1
|
Hess RA, Cooke PS. Estrogen in the male: a historical perspective. Biol Reprod 2019; 99:27-44. [PMID: 29438493 PMCID: PMC6044326 DOI: 10.1093/biolre/ioy043] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
Estrogens have traditionally been considered female hormones. Nevertheless, the presence of estrogen in males has been known for over 90 years. Initial studies suggested that estrogen was deleterious to male reproduction because exogenous treatments induced developmental abnormalities. However, demonstrations of estrogen synthesis in the testis and high concentrations of 17β-estradiol in rete testis fluid suggested that the female hormone might have a function in normal male reproduction. Identification of estrogen receptors and development of biological radioisotope methods to assess estradiol binding revealed that the male reproductive tract expresses estrogen receptor extensively from the neonatal period to adulthood. This indicated a role for estrogens in normal development, especially in efferent ductules, whose epithelium is the first in the male reproductive tract to express estrogen receptor during development and a site of exceedingly high expression. In the 1990s, a paradigm shift occurred in our understanding of estrogen function in the male, ushered in by knockout mouse models where estrogen production or expression of its receptors was not present. These knockout animals revealed that estrogen's main receptor (estrogen receptor 1 [ESR1]) is essential for male fertility and development of efferent ductules, epididymis, and prostate, and that loss of only the membrane fraction of ESR1 was sufficient to induce extensive male reproductive abnormalities and infertility. This review provides perspectives on the major discoveries and developments that led to our current knowledge of estrogen's importance in the male reproductive tract and shaped our evolving concept of estrogen's physiological role in the male.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Yip CKY, Bansal S, Wong SY, Lau AJ. Identification of Galeterone and Abiraterone as Inhibitors of Dehydroepiandrosterone Sulfonation Catalyzed by Human Hepatic Cytosol, SULT2A1, SULT2B1b, and SULT1E1. Drug Metab Dispos 2018; 46:470-482. [PMID: 29436390 DOI: 10.1124/dmd.117.078980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/02/2018] [Indexed: 01/15/2023] Open
Abstract
Galeterone and abiraterone acetate are antiandrogens developed for the treatment of metastatic castration-resistant prostate cancer. In the present study, we investigated the effect of these drugs on dehydroepiandrosterone (DHEA) sulfonation catalyzed by human liver and intestinal cytosols and human recombinant sulfotransferase enzymes (SULT2A1, SULT2B1b, and SULT2E1) and compared their effects to those of other antiandrogens (cyproterone acetate, spironolactone, and danazol). Each of these chemicals (10 μM) inhibited DHEA sulfonation catalyzed by human liver and intestinal cytosols. Enzyme kinetic analysis showed that galeterone and abiraterone acetate inhibited human liver cytosolic DHEA sulfonation with apparent Ki values at submicromolar concentrations, whereas cyproterone acetate, spironolactone, and danazol inhibited it with apparent Ki values at low micromolar concentrations. The temporal pattern of abiraterone formation and abiraterone acetate depletion suggested that the metabolite abiraterone, not the parent drug abiraterone acetate, was responsible for the inhibition of DHEA sulfonation in incubations containing human liver cytosol and abiraterone acetate. Consistent with this proposal, similar apparent Ki values were obtained, regardless of whether abiraterone or abiraterone acetate was added to the enzymatic incubation. Abiraterone was more effective than abiraterone acetate in inhibiting DHEA sulfonation when catalyzed by human recombinant SULT2A1 or SULT2B1b. In conclusion, galeterone and abiraterone are novel inhibitors of DHEA sulfonation, as determined in enzymatic incubations containing human tissue cytosol (liver or intestinal) or human recombinant SULT enzyme (SULT2A1, SULT2B1b, or SULT1E1). Our findings on galeterone and abiraterone may have implications in drug-drug interactions and biosynthesis of steroid hormones.
Collapse
Affiliation(s)
- Caleb Keng Yan Yip
- Department of Pharmacy, Faculty of Science (C.K.Y.Y., S.B., S.Y.W., A.J.L.) and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore
| | - Sumit Bansal
- Department of Pharmacy, Faculty of Science (C.K.Y.Y., S.B., S.Y.W., A.J.L.) and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore
| | - Siew Ying Wong
- Department of Pharmacy, Faculty of Science (C.K.Y.Y., S.B., S.Y.W., A.J.L.) and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore
| | - Aik Jiang Lau
- Department of Pharmacy, Faculty of Science (C.K.Y.Y., S.B., S.Y.W., A.J.L.) and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore
| |
Collapse
|
3
|
Vitku J, Kolatorova L, Hampl R. Occurrence and reproductive roles of hormones in seminal plasma. Basic Clin Androl 2017; 27:19. [PMID: 29046808 PMCID: PMC5640966 DOI: 10.1186/s12610-017-0062-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Only 2-5% of seminal fluid is composed of spermatozoa, while the rest is seminal plasma. The seminal plasma is a rich cocktail of organic and inorganic compounds including hormones, serving as a source of nutrients for sperm development and maturation, protecting them from infection and enabling them to overcome the immunological and chemical environment of the female reproductive tract. In this review, a survey of the hormones found in human seminal plasma, with particular emphasis on reproductive hormones is provided. Their participation in fertilization is discussed including their indispensable role in ovum fertilization. The origin of individual hormones found in seminal plasma is discussed, along with differences in the concentrations in seminal plasma and blood plasma. A part of review is devoted to methods of measurement, emphasising particular instances in which they differ from measurement in blood plasma. These methods include separation techniques, overcoming the matrix effect and current ways for end-point measurement, focusing on so called hyphenated techniques as a combination of chromatographic separation and mass spectrometry. Finally, the informative value of their determination as markers of male fertility disorders (impaired spermatogenesis, abnormal sperm parameters, varicocele) is discussed, along with instances where measuring their levels in seminal plasma is preferable to measurement of levels in blood plasma.
