are being developed for the treatment of various cancers. In this study, we investigated the effectiveness of treatment with GHRH antagonist JMR-132 alone and in combination with docetaxel chemotherapy in nude mice bearing MX-1 human breast cancers. Specific high-affinity binding sites for GHRH were found on MX-1 tumor membranes using ligand competition assays with (125)I-labeled GHRH antagonist JV-1-42. JMR-132 displaced radiolabeled JV-1-42 with an IC(50) of 0.14 nM, indicating a high affinity of JMR-132 to GHRH receptors. Treatment of nude mice bearing xenografts of MX-1 with JMR-132 at 10 microg per day s.c. for 22 days significantly (P < 0.05) inhibited tumor volume by 62.9% and tumor weight by 47.8%. Docetaxel given twice at a dose of 20 mg/kg i.p. significantly reduced tumor volume and weight by 74.1% and 58.6%, respectively. Combination treatment with JMR-132 (10 microg/day) and docetaxel (20 mg/kg i.p.) led to growth arrest of most tumors as shown by an inhibition of tumor volume and weight by 97.7% and 95.6%, respectively (P < 0.001). Because no vital cancer cells were detected in some of the excised tumors, a total regression of the tumors was achieved in some cases. Treatment with JMR-132 also strongly reduced the concentration of EGF receptors in MX-1 tumors. Our results demonstrate that GHRH antagonists might provide a therapy for breast cancer and could be combined with docetaxel chemotherapy to enhance the efficacy of treatment.
Collapse
Affiliation(s)
- Stefan Buchholz
- *Veterans Affairs Medical Center and Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Universität Regensburg, 93051 Regensbug, Germany
| | - Andrew V. Schally
- *Veterans Affairs Medical Center and Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112
- Veterans Affairs Medical Center, South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- University of Miami Miller School of Medicine, Miami, FL 33101
- To whom correspondence should be addressed at:
VA Medical Center, 1201 Northwest 16th Street, Research (151), Room 2A103C, Miami, FL 33125. E-mail:
| | - Jörg B. Engel
- *Veterans Affairs Medical Center and Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112
- Universität Würzburg, Frauenklinik, 97080 Würzburg, Germany; and
| | - Florian Hohla
- *Veterans Affairs Medical Center and Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112
- **Department of Internal Medicine, Hospital Oberndorf, 5100 Oberndorf, Austria
| | - Elmar Heinrich
- *Veterans Affairs Medical Center and Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Frank Koester
- *Veterans Affairs Medical Center and Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Jozsef L. Varga
- *Veterans Affairs Medical Center and Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Gabor Halmos
- *Veterans Affairs Medical Center and Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112
- Veterans Affairs Medical Center, South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- University of Miami Miller School of Medicine, Miami, FL 33101
| |
Collapse
|
24
|
Havt A, Schally AV, Halmos G, Varga JL, Toller GL, Horvath JE, Szepeshazi K, Köster F, Kovitz K, Groot K, Zarandi M, Kanashiro CA. The expression of the pituitary growth hormone-releasing hormone receptor and its splice variants in normal and neoplastic human tissues. Proc Natl Acad Sci U S A 2005; 102:17424-9. [PMID: 16299104 PMCID: PMC1297670 DOI: 10.1073/pnas.0506844102] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Various attempts to detect human pituitary growth hormone-releasing hormone receptor (pGHRH-R) in neoplastic extrapituitary tissues have thus far failed. Recently, four splice variants (SVs) of GHRH-R have been described, of which SV1 has the highest structural homology to pGHRH-R and likely plays a role in tumor growth. The aim of this study was to reinvestigate whether human tumors and normal human extrapituitary tissues express the pGHRH-R and to corroborate our previous findings on its SVs. Thus, we developed a real-time PCR method for the detection of the mRNA for the pGHRH-R, its SVs, and the GHRH peptide. Using real-time PCR, Western blotting, and radioligand-binding assays, we detected the mRNA for pGHRH-R and pGHRH-R protein in various human cancer cell lines grown in nude mice and in surgical specimens of human lung cancers. The expression of mRNA for SVs of pGHRH-R and GHRH was likewise found in xenografts of human non-Hodgkin's lymphomas, pancreatic cancer, glioblastoma, small-cell lung carcinomas, and in human nonmalignant prostate, liver, lung, kidney, and pituitary. Western blots showed that these normal and malignant human tissues contain SV1 protein and immunoreactive GHRH. Our results demonstrate that some normal human tissues and tumors express mRNA and protein for the pGHRH-R and its splice variants. These findings confirm and extend the concept that GHRH and its receptors play an important role in the pathophysiology of human cancers.
