1
|
Dagar G, Bagchi G. Novel use of coactivators to enhance sensitivity of SEAP-based reporter assay system for visual monitoring and quantitation of androgens and antiandrogens in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144514. [PMID: 33736142 DOI: 10.1016/j.scitotenv.2020.144514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Every year thousands of chemicals get discharged into the waterbodies of the world. These chemicals cause endocrine disruption and induce adverse health effects in human and aquatic life. Global environmental protection agencies emphasise the need to develop rapid and specific tests for identification of these endocrine disruptive chemicals (EDCs) in water. Detection of chemicals that disrupt androgen signaling is especially important because androgen input at specific phases of life is critical for proper male development. Effect-based methods such as reporter assays are suitable tools for identification of EDCs in mixtures of unknown composition. The current study describes a stable, secreted alkaline protease (SEAP)-based reporter assay system, for visual detection of androgenic/antiandrogenic activity present in water samples. A novel feature of this system is the inclusion of coactivators, GRIP1, CARM1, p300 and mZac1b, in addition to an optimal combination of androgen response element (3× HRE), androgen receptor (AR) and the SEAP reporter gene. Incorporation of the coactivators resulted in a transcriptional fold change of 162 folds, enabling visual detection at much lower concentrations of androgen (1 picomolar) within 1 h of addition of test sample. Also, non-androgenic steroids such as estrogen, progesterone and Dexamethasone did not induce significant reporter activity, except at very high concentrations. This reporter assay can be readily converted into a high throughput format for investigation in multiple samples simultaneously, and reflects the changes that can be expected to occur inside a mammalian cell. The androgenic activity in six different water sources was evaluated using this assay. The results reveal significant androgenic activity in rivers and lakes close to Industrial areas, whereas the highest androgenic activity was observed in water containing paper and pulp mill effluents. This bioassay therefore provides a rapid, visual detection tool for effect-directed analysis of androgenic/antiandrogenic compounds in water. IMPACT STATEMENT: The current SEAP-based assay allows visual detection of androgens/antiandrogens in water, at concentrations as low as 1 picomolar, within a 1 h time period, in a high throughput format, providing a very useful technique for field users and regulatory bodies.
Collapse
Affiliation(s)
- Gunjan Dagar
- Amity Institute of Biotechnology, Amity University, Gurgaon 122413, India
| | - Gargi Bagchi
- Amity Institute of Biotechnology, Amity University, Gurgaon 122413, India.
| |
Collapse
|
2
|
Jones ME, O'Connell TJ, Zhao H, Darzynkiewicz Z, Gupta A, Buchsbaum J, Shin E, Iacob C, Suslina N, Moscatello A, Schantz S, Tiwari R, Geliebter J. Androgen receptor activation decreases proliferation in thyroid cancer cells. J Cell Biochem 2021; 122:1113-1125. [PMID: 33876852 DOI: 10.1002/jcb.29934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/29/2020] [Accepted: 03/26/2021] [Indexed: 11/06/2022]
Abstract
The American Cancer Society predicted more than 52 000 new cases of thyroid cancer in 2020, making it the most prevalent endocrine malignancy. Due to the approximately threefold higher incidence of thyroid cancer in women, we hypothesize that androgens and/or androgen receptors play a protective role and that thyroid cancer in men represents an escape from androgen-mediated cell regulation. The analysis of androgen receptor (AR) expression in patient tissue samples identified a 2.7-fold reduction in AR expression (p < 0.005) in papillary thyroid cancer compared with matched, normal tissue. An in vitro cell model was developed by stably transfecting AR into 8505C undifferentiated thyroid cancer cells (resulting in clone 84E7). The addition of DHT to the clone 84E7 resulted in AR translocation into the nucleus and a 70% reduction in proliferation, with a shift in the cell cycle toward G1 arrest. RNASeq analysis revealed significant changes in mRNA levels associated with proliferation, cell cycle, and cell cycle regulation. Furthermore, androgen significantly decreased the levels of the G1-associated cell cycle progression proteins cdc25a CDK6 CDK4 and CDK2 as well as increased the levels of the cell cycle inhibitors, p27 and p21. The data strongly suggest that DHT induces a G1 arrest in androgen-responsive thyroid cancer cells. Together, these data support our hypothesis that AR/androgen may play a protective, antiproliferative role and are consistent with younger men having a lower incidence of thyroid cancer than women.
Collapse
Affiliation(s)
- Melanie E Jones
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Natural Sciences, United States Military Academy Preparatory School, West Point, New York, USA
| | - Timmy J O'Connell
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Hong Zhao
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| | | | - Anvita Gupta
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Joseph Buchsbaum
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Edward Shin
- Department of Otolaryngology, New York Eye and Ear, New York, New York, USA
| | - Codrin Iacob
- Department of Pathology, New York Eye and Ear, New York, New York, USA
| | - Nina Suslina
- Department of Otolaryngology, New York Eye and Ear, New York, New York, USA
| | | | - Stimson Schantz
- Department of Otolaryngology, New York Eye and Ear, New York, New York, USA
| | - Raj Tiwari
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Otolaryngology, New York Medical College, Valhalla, New York, USA
| | - Jan Geliebter
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Otolaryngology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
3
|
Chou CK, Chi SY, Chou FF, Huang SC, Wang JH, Chen CC, Kang HY. Aberrant Expression of Androgen Receptor Associated with High Cancer Risk and Extrathyroidal Extension in Papillary Thyroid Carcinoma. Cancers (Basel) 2020; 12:cancers12051109. [PMID: 32365531 PMCID: PMC7281729 DOI: 10.3390/cancers12051109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Male gender is a risk factor for mortality in patients with papillary thyroid carcinoma (PTC). This study investigated the impact of androgen receptor (AR) gene expression on the clinical features and progression of PTC. The levels of AR mRNA and protein in frozen, formalin-fixed, paraffin-embedded tissue samples from PTC and adjacent normal thyroid tissue were assessed by quantitative real-time polymerase chain reaction and immunohistochemical staining, respectively, and the relationships between AR expression and clinical features were analyzed. The thyroid cancer cell lines, BCPAP and TPC-1, were used to evaluate the effects of AR on the regulation of cell migration, and key epithelial-mesenchymal transition (EMT) markers. AR mRNA expression was significantly higher in normal thyroid tissue from men than women. The sex difference in AR mRNA expression diminished during PTC tumorigenesis, as AR mRNA expression levels were lower in PTC than normal thyroid tissues from both men and women. AR mRNA expression was significantly decreased in PTC patients with higher risk and in those with extrathyroidal extension. Overexpression of AR in BCPAP cells decreased cell migration and repressed the EMT process by down-regulating mRNA expression of N-cadherin, Snail1, Snail2, Vimentin, and TWIST1 and up-regulating E-cadherin gene expression. These results suggest that suppression of the androgen-AR axis may lead to aggressive tumor behavior in patients with PTC.
Collapse
Affiliation(s)
- Chen-Kai Chou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
| | - Shun-Yu Chi
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
| | - Fong-Fu Chou
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
| | - Shun-Chen Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
| | - Jia-He Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
| | - Chueh-Chen Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kaohsiung City 83301, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8898)
| |
Collapse
|
4
|
Huang X, Cang X, Liu J. Molecular mechanism of Bisphenol A on androgen receptor antagonism. Toxicol In Vitro 2019; 61:104621. [PMID: 31415812 DOI: 10.1016/j.tiv.2019.104621] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Bisphenol A (BPA), one of the highest production volume chemicals, is a typical endocrine-disrupting chemical (EDC) that exhibits antiandrogenic activity. However, how BPA antagonizes androgen effects remains ambiguous. In this study, the in silico and in vitro assays were carried out to explore the molecular mechanism(s) of BPA on androgen receptor (AR) antagonism. In reporter gene assay, BPA caused a significant antagonistic effect on 5α-dihydrotestosterone (DHT)-induced AR transcriptional activity at concentrations of 10-9 M-10-5 M. The results of molecular docking and molecular dynamics simulations indicated the availability of BPA binding to the ligand binding domain of AR. BPA treatment prevented the inhibition of receptor degradation caused by DHT binding to AR. BPA exposure also abolished DHT-dependent dissociation of AR from its co-chaperone, 90-kDa heat shock protein (Hsp90), and resulted in the blockage of DHT-induced AR nuclear translocation. This is the first report to show that BPA inhibited the DHT-induced stabilization of AR and the DHT-induced dissociation of AR-Hsp90 complex. This study provided new evidence for further understanding the precise mechanisms of antagonism of BPA on AR.