Collapse
Affiliation(s)
- Alexandre Havt
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, New Orleans, LA 70112-1262, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stangelberger A, Schally AV, Varga JL, Hammann BD, Groot K, Halmos G, Cai RZ, Zarandi M. Antagonists of growth hormone releasing hormone (GHRH) and of bombesin/gastrin releasing peptide (BN/GRP) suppress the expression of VEGF, bFGF, and receptors of the EGF/HER family in PC-3 and DU-145 human androgen-independent prostate cancers. Prostate 2005; 64:303-15. [PMID: 15754342 DOI: 10.1002/pros.20262] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Antagonists of growth hormone releasing hormone (GHRH) as well as antagonists of bombesin/gastrin releasing peptide (BN/GRP) inhibit the growth of various malignancies (cancers) including prostate cancer. METHODS We investigated the effects of GHRH antagonists MZ-J-7-118 and RC-J-29-18, BN/GRP antagonists RC-3940-II and RC-3940-Et and the combination of MZ-J-7-118 and RC-3940-II on the growth of PC-3 and DU-145 human androgen independent prostate cancers xenografted s.c. into nude mice. To elucidate the mechanisms of action of these analogs, growth factors like IGF-II (insulin-like growth factor-II), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and epidermal growth factor receptor/human epidermal growth factor receptor (EGF-R/HER) family were measured in tumors as well as IGF-I in serum. RESULTS Antagonists of GHRH and BN/GRP alone or in combination significantly inhibited growth of PC-3 and DU-145 tumors, the greatest inhibition of tumor volume being achieved by combination of MZ-J-7-118 (5 microg/day) and RC-3940-II (10 microg/day). BN/GRP and GHRH antagonists and their combination also decreased the expression of VEGF significantly in PC-3 and non-significantly in DU-145, as measured by radioimmunoassay for VEGF protein and RT-PCR for mRNA levels of VEGF. GHRH and BN/GRP antagonists reduced bFGF concentrations and the maximal binding capacity of EGF receptors, and their mRNA levels in PC-3 and DU-145 tumors. mRNA levels for HER-2 and -3 were also diminished in PC-3 tumors by GHRH and BN/GRP antagonists. No changes in HER-4 were found after treatment. Serum IGF-I and tumoral IGF-II levels were not affected by the analogs. CONCLUSIONS BN/GRP and GHRH antagonists inhibit growth of PC-3 and DU-145 prostate cancers by suppressing the expression of tumoral growth factors such as VEGF and bFGF as well as the receptors for EGF and related HER-2 and -3. Additive effects on tumor inhibition (TI) in vivo, but not on VEGF, bFGF, or members of the EGF/HER receptor family, can be achieved by the joint administration of both classes of analogs.
Collapse
Affiliation(s)
- Anton Stangelberger
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, New Orleans, Louisiana 70112-1262,USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Keller G, Schally AV, Groot K, Toller GL, Havt A, Köster F, Armatis P, Halmos G, Zarandi M, Varga JL, Engel JB. Effective treatment of experimental human non-Hodgkin's lymphomas with antagonists of growth hormone-releasing hormone. Proc Natl Acad Sci U S A 2005; 102:10628-33. [PMID: 16027368 PMCID: PMC1180787 DOI: 10.1073/pnas.0504102102] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Antagonists of growth hormone-releasing hormone (GHRH) were shown to inhibit the growth of various cancers. We investigated the antitumor activity and the mechanism of action of GHRH antagonists in human non-Hodgkin's lymphomas (NHL). Nude mice bearing xenografts of RL and HT human NHL were treated with GHRH antagonists MZ-5-156 and MZ-J-7-138 at a dose of 40 microg twice daily. The concentrations of serum IGF-1 and GHRH, bFGF, and VEGF in tumor tissue were measured by radioimmunoassays. Expression of GHRH and splice variant 1 of the GHRH receptor in both cell lines was examined by RT-PCR. The effects of MZ-5-156, MZ-J-7-138 and GHRH on cell proliferation were evaluated in vitro. Treatment with MZ-5-156 and MZ-J-7-138 significantly (P < 0.05) inhibited the growth of RL and HT tumors by 59.9-73.9%. High-affinity binding sites for GHRH and mRNA for GHRH and splice variant-1 of the GHRH receptors were found on RL and HT tumors. RL and HT cells contained GHRH peptide, and their growth in vitro was significantly inhibited by both antagonists. IGF-I levels in serum of mice were significantly decreased by antagonist MZ-5-156. Therapy with GHRH antagonists also significantly reduced tumoral bFGF, whereas VEGF levels were not suppressed. Our findings suggest that GHRH antagonists inhibit the growth of RL and HT lymphomas by direct effects mediated by tumoral receptors for GHRH. GHRH antagonists could offer a new therapeutic modality for the management of advanced NHL.
Collapse
Affiliation(s)
- Gunhild Keller
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Majeed N, Blouin MJ, Kaplan-Lefko PJ, Barry-Shaw J, Greenberg NM, Gaudreau P, Bismar TA, Pollak M. A germ line mutation that delays prostate cancer progression and prolongs survival in a murine prostate cancer model. Oncogene 2005; 24:4736-40. [PMID: 15870705 DOI: 10.1038/sj.onc.1208572] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Circulating insulin-like growth factor-I (IGF-I) levels have been shown to be related to risk of prostate cancer in epidemiologic studies. While specific genetic loci responsible for interindividual variation in circulating IGF-I levels in normal men have not been identified, candidate genes include those involved in the growth hormone (GH)-IGF-I axis such as the hypothalamic factors GH releasing hormone (GHRH) and somatostatin and their receptors. To investigate the role of the GH-IGF-I axis on in vivo prostate carcinogenesis and neoplastic progression, we generated mice genetically predisposed to prostate cancer (the TRAMP model) to be homozygous for lit, a mutation that inactivates the GHRH receptor (GHRH-R) and reduces circulating levels of GH and IGF-I. The lit mutation significantly reduced the percentage of the prostate gland showing neoplastic changes at 35 weeks of age (P=0.0005) and was also associated with improved survival (P<0.01). These data provide an example of a germ line mutation that reduces risk in an experimental prostate carcinogenesis model. The results suggest that prostate carcinogenesis and progression may be influenced by germ line variation of genes encoding signalling molecules in the GH-IGF-I axis.