Collapse
Affiliation(s)
- Xin Huang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Bernemann C, Humberg V, Thielen B, Steinestel J, Chen X, Duensing S, Schrader AJ, Boegemann M. Comparative Analysis of AR Variant AR-V567es mRNA Detection Systems Reveals Eminent Variability and Questions the Role as a Clinical Biomarker in Prostate Cancer. Clin Cancer Res 2019; 25:3856-3864. [DOI: 10.1158/1078-0432.ccr-18-4276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/13/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
|
6
|
Kanda T, Jiang X, Nakamura M, Haga Y, Sasaki R, Wu S, Nakamoto S, Imazeki F, Yokosuka O. Overexpression of the androgen receptor in human hepatoma cells and its effect on fatty acid metabolism. Oncol Lett 2017; 13:4481-4486. [PMID: 28599448 DOI: 10.3892/ol.2017.5973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/03/2017] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a predominantly male disease in which the androgen receptor (AR) serves an important pathogenic role in hepatocarcinogenesis. Fatty acid metabolism also contributes to hepatocarcinogenesis and is associated with the prognosis of cancer. The present study aimed to investigate the effects of the AR on fatty acid metabolism-associated gene expression in human hepatoma cell lines. AR-expression plasmids or control plasmids were transiently transfected into the human HCC cell lines Huh7 and HepG2. After 48 h, cellular protein and RNA were extracted and the expression of AR was confirmed by western blotting. Complementary DNA was synthesized and subjected to a quantitative polymerase chain reaction-based array to examine the expression of 84 fatty acid metabolism-associated genes. Overexpression of AR significantly downregulated the expression of 11 fatty acid metabolism-associated genes in Huh7 cells and 35 in HepG2 cells. The overexpression of AR also resulted in the upregulation of 6 fatty acid metabolism genes in HepG2 cells; however, it had no effect in Huh7 cells. Acyl-coenzyme A (CoA) thioesterase 7 and acyl-CoA oxidase 3 were downregulated in both cell lines. In conclusion, upregulation of AR via overexpression led to the disturbance of fatty acid metabolism-associated gene expression in human HCC cells. Therefore, the AR may serve a role in hepatocarcinogenesis via the regulation of hepatocellular fatty acid metabolism.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Xia Jiang
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.,Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Masato Nakamura
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yuki Haga
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Reina Sasaki
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shuang Wu
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.,Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Fumio Imazeki
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
7
|
Ebron JS, Shukla GC. Molecular characterization of a novel androgen receptor transgene responsive to MicroRNA mediated post-transcriptional control exerted via 3'-untranslated region. Prostate 2016; 76:834-44. [PMID: 26988939 DOI: 10.1002/pros.23174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/16/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND Androgen Receptor (AR) gene is associated with Prostate cancer (PCa) and hence targeting androgen-and AR-signaling axis remains the most promising primary therapeutic option to treat the disease. The AR mRNA has a 6.8 kb long 3'-untranslated region (UTR) which harbors several experimentally validated and numerous predicted miRNA binding sites. AR 3'-UTR is likely to positively or negatively regulate AR expression by interacting with miRNAs and possibly other trans-acting auxiliary factors including 3'-UTR RNA binding proteins. In this context, systematic understanding of the regulatory role of AR 3'-UTR in intrinsic post-transcriptional control of AR gene expression is of significance to understand AR related diseases including PCa. METHODS In this study, we have constructed a heterologous reporter system in which Firefly luciferase and AR expression is experimentally influenced by the presence of AR 3'-UTR and its interactions with ectopically expressing miRNA. RESULTS The expression of AR 3'-UTR containing reporters, including the Firefly luciferase and the AR open reading frame (ORF) were repressed by the overexpression of miR-488* mimics. In addition, the AR expressed from 3'-UTR containing expression vectors was fully functional in its transactivation function as determined by a prostate specific antigen (PSA) reporter assay. Further, by using confocal microscopy we also demonstrate that AR can translocate to the nucleus upon DHT activation confirming the functional ability of AR. CONCLUSIONS AR transgenes with AR 3'-UTR fragments closely resemble the endogenous AR expression than any other previously characterized AR expression constructs. The 3'-UTR containing AR expression system is amiable to post-transcriptional manipulations including miRNA mediated repression of AR expression. This AR reporter system has the potential to be used in determining specificity of AR targeting miRNAs and their role in AR functional regulatory networks. Prostate 76:834-844, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jey Sabith Ebron
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio
| | - Girish C Shukla
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
- Department of Biological Sciences, Cleveland State University, Cleveland, Ohio
| |
Collapse
|
8
|
Involvement of androgen receptor and glucose-regulated protein 78 kDa in human hepatocarcinogenesis. Exp Cell Res 2014; 323:326-36. [PMID: 24583399 DOI: 10.1016/j.yexcr.2014.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/14/2014] [Accepted: 02/16/2014] [Indexed: 02/07/2023]
Abstract
Previous studies demonstrated that androgen receptor (AR) is expressed in human hepatocellular carcinoma (HCC), one of the male-dominant diseases. Glucose-regulated protein 78 kDa (GRP78/Bip), which has a role in cancer development, is one of the androgen response genes in prostate cell lines. The aim of this study was to investigate the impact of AR on endoplasmic reticulum (ER)-stress signaling in human hepatoma. AR and GRP78 expressions were examined in human liver tissue panels. Human hepatoma cells stably expressing short hairpin RNA targeting AR and cells over-expressing AR were generated. The expressions of ER-stress molecules and AR were measured by real-time RT-PCR and Western blotting. The effect of AR on ER-stress responsive gene expression was examined by reporter assay. Strong positive correlation between AR mRNA and GRP78 mRNA was observed in stage I/II-HCCs. AR enhanced ER-stress responsive element activities and GRP78 expression, and regulated ER-stress response in hepatocytes. Sorafenib strongly induced significant apoptosis in HepG2 cells by the inhibition of AR and inhibition of the downstream GRP78. AR seems a co-regulator of GRP78 especially in earlier-stage HCC. AR plays a critical role in controlling ER-stress, providing new therapeutic options against HCC.
Collapse
|
9
|
Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including apoptosis, anoikis, entosis, necrosis and autophagic cell death. Cancer Treat Rev 2013; 40:31-40. [PMID: 23993415 DOI: 10.1016/j.ctrv.2013.07.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/20/2013] [Accepted: 07/29/2013] [Indexed: 12/21/2022]
Abstract
Androgen/androgen receptor (AR) signaling plays pivotal roles in the prostate development and homeostasis as well as in the progression of prostate cancer (PCa). Androgen deprivation therapy (ADT) with anti-androgens remains as the main treatment for later stage PCa, and it has been shown to effectively suppress PCa growth during the first 12-24 months. However, ADT eventually fails and tumors may re-grow and progress into the castration resistant stage. Recent reports revealed that AR might play complicated and even opposite roles in PCa progression that might depend on cell types and tumor stages. Importantly, AR may influence PCa progression via differential modulation of various cell deaths including apoptosis, anoikis, entosis, necrosis, and autophagic cell deaths. Targeting AR may induce PCa cell apoptosis, autophagic cell deaths and programmed necrosis, yet targeting AR may suppress cell deaths via anoikis and entosis that may potentially lead to increased metastasis. These differential functions of AR in various types of PCa cell death might challenge the current ADT with anti-androgens treatment. Further detailed dissection of molecular mechanisms by which AR modulates different PCa cell deaths will help us to develop a better therapy to battle PCa.