Collapse
Affiliation(s)
- Noreen Majeed
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Oncology, McGill University, 3755 Cote Ste-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Freddi S, Arnaldi G, Fazioli F, Scarpelli M, Appolloni G, Mancini T, Kola B, Bertagna X, Mantero F, Collu R, Boscaro M. Expression of growth hormone-releasing hormone receptor splicing variants in human primary adrenocortical tumours. Clin Endocrinol (Oxf) 2005; 62:533-8. [PMID: 15853821 DOI: 10.1111/j.1365-2265.2005.02253.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Several splice variants (SVs) of GHRH receptor (GHRH-R) have been identified in various human cancers through which GHRH antagonists may exert their IGF-II-mediated antiproliferative action. Because the overexpression of the IGF-II gene is a frequent feature of adrenal carcinoma, we searched for the presence of GHRH-R SVs in these tumours. METHODS AND RESULTS The expression of GHRH-R SVs was assessed by nested PCR in 45 human adrenocortical tumours. We have amplified 720-, 566- and 335-bp PCR products only in carcinomas. Their sequence revealed three open reading frames, corresponding to SV1, SV2 and SV4 of GHRH-R. SV2 was detected in five of 24 cancers examined, whereas the incidence of SV1 and SV4 was lower. Their simultaneous expression was observed in one carcinoma. No PCR products for SV3 or wild-type GHRH-R were found in carcinomas; mRNA for wild-type GHRH-R or SVs of GHRH-R were not observed either in adenomas or in normal adrenal or in NCI-H295R cells. Interestingly, all carcinomas which expressed SVs were also positive for the presence of GHRH mRNA. CONCLUSION This is the first time that the expression of splice variants of GHRH-R has been demonstrated in human adrenal carcinoma. This study raises the possibility that splice variants might play a role in adrenal carcinogenesis and might offer the possibility for new therapeutic strategies at least in a subgroup of adrenal carcinomas.
Collapse
Affiliation(s)
- Simona Freddi
- Division of Endocrinology, Institute of Clinical Medicine and Applied Biotechnology, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rekasi Z, Czompoly T, Schally AV, Boldizsar F, Varga JL, Zarandi M, Berki T, Horvath RA, Nemeth P. Antagonist of growth hormone-releasing hormone induces apoptosis in LNCaP human prostate cancer cells through a Ca2+-dependent pathway. Proc Natl Acad Sci U S A 2005; 102:3435-40. [PMID: 15728367 PMCID: PMC552899 DOI: 10.1073/pnas.0410006102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antagonists of growth hormone-releasing hormone (GHRH) exert antiproliferative effects directly on cancer cells, which are mediated by the tumoral GHRH receptors. However, the signal transduction pathways involved in antiproliferative effect of GHRH antagonists have not yet been elucidated. We used flow cytometry to investigate whether GHRH antagonist JV-1-38 can induce changes in the cytosolic free Ca2+ concentration leading to apoptosis in LNCaP human prostate cancer cells. JV-1-38 evoked prompt Ca2+ signal in a dose-dependent way (1-10 microM) and induced early stage of apoptosis in LNCaP human prostate cancer cells at a concentration effective in suppression of cell proliferation (10 microM) peaking after 3 h. Unexpectedly, agonist GHRH(1-29)NH2, which elevates cytosolic free Ca2+ concentration in pituitary somatotrophs at nanomolar concentrations, failed to induce Ca2+ signal or apoptosis even at a 10-fold higher concentration (100 microM). However, agonist GHRH(1-29)NH2 inhibited JV-1-38-induced Ca2+ signals in a dose-dependent way without affecting the antagonist-induced apoptosis. Peptides unrelated to GHRH did not induce Ca2+ signals in LNCaP human prostate cancer cells. EDTA (10 mM) or nifedipine (10 microM) significantly reduced the Ca2+ signal and early stage of apoptosis induced by JV-1-38, supporting the view that the increase in intracellular Ca2+ in response to JV-1-38 occurs primarily through extracellular Ca2+ entry through voltage-operated Ca2+ channels. In conclusion, GHRH antagonists activate tumoral GHRH receptors and are able to induce apoptosis in LNCaP human prostate cancer cells through a Ca2+-dependent pathway. Treatment with GHRH antagonists may offer a new approach to the therapy of prostate and other hormone-sensitive cancers.
Collapse
Affiliation(s)
- Zoltan Rekasi
- Department of Anatomy, University of Pécs, H-7624, Pécs, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kiaris H, Schally AV, Kalofoutis A. Extrapituitary Effects of the Growth Hormone-Releasing Hormone. VITAMINS AND HORMONES 2005; 70:1-24. [PMID: 15727800 DOI: 10.1016/s0083-6729(05)70001-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Growth hormone-releasing hormone (GHRH) is a neuropeptide secreted by the hypothalamus that stimulates the synthesis and release of growth hormone (GH) in the pituitary. Accumulating evidence suggests that in addition to GHRH's neuroendocrine action, GHRH is present in several extrahypothalamic tissues and is involved in a variety of cellular processes. Its function is related to the regulation of cell proliferation and differentiation of various nonpituitary cell types. In certain cases, ectopic production of GHRH has also been implicated in carcinogenesis. The mechanisms by which GHRH affects the peripheral extrapituitary tissues remain poorly understood, but it is likely that classic neuroendocrine action as well as paracrine and autocrine pathways are involved. Some headway has been made in the identification of extrapituitary receptors for GHRH and cDNA as splice variants of these GHRH receptors found in various tumors. The fact that the nonpituitary GHRH receptors are not fully identified, however, remains the major obstacle in studying, at a more mechanistic level, the action of local GHRH. This review summarizes the information available regarding the role of GHRH in the extrapituitary tissues with emphasis on its potential therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Hippokratis Kiaris
- Department of Biological Chemistry, Medical School, University of Athens, 115 27 Athens, Greece
| | | | | |
Collapse
|
31
|
Stangelberger A, Schally AV, Varga JL, Zarandi M, Szepeshazi K, Armatis P, Halmos G. Inhibitory Effect of Antagonists of Bombesin and Growth Hormone-Releasing Hormone on Orthotopic and Intraosseous Growth and Invasiveness of PC-3 Human Prostate Cancer in Nude Mice. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.49.11.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: To determine whether antagonists of growth hormone-releasing hormone (GHRH) and bombesin/gastrin-releasing peptide (BN/GRP) can inhibit the orthotopic and metastatic growth of PC-3 human androgen-independent prostate cancers.
Experimental Design: The effects of administration of GHRH antagonist MZ-J-7-118, BN/GRP antagonist RC-3940-II, and their combination on the growth and metastatic spread of PC-3 tumors implanted orthotopically into nude mice were evaluated. The efficacy of this treatment on PC-3 tumors implanted intratibially and s.c. was also determined.
Results: Treatment with MZ-J-7-118, RC-3940-II, or their combination significantly inhibited the growth of PC-3 tumors implanted orthotopically, intraosseously, and s.c. The combination of the two antagonists had the greatest effect, inhibiting orthotopic tumor growth by 77%, intratibially implanted tumors by 86%, and s.c. tumors by 86%. The therapy with BN/GRP and GHRH antagonists, especially in combination, also reduced the local tumor spread and distant metastases in animals bearing orthotopic tumors. Combination therapy was likewise the most effective in reducing the incidence and severity of tibial osteolytic lesions and pathologic fractures in intraosseously implanted tumors. High-affinity binding sites for BN/GRP and GHRH were found in s.c. and orthotopic PC-3 tumor samples. MZ-J-7-118, RC-3940-II, and the combination of both compounds inhibited in vitro growth of PC-3 cells.
Conclusions: Our findings show the efficacy of BN/GRP antagonists and GHRH antagonists for the treatment of advanced prostate cancer in preclinical metastatic models. As BN/GRP antagonists are already in clinical trials and GHRH antagonists are effective in androgen-independent prostate cancer models, these analogues could be considered for the management of advanced prostate carcinoma.
Collapse
Affiliation(s)
- Anton Stangelberger
- 1Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center and
- 2Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Andrew V. Schally
- 1Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center and
- 2Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jozsef L. Varga
- 1Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center and
- 2Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Marta Zarandi
- 1Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center and
- 2Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Karoly Szepeshazi
- 1Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center and
- 2Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Patricia Armatis
- 1Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center and
- 2Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Gabor Halmos
- 1Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center and
- 2Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
32
|
Toller GL, Horvath JE, Schally AV, Halmos G, Varga JL, Groot K, Chism D, Zarandi M. Development of a polyclonal antiserum for the detection of the isoforms of the receptors for human growth hormone-releasing hormone on tumors. Proc Natl Acad Sci U S A 2004; 101:15160-5. [PMID: 15469915 PMCID: PMC524040 DOI: 10.1073/pnas.0406348101] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of various human cancers by multiple mechanisms, which include direct effects on tumor cells through the splice variants (SV) of the GHRH receptor. Our findings suggest that the tumoral protein encoded by SV 1 (SV1) is a likely functional receptor. The aim of this study was to develop a polyclonal antiserum against a polypeptide analog of segment 1-25 of the putative SV1 receptor protein. Rabbits were immunized with [Ala-23]SV1 (1-25)-Tyr-26-Cys-27-NH2 as a hapten, conjugated to BSA or keyhole limpet hemocyanin. The antisera thus generated were evaluated by RIA for binding to the radiolabeled hapten. The specificity and sensitivity of the antisera were studied on xenografts of RL and HT human non-Hodgkin's lymphomas. The sera raised against keyhole limpet hemocyanin-SV1 hapten, showed binding values of 50-75% at a 1:56,000 dilution. In Western blot analyses, the purified polyclonal antibody recognized a specific signal with a molecular mass of approximately 40 kDa in RL and HT lymphomas. This band corresponds to the estimated molecular mass of the GHRH receptor isoform encoded by SV1. RT-PCR and ligand binding studies also revealed the expression of SV1 and the presence of high-affinity binding sites for GHRH on RL and HT tumors. Because the antiserum developed recognizes the tumoral GHRH receptor protein encoded by SV1, it should be of value in various investigations.
Collapse
MESH Headings
- Animals
- Antibodies/isolation & purification
- Cell Line, Tumor
- Female
- Genetic Variation
- Humans
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/metabolism
- Mice
- Mice, Nude
- Neoplasms/genetics
- Neoplasms/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/immunology
- Protein Isoforms/metabolism
- Rabbits
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/immunology
- Receptors, Neuropeptide/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/immunology
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Gabor L Toller
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, New Orleans, LA 70112-1262, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Busek P, Malík R, Sedo A. Dipeptidyl peptidase IV activity and/or structure homologues (DASH) and their substrates in cancer. Int J Biochem Cell Biol 2004; 36:408-21. [PMID: 14687920 DOI: 10.1016/s1357-2725(03)00262-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Post-translational modification of proteins is an important regulatory event. Numerous biologically active peptides that play an essential role in cancerogenesis contain an evolutionary conserved proline residue as a proteolytic-processing regulatory element. Proline-specific proteases could therefore be viewed as important "check-points". Limited proteolysis of such peptides may lead to quantitative but, importantly, due to the change of receptor preference, also qualitative changes of their signaling potential. Dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5, identical with CD26) was for many years believed to be a unique cell membrane protease cleaving X-Pro dipeptides from the N-terminal end of peptides and proteins. Subsequently, a number of other molecules were discovered, exhibiting various degree of structural homology and DPP-IV-like enzyme activity, capable of cleaving similar set of substrates. These comprise for example, seprase, fibroblast activation protein alpha, DPP6, DPP8, DPP9, attractin, N-acetylated-alpha-linked-acidic dipeptidases I, II and L, quiescent cell proline dipeptidase, thymus-specific serine protease and DPP IV-beta. It is tempting to speculate their potential participation on DPP-IV biological function(s). Disrupted expression and enzymatic activity of "DPP-IV activity and/or structure homologues" (DASH) might corrupt the message carried by their substrates, promoting abnormal cell behavior. Consequently, modulation of particular enzyme activity using e.g. DASH inhibitors, specific antibodies or DASH expression modification may be an attractive therapeutic concept in cancer treatment. This review summarizes recent information on the interactions between DASH members and their substrates with respect to their possible role in cancer biology.