Collapse
|
10
|
Okitsu K, Kanda T, Imazeki F, Yonemitsu Y, Ray RB, Chang C, Yokosuka O. Involvement of interleukin-6 and androgen receptor signaling in pancreatic cancer. Genes Cancer 2011; 1:859-67. [PMID: 21779469 DOI: 10.1177/1947601910383417] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/24/2010] [Accepted: 08/10/2010] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer remains one of the "difficult-to-treat" cancers. Signaling of androgen receptor (AR), one of the nuclear receptors, in the pancreas may be related to carcinogenesis. Higher interleukin-6 (IL-6) levels have been observed in pancreatic cancer patients. It is also well known that IL-6 affects the AR signaling pathway and that AR is important for cell migration activities. We demonstrated that IL-6 enhances the phosphorylation of STAT3 and MAPK, which in turn enhances AR-mediated transcription in pancreatic cancer cell lines. This activity was blocked by a pharmacological inhibitor of the JAK/STAT signaling pathway, AG490, and one of the MAPK signaling pathways, U0126. IL-6 also enhances pancreatic cancer cell migration in the presence of AR. This activity is blocked by AR-siRNA. IL-6 acts as a positive regulator in AR signaling, providing further insight into the progression of pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Kohichiroh Okitsu
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Hu XD, Meng QH, Xu JY, Jiao Y, Ge CM, Jacob A, Wang P, Rosen EM, Fan S. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity. Biochem Biophys Res Commun 2011; 404:903-9. [DOI: 10.1016/j.bbrc.2010.12.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/14/2010] [Indexed: 12/13/2022]
|
12
|
Chu JH, Yu S, Hayward SW, Chan FL. Development of a three-dimensional culture model of prostatic epithelial cells and its use for the study of epithelial-mesenchymal transition and inhibition of PI3K pathway in prostate cancer. Prostate 2009; 69:428-42. [PMID: 19107869 DOI: 10.1002/pros.20897] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Appropriate 3D culture models of human prostatic epithelial cells resembling normal growth pattern and architecture of prostate gland and its malignant development are scarce. METHODS Here, we optimized the 3D culture conditions of the immortalized non-transformed human prostatic epithelial cell line BPH-1 in Matrigel and developed a 3D culture model closely mimicking prostatic glandular structure. RESULTS Our results showed that BPH-1 cells cultured in Matrigel formed acinus-like spheroids with lumen formation and polarized differentiation. To establish an androgen-stimulated differentiation in AR-negative BPH-1, we generated AR-transduced BPH-1 cells, which displayed androgen-induced secretory differentiation and growth suppression in 3D culture. We also evaluated the spheroid forming capacity of tumorigenic derivative BPH-1(CAFTD) sublines in 3D culture and their responses to PI3K inhibitor LY294002. Results showed that these tumorigenic BPH-1(CAFTD) sublines did not exhibit polarized differentiation in Matrigel culture. Interestingly, polarization could be restored by LY294002 treatment of BPH-1(CAFTD1) but not of BPH-1(CAFTD3) subline. Finally, we employed this 3D culture model to examine the significance of an EMT-regulatory transcription factor Snail in prostate cancer development by its stable transduction into BPH-1 cells. Results showed that BPH-1-Snail cells lost their spheroid forming capacity and exhibited an invasive phenotype. CONCLUSIONS Taken together, we established a 3D culture model of human prostatic epithelial cells with structural and functional relevance to normal prostate gland and prostate cancer development and also demonstrated that this 3D model might be useful to assess the ability of drugs to restore differentiation as a potential surrogate measure of efficacy for prostate cancer therapy.