Collapse
Affiliation(s)
- Petr Busek
- Laboratory of Cancer Cell Biology, First Faculty of Medicine, Institute of Biochemistry and Experimental Oncology, Charles University, 128 53 Prague 2, Czech Republic
| | | | | |
Collapse
|
34
|
Letsch M, Schally AV, Stangelberger A, Groot K, Varga JL. Antagonists of growth hormone-releasing hormone (GH-RH) enhance tumour growth inhibition induced by androgen deprivation in human MDA-Pca-2b prostate cancers. Eur J Cancer 2004; 40:436-44. [PMID: 14746863 DOI: 10.1016/j.ejca.2003.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the present study, we investigated whether the growth hormone-releasing hormone (GH-RH) antagonist JV-1-38 could enhance the effects of androgen deprivation produced by the anti-androgen Flutamide and luteinising hormone-releasing hormone (LH-RH) agonist Decapeptyl in an experimental model of human androgen-sensitive MDA PCa 2b prostate carcinoma implanted subcutaneously (s.c.) into nude mice. We also evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR) the effects of combined treatment on the mRNA expression for prostate-specific antigen (PSA) and measured serum PSA levels. In experiment 1, GH-RH antagonist JV-1-38 greatly inhibited tumour growth in combination with Decapeptyl, but was ineffective when given alone. Thus, combined therapy with JV-1-38 at 20 microg/day and Decapeptyl microcapsules releasing 12.5 microg/day for 29 days inhibited significantly (P<0.01) MDA PCa 2b tumour growth by 65%, compared with controls. Combined treatment also significantly (P<0.05) decreased serum PSA levels by 52% and reduced tumour weight by 54% vs. controls. In experiment 2, GH-RH antagonist JV-1-38 at 20 microg/day likewise showed powerful growth inhibitory effects when combined with Flutamide (25 mg/kg/day) for 21 days. Combined treatment with JV-1-38 and slow-release pellets of Flutamide significantly (P<0.001) inhibited tumour growth by 61% versus controls, and was significantly (P<0.05) more effective than Flutamide or JV-1-38 alone. Combination therapy also reduced significantly (P<0.001) tumour weight and serum PSA levels by 59 and 47%, respectively. The mRNA expression for PSA in MDA PCa 2b tumours was not changed by JV-1-38, Decapeptyl and Flutamide alone or in their respective combinations. Our findings suggest that GH-RH antagonists could enhance the tumour inhibitory effects of androgen deprivation for the primary therapy of patients with advanced prostate carcinoma.
Collapse
Affiliation(s)
- M Letsch
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, 1601 Perdido St, New Orleans, LA 70112-1262, USA
| | | | | | | | | |
Collapse
|
35
|
Kiaris H, Chatzistamou I, Schally AV, Halmos G, Varga JL, Koutselini H, Kalofoutis A. Ligand-dependent and -independent effects of splice variant 1 of growth hormone-releasing hormone receptor. Proc Natl Acad Sci U S A 2003; 100:9512-7. [PMID: 12867592 PMCID: PMC170949 DOI: 10.1073/pnas.1533185100] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Existing evidence indicates that, in addition to its neuroendocrine action, growth hormone-releasing hormone (GHRH) acts directly on several nonpituitary tissues, especially neoplasms, and stimulates cell proliferation. We have recently reported that a splice variant of the receptor (SV1) is expressed in various normal tissues and particularly in tumor tissues, producing mitogenic effects on GHRH binding. By using HEC-1A human endometrial carcinoma cells, which express endogenous SV1, we show that, in addition to its ability to mediate the mitogenic effects of GHRH, SV1 also possesses relatively high intrinsic, ligand-independent activity. By using an antisense RNA-based approach we found that SV1 ablation reduces the efficacy of colony formation and the rate of cell proliferation of HEC-1A cells in the absence of exogenous GHRH, and decreases their sensitivity to GHRH when the neurohormone is added to the culture media. This ligand-independent stimulation of cell proliferation appears to be a characteristic property of the truncated form of the receptor, because the expression of SV1 and not of the full-length GHRH receptor stimulated the proliferation of 3T3 fibroblasts in the absence of exogenous GHRH, whereas both forms mediated the proliferative effects of GHRH. Evaluation of 21 specimens of human primary endometrial carcinoma for expression of SV1 by immunohistochemistry indicated that in contrast to the GHRH receptor, which is absent, SV1 is expressed in approximately 43% of the specimens. These findings indicate that SV1 can operate in a ligand-independent as well as a ligand-dependent manner. The overexpression of this form of GHRH receptor may be associated with carcinogenesis.
Collapse
Affiliation(s)
- Hippokratis Kiaris
- Department of Biological Chemistry,Medical School, University of Athens, 115 27 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kiaris H, Koutsilieris M, Kalofoutis A, Schally AV. Growth hormone-releasing hormone and extra-pituitary tumorigenesis: therapeutic and diagnostic applications of growth hormone-releasing hormone antagonists. Expert Opin Investig Drugs 2003; 12:1385-94. [PMID: 12882623 DOI: 10.1517/13543784.12.8.1385] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Growth hormone-releasing hormone (GHRH) regulates growth hormone release from the pituitary. However, in addition to this neuroendocrine action, much evidence implies an additional role for GHRH in carcinogenesis in non-pituitary tissues. This role of GHRH in cancer development appears to be due to the operation of several mechanisms, which involve the regulation of the growth hormone-dependent hepatic insulin-like growth factor I (IGFI) production, tumoural IGF-I and IGF-II secretion and direct action of GHRH on tumour cells by autocrine and/or paracrine pathways. This review summarises the available information regarding the role of GHRH in tumorigenesis with special emphasis on the direct action of GHRH in primary and experimental cancers.
Collapse
Affiliation(s)
- Hippokratis Kiaris
- Department of Biological Chemistry, Medical School, University of Athens, 75 Micras Asias, 115 27 Athens, Greece.
| | | | | | | |
Collapse
|
37
|
Jeffery PL, Herington AC, Chopin LK. The potential autocrine/paracrine roles of ghrelin and its receptor in hormone-dependent cancer. Cytokine Growth Factor Rev 2003; 14:113-22. [PMID: 12651223 DOI: 10.1016/s1359-6101(02)00089-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ghrelin is a recently identified 28 amino acid peptide capable of stimulating pituitary growth hormone release in humans. The actions of ghrelin are mediated via the naturally occurring ghrelin receptor, also known as the growth hormone secretagogue receptor (GHS-R). Ghrelin and its receptors are now being recognized as components of the growth hormone axis and are therefore potentially involved in tissue growth and development. As is the case for other members of this axis, evidence is rapidly emerging to indicate that ghrelin/GHS-R may play an important autocrine/paracrine role in some cancers. This review highlights the evidence for the expression, regulation and potential functional role of ghrelin and its receptor in hormone-dependent cancers, such as prostate and breast cancer.
Collapse
Affiliation(s)
- Penny L Jeffery
- Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia.
| | | | | |
Collapse
|
38
|
Letsch M, Schally AV, Busto R, Bajo AM, Varga JL. Growth hormone-releasing hormone (GHRH) antagonists inhibit the proliferation of androgen-dependent and -independent prostate cancers. Proc Natl Acad Sci U S A 2003; 100:1250-5. [PMID: 12538852 PMCID: PMC298759 DOI: 10.1073/pnas.0337496100] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The antiproliferative effects of an antagonist of growth hormone-releasing hormone (GHRH) JV-1-38 were evaluated in nude mice bearing s.c. xenografts of LNCaP and MDA-PCa-2b human androgen-sensitive and DU-145 androgen-independent prostate cancers. In the androgen-sensitive models, JV-1-38 greatly potentiated the antitumor effect of androgen deprivation induced by surgical castration, but was ineffective when given alone. Thus, in castrated animals bearing MDA-PCa-2b cancers, the administration of JV-1-38 for 35 days virtually arrested tumor growth (94% inhibition vs. intact control, P < 0.01; and 75% vs. castrated control, P < 0.05). The growth of LNCaP tumors was also powerfully suppressed by JV-1-38 combined with castration (83% inhibition vs. intact control, P < 0.01; and 68% vs. castrated control, P < 0.05). However, in androgen-independent DU-145 cancers, JV-1-38 alone could inhibit tumor growth by 57% (P < 0.05) after 45 days. In animals bearing MDA-PCa-2b and LNCaP tumors, the reduction in serum prostate-specific antigen levels, after therapy with JV-1-38, paralleled the decrease in tumor volume. Inhibition of MDA-PCa-2b and DU-145 cancers was associated with the reduction in the expression of mRNA and protein levels of vascular endothelial growth factor. The mRNA expression for GHRH receptor splice variants was found in all these models of prostate cancer. Our results demonstrate that GHRH antagonists inhibit androgen-independent prostate cancers and, after combination with androgen deprivation, also androgen-sensitive tumors. Thus, the therapy with GHRH antagonist could be considered for the management of both androgen-dependent or -independent prostate cancers.
Collapse
Affiliation(s)
- Markus Letsch
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
39
|
Garcia-Fernandez MO, Schally AV, Varga JL, Groot K, Busto R. The expression of growth hormone-releasing hormone (GHRH) and its receptor splice variants in human breast cancer lines; the evaluation of signaling mechanisms in the stimulation of cell proliferation. Breast Cancer Res Treat 2003; 77:15-26. [PMID: 12602901 DOI: 10.1023/a:1021196504944] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antagonists of growth hormone-releasing hormone (GHRH) inhibit growth of various human cancers including breast cancer, xenografted into nude mice or cultured in vitro. Splice variants (SVs) of receptors for GHRH have been found in several human cancers and cancer cell lines. The antiproliferative actions of GHRH antagonists could be mediated in part through these SVs of GHRH receptors. In this study we examined the expression of mRNA for GHRH and SVs of its receptors in human breast cancer cell lines MCF-7, MCF-7MIII, MDA-MB-231, MDA-MB-435, MDA-MB-468, and T47D. mRNA for GHRH was present in all lines tested. mRNA for SV1 isoform of GHRH receptors was found in MCF-7MIII, MDA-MB-468, and T47D; and for SV2 isoform in MCF-7MIII and T47D cell lines. In proliferation studies in vitro, the growth of T47D cells was stimulated by GHRH and dose-dependently inhibited by GHRH antagonist JV-1-38. H89 (protein kinase A inhibitor), bisindolylmaleimide I (protein kinase C [PKC] inhibitor) and verapamil (voltage-dependent calcium channel blocker) inhibited the GHRH-stimulated proliferation of T47D cells. The GHRH antagonist JV-1-38 suppressed the T47D cell growth in vitro stimulated by PKC activator (phorbol-12-myristate-13-acetate). The stimulation of T47D cells by GHRH was followed by an increase in cAMP production and GHRH antagonist JV-1-38 competitively inhibited this effect. Our results suggest that SVs of GHRH receptors could mediate the responses to GHRH and GHRH antagonists in breast cancer through Ca2+-, cAMP- and PKC-dependent mechanisms. The presence of SV1 of GHRH receptors in human cancers provides a rationale for antitumor therapy based on the blockade of this receptor by specific GHRH antagonists.