Collapse
Affiliation(s)
- Jian Hong Chu
- Department of Anatomy, The Chinese University of Hong Kong, China
| | | | | | | |
Collapse
|
13
|
Chen M, Cai H, Yang JL, Lu CL, Liu T, Yang W, Guo J, Hu XQ, Fan CH, Hu ZY, Gao F, Liu YX. Effect of heat stress on expression of junction-associated molecules and upstream factors androgen receptor and Wilms' tumor 1 in monkey sertoli cells. Endocrinology 2008; 149:4871-82. [PMID: 18535113 DOI: 10.1210/en.2007-1093] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sertoli cells are important in determining the fate of spermatogenic cells by providing nutrition and structural support via cell junctions. In this study, we sought to examine the effect of 43 C warming on cell junctions in seminiferous epithelium and the expression of junction-associated molecules in Sertoli cells. Electron microscopy showed the appearance of large vacuoles between Sertoli and germ cells and adjacent Sertoli cells, leading to disruption of corresponding cell junctions 24 h after terminating the heat treatment. Using primary Sertoli cells isolated from pubertal monkey testes, we demonstrated that expression of adherens junction-associated molecules, such as N-cadherin and beta-catenin, and tight junction-associated molecule zonula occludens protein 1 was significantly reduced in 24-48 h after heat treatment. In contrast, intermediate filament vimentin expression was up-regulated in 6-48 h. Androgen receptor (AR) and Wilms' tumor gene 1 expression dramatically decreased after heat treatment. Both proteins completely disappeared immediately after terminating heat treatment and began to recover after 6 h. Treatment of the monkey Sertoli cells with an AR antagonist, flutamide, could mimic the heat-induced changes in the expression of junction-associated molecules in Sertoli cells. Furthermore, overexpression of AR in the Sertoli cells up-regulated the expression of N-cadherin, beta-catenin, and zonula occludens protein 1 and down-regulated vimentin expression. Their expression after heat treatment could be rescued by the AR overexpression. These results indicate that the decreased AR expression after heat treatment is involved in heat-induced cell junction disruption.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Hepatitis C virus (HCV) infection is frequently associated with the development of hepatocellular carcinoma (HCC), which is one of the male-dominant diseases. Androgen signaling in liver may be related to carcinogenesis. In this study, we investigated whether HCV proteins cross talk with the androgen receptor (AR) signaling pathway for promotion of carcinogenesis. We have demonstrated that HCV core protein alone or in context with other HCV proteins enhances AR-mediated transcriptional activity and further augments in the presence of androgen. Subsequent study suggested that HCV core protein activates STAT3, which in turn enhances AR-mediated transcription. This activity was blocked by a pharmacological inhibitor of the Jak/Stat signaling pathway, AG490. Vascular endothelial growth factor (VEGF) is a target gene of AR in liver and plays an important role in angiogenesis. Therefore, we examined whether HCV infection modulates VEGF expression in hepatocytes. Our results demonstrated that HCV enhances VEGF expression and facilitates tube formation in human coronary microvascular endothelial cells in the presence of AR. Together, our results suggest that HCV core protein acts as a positive regulator in AR signaling, providing further insight into oncogenic potential in the development of HCC in HCV-infected individuals.
Collapse
|
15
|
Chen J, Ahn KC, Gee NA, Ahmed MI, Duleba AJ, Zhao L, Gee SJ, Hammock BD, Lasley BL. Triclocarban enhances testosterone action: a new type of endocrine disruptor? Endocrinology 2008; 149:1173-9. [PMID: 18048496 PMCID: PMC2275366 DOI: 10.1210/en.2007-1057] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many xenobiotics have been associated with endocrine effects in a wide range of biological systems. These associations are usually between small nonsteroid molecules and steroid receptor signaling systems. In this report, triclocarban (TCC; 3,4,4'-trichlorocarbanilide), a common ingredient in personal care products that is used as an antimicrobial agent was evaluated and found to represent a new category of endocrine-disrupting substance. A cell-based androgen receptor-mediated bioassay was used to demonstrate that TCC and other urea compounds with a similar structure, which have little or no endocrine activity when tested alone, act to enhance testosterone (T)-induced androgen receptor-mediated transcriptional activity in vitro. This amplification effect of TCC was also apparent in vivo when 0.25% TCC was added to the diet of castrated male rats that were supported by exogenous testosterone treatment for 10 d. All male sex accessory organs increased significantly in size after the T+TCC treatment, compared with T or TCC treatments alone. The data presented here suggest that the bioactivity of endogenous hormones may be amplified by exposure to commercial personal care products containing sufficient levels of TCC.