Collapse
Affiliation(s)
- M Olga Garcia-Fernandez
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, New Orleans, LA 70112-1262, USA
| | | | | | | | | |
Collapse
|
40
|
Busto R, Schally AV, Varga JL, Garcia-Fernandez MO, Groot K, Armatis P, Szepeshazi K. The expression of growth hormone-releasing hormone (GHRH) and splice variants of its receptor in human gastroenteropancreatic carcinomas. Proc Natl Acad Sci U S A 2002; 99:11866-71. [PMID: 12186980 PMCID: PMC129360 DOI: 10.1073/pnas.182433099] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2002] [Indexed: 12/28/2022] Open
Abstract
Splice variants (SVs) of receptors for growth hormone-releasing hormone (GHRH) have been found in primary human prostate cancers and diverse human cancer cell lines. GHRH antagonists inhibit growth of various experimental human cancers, including pancreatic and colorectal, xenografted into nude mice or cultured in vitro, and their antiproliferative action could be mediated in part through SVs of GHRH receptors. In this study we examined the expression of mRNA for GHRH and for SVs of its receptors in tumors of human pancreatic, colorectal, and gastric cancer cell lines grown in nude mice. mRNA for both GHRH and SV(1) isoform of GHRH receptors was expressed in tumors of pancreatic (SW1990, PANC-1, MIA PaCa-2, Capan-1, Capan-2, and CFPAC1), colonic (COLO 320DM and HT-29), and gastric (NCI-N87, HS746T, and AGS) cancer cell lines; mRNA for SV(2) was also present in Capan-1, Capan-2, CFPAC1, HT-29, and NCI-N87 tumors. In proliferation studies in vitro, the growth of pancreatic, colonic, and gastric cancer cells was stimulated by GHRH(1-29)NH(2) and inhibited by GHRH antagonist JV-1-38. The stimulation of some gastroenteropancreatic cancer cells by GHRH was followed by an increase in cAMP production, and GHRH antagonist JV-1-38 competitively inhibited this effect. Our study indicates the presence of an autocrine/paracrine stimulatory loop based on GHRH and SV(1) of GHRH receptors in human pancreatic, colorectal, and gastric cancers. The finding of SV(1) receptor in human cancers provides an approach to an antitumor therapy based on the blockade of this receptor by specific GHRH antagonists.
Collapse
Affiliation(s)
- Rebeca Busto
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, and Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Zeitler P, Siriwardana G. Antagonism of endogenous growth hormone-releasing hormone (GHRH) leads to reduced proliferation and apoptosis in MDA231 breast cancer cells. Endocrine 2002; 18:85-90. [PMID: 12166629 DOI: 10.1385/endo:18:1:85] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2002] [Revised: 05/03/2002] [Accepted: 05/06/2002] [Indexed: 11/11/2022]
Abstract
GHRH, in addition to stimulating the release of growth hormone (GH) from the pituitary, is a trophic factor for pituitary somatotrophs. Growth hormone-releasing hormone is also expressed in the gonads, gastrointestinal tract, pancreas, thymus, and lymphocytes, as well as in tumors of the pancreas, lung, central nervous system, and breast. Since GHRH has mitogenic effects, we examined the hypothesis that GHRH is an autocrine/paracrine growth factor in neoplastic breast tissue. The effect of disrupting endogenous GHRH on cell growth and apoptosis of MDA231 cells was examined through the use of a competitive GHRH antagonist, [N-acetyl-Tyr1, D-Arg2] fragment 1-29Amide (GHRHa). Cell proliferation was determined by direct cell counting and tritiated thymidine incorporation. Apoptosis was analyzed by examination of DNA laddering and nuclear condensation. GHRHa resulted in a dose-dependent, transient, and reversible decrease in cell number, proliferation rate, and tritiated thymidine uptake. Conversely, GHRHa led to a marked and dose-dependent increase in both DNA laddering and nuclear condensation. These results indicate that disruption of endogenous GHRH action in MDA231 cells results in both decreased cellular proliferation and increased apoptosis. Taken together, the findings suggest that endogenous GHRH acts as an autocrine/paracrine factor in the regulation of growth of at least some breast cancer cell types.
Collapse
Affiliation(s)
- Philip Zeitler
- Department of Pediatrics, University of Colorado Health Science Center, and The Children's Hospital, Denver 80218, USA.
| | | |
Collapse
|
42
|
Plonowski A, Schally AV, Busto R, Krupa M, Varga JL, Halmos G. Expression of growth hormone-releasing hormone (GHRH) and splice variants of GHRH receptors in human experimental prostate cancers. Peptides 2002; 23:1127-33. [PMID: 12126741 DOI: 10.1016/s0196-9781(02)00043-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The expression of mRNA for GHRH and splice variants (SVs) of GHRH receptors in LNCaP, MDA-PCa-2b and PC-3 human prostate cancers grown in nude mice was investigated by RT-PCR. The expression of mRNA for GHRH was detected in LNCaP and PC-3, but not in MDA-PCa-2b prostatic carcinoma. RT-PCR analyses of mRNA isolated from LNCaP, MDA-PCa-2b and PC-3 cancers, revealed the presence of 720 and 566 bp products, corresponding to SV(1) and SV(2) isoforms of GHRH receptors. In PC-3 tumor membranes a radiolabeled GHRH antagonist [125I]-JV-1-42 was bound to one class of high-affinity binding sites (K(d)=1.81+/-0.47 nM) and maximum binding capacity of 332.7+/-27.8 fmol/mg membrane protein. The in vivo uptake of [125I]-JV-1-42 was observed in all xenografts of human prostate cancer, the tracer accumulation being the highest in PC-3 tumors. These results indicate that GHRH and SVs of its receptors, different from those found in the pituitary, are present in experimental human prostate cancers and may form a local mitogenic loop. The antiproliferative effects of GHRH antagonists on growth of prostate cancer could be exerted in part by an interference with this local GHRH system.
Collapse
Affiliation(s)
- Artur Plonowski
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, 1601 Perdido Street, New Orleans, LA 70112-1262, USA
| | | | | | | | | | | |
Collapse
|
43
|
Chopin LK, Veveris-Lowe TL, Philipps AF, Herington AC. Co-expression of GH and GHR isoforms in prostate cancer cell lines. Growth Horm IGF Res 2002; 12:126-136. [PMID: 12175650 DOI: 10.1054/ghir.2002.0271] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prostate cancer is a significant cause of morbidity and mortality in Western males. While it is known that androgens play a central role in prostate cancer development and progression, other hormones and growth factors are also involved in prostate growth. Insulin-like growth factor-I (IGF-I) plasma levels have been associated with prostate cancer risk, and growth hormone (GH), a major factor regulating IGF levels, also appears to have a role in prostate cancer cell growth. Most significantly, GH has been shown to increase the rate of cell proliferation in prostate cancer cell lines. We have now demonstrated the co-expression of GH and GH receptor (GHR) mRNA isoforms in the ALVA41, PC3, DU145, LNCaP prostate cancer cells by reverse transcription polymerase chain reaction. Sequence analysis has confirmed that these cell lines express the pituitary form of GH mRNA and also the placental mRNA isoform. These prostate cancer cell lines also express the full-length mRNA for the GHR and the exon 3 deleted isoform. We have also demonstrated the presence of GH and GHR proteins in these cell lines by immunohistochemistry. GH expression has not been described previously in human prostate cancer cells. The co-expression of GH and its receptor would enable an autocrine-paracrine pathway to exist in the prostate that would be capable of stimulating prostate growth, either directly via the GHR or indirectly via IGF production. The GH axis in the prostate could therefore be an important additional target for the future development of prostate cancer therapies.
Collapse
Affiliation(s)
- L K Chopin
- Centre for Molecular Biotechnology, Queensland University of Technology, GPO Box 2434, Brisbane, Q 4001, Australia.
| | | | | | | |
Collapse
|
44
|
Kiaris H, Schally AV, Busto R, Halmos G, Artavanis-Tsakonas S, Varga JL. Expression of a splice variant of the receptor for GHRH in 3T3 fibroblasts activates cell proliferation responses to GHRH analogs. Proc Natl Acad Sci U S A 2002; 99:196-200. [PMID: 11773624 PMCID: PMC117538 DOI: 10.1073/pnas.012590999] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2001] [Indexed: 01/02/2023] Open
Abstract
The stimulatory effects of growth hormone-releasing hormone (GHRH) and the antiproliferative action of GHRH antagonists have been demonstrated in various cancers, but the receptors that mediate these responses are not clearly identified. Recently, we reported that human cancer cell lines express splice variants (SVs) of the receptors for GHRH. SV1 exhibits the greatest similarity to the pituitary GHRH receptor and is most likely to be functional. To ascertain whether SV1 mediates mitogenic effects on nonpituitary tissues, we expressed SV1 in 3T3 mouse fibroblasts and studied the properties of the transfected cells. Radioligand binding assays with (125)I-labeled GHRH antagonist JV-1-42 detected high affinity (K(d) = 0.58 +/- 0.17 nM) binding sites for GHRH with a maximal binding capacity (B(max)) of 103 +/- 17.4 fmol/mg of membrane protein in 3T3 cells transfected with pcDNA3-SV1, whereas the control cells transfected with the empty vector did not show any GHRH binding. Cell proliferation studies showed that cells expressing SV1 are much more sensitive to GHRH analogs than the pcDNA3 controls. Thus, the expression of SV1 augments the stimulatory responses to GHRH(1-29)NH(2) or GHRH agonist JI-38 and inhibitory responses to GHRH antagonist JV-1-38 as compared with pcDNA3 controls. The stimulation of SV1-expressing cells by GHRH or JI-38 is followed by an increase in cAMP production, but no GH release occurs. Vasoactive intestinal peptide had no effect, and its antagonist JV-1-53 did not inhibit the proliferation of SV1-expressing cells stimulated by GHRH. Our results suggest that SV1 could mediate responses of nonpituitary cells and various tumors to GHRH and GHRH antagonists. The presence of SV1 in several human cancer cell lines provides a rationale for antitumor therapy based on the blockade of this receptor by specific GHRH antagonists.
Collapse
Affiliation(s)
- Hippokratis Kiaris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|