Collapse
Affiliation(s)
- Jiangang Chen
- Center for Health and the Environment, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zheng Y, Chen WL, Ma WLM, Chang C, Ou JHJ. Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein. Virology 2007; 363:454-61. [PMID: 17335866 PMCID: PMC1976269 DOI: 10.1016/j.virol.2007.01.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 01/22/2007] [Accepted: 01/30/2007] [Indexed: 01/19/2023]
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a regulatory protein that is required for efficient replication of HBV in its natural host. In this report, we demonstrate by co-immunoprecipitation experiments that HBx can physically bind to the androgen receptor (AR), which is a nuclear hormone receptor that is expressed in many different tissues including the liver. This observation is further supported by confocal microscopy, which reveals that HBx can alter the subcellular localization of the AR both in the presence and in the absence of dihydrotestosterone (DHT). Further studies indicate that HBx can enhance the gene transactivation activity of AR by enhancing its DNA binding activity in a DHT-dependent manner. However, HBx does not remain associated with AR on the DNA. As AR can regulate the expression of a number of cellular genes, our results raise the possibility that HBV pathogenesis may be mediated in part via the interaction between HBx and AR.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Wen-ling Chen
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - W.-L. Maverick Ma
- George Whipple Lab for Cancer Research, Department of Pathology, Urology, Radiation Oncology and the Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Department of Pathology, Urology, Radiation Oncology and the Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - J.-H. James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
- Corresponding author: Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA 90033; phone, 323-442-1720; fax, 323-442-1721; e-mail:
| |
Collapse
|
17
|
Koochekpour S, Lee TJ, Wang R, Culig Z, Delorme N, Caffey S, Marrero L, Aguirre J. Prosaposin upregulates AR and PSA expression and activity in prostate cancer cells (LNCaP). Prostate 2007; 67:178-89. [PMID: 17044040 DOI: 10.1002/pros.20513] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prosaposin overexpression and/or genomic amplification have been demonstrated in androgen-independent (AI) prostate cancer cell lines and tissues. Here, we explored the possibility for a functional relationship between prosaposin and androgen receptor (AR) in LNCaP cells. METHODS The effect of prosaposin or its active molecular derivatives (e.g., saposin C) on expression and activity of androgen receptor (AR) and prostate-specific antigen (PSA) was examined by using immunoblotting, RT-PCR, transfection, and reporter gene assays, immunofluorescence staining, and inhibitors of signal transduction pathways. RESULTS Prosaposin or saposin C, in an AI-manner, (a) increased AR mRNA and protein expression and nuclear AR content and its phosphorylation state; (b) increased PSA mRNA and protein expression; and (c) upregulated PSA- and an androgen-inducible probasin (PB)-reporter gene activity in LNCaP and AR-transfected PC-3 cells. Induction of PSA expression and reporter activity was substantially blocked or prevented with the antiandrogen bicalutamide, pertussis toxin, or inhibitors of MAPK- and PI3K/Akt-signaling pathways, indicating an androgen-agonistic effect for saposin C that involves AR and multiple signaling pathways. CONCLUSIONS The results for the first time introduce prosaposin as an androgen-agonist in prostate cancer cells. This finding, together with the growth-promoting effect and overexpression of prosaposin, may support a growth advantage to AI prostate cancer cells.
Collapse
Affiliation(s)
- Shahriar Koochekpour
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Litvinov IV, Antony L, Dalrymple SL, Becker R, Cheng L, Isaacs JT. PC3, but not DU145, human prostate cancer cells retain the coregulators required for tumor suppressor ability of androgen receptor. Prostate 2006; 66:1329-38. [PMID: 16835890 DOI: 10.1002/pros.20483] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Androgen receptor (AR) functions in normal prostate epithelium as a tumor suppressor to inhibit continuous proliferation of these cells. Such tumor suppressor function of AR is lost in androgen depletion independent (ADI) prostate cancers. In type-I ADI cancers AR is not expressed, while in type-II ADI cancers AR is recaptured as an oncogene. The PC3 and DU145 human prostate cancer cell lines are representative of the earlier type-I ADI prostate cancers. While these cells do not express AR, it is unclear whether they retained the coactivators necessary for AR-dependent tumor suppression. To answer this question the response to AR protein expression by PC3 and DU145 cells was evaluated. METHODS To do this, a lentiviral AR (Lenti-AR) expression system was engineered to encode an AR transcript which includes appropriate 5' and 3' untranslated regions (UTRs) containing all previously identified post-transcriptional regulatory sequences. AR expression and transcriptional activity were evaluated in Lenti-AR transduced cells by Western blot and luciferase assay, respectively. Cell growth in culture and in mouse xenografts was evaluated in correlation to expression changes in p21, p27, and p45(SKP2) proteins. RESULTS Lenti-AR transduced PC3 and DU145 lines expressed transcriptionally functional AR protein at appropriate physiological levels. Expression and engagement of AR protein in PC3-Lenti-AR cells resulted in transactivation of p21 and subsequent growth inhibition of these cells in culture and in mouse xenografts. Such inhibition was due to induced G1 arrest of these cells as documented by expression changes in p27 and p45(SKP2) proteins. Such growth inhibition was not observed in DU145-Lenti-AR cells. CONCLUSIONS These results document that PC3, but not DU145 cells retain the coregulators needed for AR tumor suppressor ability.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- G1 Phase/physiology
- Gene Expression Regulation, Neoplastic/physiology
- Gene Expression Regulation, Viral/physiology
- Genes, Tumor Suppressor/physiology
- Humans
- Lentivirus/genetics
- Male
- Mice
- Proliferating Cell Nuclear Antigen/genetics
- Proliferating Cell Nuclear Antigen/metabolism
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/physiopathology
- Prostatic Neoplasms/virology
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Androgen/physiology
- S-Phase Kinase-Associated Proteins/genetics
- S-Phase Kinase-Associated Proteins/metabolism
- Transduction, Genetic
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/physiology
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Ivan V Litvinov
- Chemical Therapeutics Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | | | | | | | | | | |
Collapse
|
19
|
Litvinov IV, Antony L, Isaacs JT. Molecular characterization of an improved vector for evaluation of the tumor suppressor versus oncogene abilities of the androgen receptor. Prostate 2004; 61:299-304. [PMID: 15499637 DOI: 10.1002/pros.20187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND There is a growing body of evidence demonstrating that the function of the ligand-occupied androgen receptor (AR) within the nuclei of normal prostatic epithelial cells acts as a tumor suppressor gene. This is in contrast to the well-documented ability of the AR within prostate cancer cells to function as an oncogene. Thus, many groups are attempting to understand the biochemistry and signaling cascade differences involved in the switching of AR from a tumor suppressor to an oncogene. METHODS To do this, of plasmid vectors for transgenic expression of AR are very useful. AR negative PC-3 human prostate cancer cells were transfected with a plasmid containing the full length coding sequence of AR without its 5'- or 3'-untranslated regions (UTRs) (i.e., pSG5-AR). RESULTS Transgenic expression of the AR protein results in profound growth inhibition which is not relieved by the addition of ligand. A new expression vector for the AR, pAR-IRES-EGFP, has been constructed that contains full-length 5'-UTR which includes the identified translation regulatory regions, the full length coding sequence and the partial 3'-UTR, which includes the identified post-transcriptional regulatory regions. When PC-3 cells were transfected with the pAR-IRES-EGFP vector, it was found that transgenic AR protein expression was not growth inhibitory until ligand was added. CONCLUSIONS These pSG5-AR versus pSAR-IRES-EGFP clones are being studied to determine the molecular pathways explaining their different response to AR and ligand.
Collapse
Affiliation(s)
- Ivan V Litvinov
- The Sidney Kimmel Comprehensive Cancer Center, the Graduate Training Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|