Collapse
Affiliation(s)
- Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Richard Hampl
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| |
Collapse
|
4
|
Ji XW, Zhou TY, Lu Y, Wei MJ, Lu W, Cho WC. Breast cancer treatment and sulfotransferase. Expert Opin Ther Targets 2015; 19:821-34. [PMID: 25677121 DOI: 10.1517/14728222.2015.1014803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Sustained exposure to excessive estrogen is an established risk factor for breast cancer. Sulfotransferase (SULT)-mediated sulfonation represents an effective approach for estrogen deprivation as estrogen sulfates do not bind and activate estrogen receptors (ERs). The nuclear receptor (NR) superfamily functions as a sensor for xenobiotics as well as endogenous molecules, which can regulate the expression of SULT. AREAS COVERED In this review, we summarize the mechanisms of SULT regulation by NRs and inactivation of estrogen by SULT. Furthermore, we discuss the potential of clinical therapy targeting SULT in breast cancer treatment. Gaps in current knowledge that require further study are also highlighted. EXPERT OPINION The prevention of estrogen binding to ER by antiestrogen and inhibition of estrogen synthesis by aromatase or sulfatase inhibitor have been used in clinical therapy for breast cancer. Although the induction of SULT has been proven effective to estrogen inactivation, reports on this method applied to breast cancer treatment are rare. Targeted activation of SULT may open up a new means of treating hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Xi-Wei Ji
- Institute of Clinical Pharmacology, Peking University First Hospital, Peking University , Beijing , China
| | | | | | | | | | | |
Collapse
|
5
|
Suzuki T, Miki Y, Nakamura Y, Ito K, Sasano H. Steroid sulfatase and estrogen sulfotransferase in human carcinomas. Mol Cell Endocrinol 2011; 340:148-53. [PMID: 21073915 DOI: 10.1016/j.mce.2010.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 10/06/2010] [Accepted: 11/01/2010] [Indexed: 01/23/2023]
Abstract
Estrogens are closely involved in the development of hormone-dependent carcinomas. Estrone is locally produced from circulating inactive estrone sulfate by steroid sulfatase (STS), while estrone is inversely inactivated into estrone sulfate by estrogen sulfotransferase (EST). Recent studies suggested importance of this STS pathway in various human carcinomas. Therefore, in this review, we summarized recent results of STS and EST in several estrogen-dependent carcinomas. STS and EST expressions were detected in the breast and endometrial carcinomas, and activation of STS pathway due to increment in STS and/or decrement in EST expressions plays important role in their estrogen-dependent growth. STS expression was also reported in the ovarian and prostate carcinomas. STS/EST status was associated with intratumoral estrogen level in the colon carcinoma, and STS-negative/EST-positive colon carcinoma patients had longer survival. Therefore, STS pathway and estrogen actions may play an important role in the development of these carcinomas, and further investigations are required.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University, Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Poisson Paré D, Song D, Luu-The V, Han B, Li S, Liu G, Labrie F, Pelletier G. Expression of Estrogen Sulfotransferase 1E1 and Steroid Sulfatase in Breast Cancer: A Immunohistochemical Study. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2009; 3:9-21. [PMID: 21556246 PMCID: PMC3086308 DOI: 10.4137/bcbcr.s2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is known that the steroid sulfatase (STS) and the estrogen sulfotransferase (EST1E1) are commonly expressed in human breast carcinomas. STS and EST1E1 combined action could maintain the equilibrium between sulfated (inactive) and unconjugated (active) estrogens, which might have effects on development of hormone dependent breast cancer. We studied the expression of the STS and EST1E1 in 88 breast carcinomas and 57 adjacent non-malignant tissues by immunohistochemistry. The results were correlated with the tumor expression of estrogen receptor α (ER-α) and β (ER-β), progesterone receptor A (PR-A) and B (PR-B) and the proliferation marker CDC47, the tumoral type and stage and the age at surgery. STS expression was higher in carcinoma specimens than in adjacent normal tissues, although not to a significant level (p = 0.064) and it was positively associated with CDC47 expression (p < 0.05). These observations support the hypothesis that STS is overexpressed in breast cancer and associated with a worse prognosis. EST1E1 was observed for the first time in the nuclei of epithelial and tumoral cells. Tumor expression of EST1E1 was positively correlated with ER-β (p < 0.01) and PR-B (p < 0.05), two steroid receptors already associated with an improve prognosis for breast cancer. Controlling the STS overexpression in carcinomas could be a way to inhibit cancer growth. The significance of the association between EST1E1 and ER-β or PR-B should be further studied since these two receptors are transcription activators and may regulate the expression of protective enzymes like EST1E1.
Collapse
Affiliation(s)
- D Poisson Paré
- Molecular Endocrinology and Oncology Research Center, Laval University Hospital Research Center, 2705 Laurier blvd, Quebec City, Qc, Canada, G1V 4G2
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Falany CN, He D, Li L, Falany JL, Wilborn TW, Kocarek TA, Runge-Morris M. Regulation of hepatic sulfotransferase (SULT) 1E1 expression and effects on estrogenic activity in cystic fibrosis (CF). J Steroid Biochem Mol Biol 2009; 114:113-9. [PMID: 19429440 PMCID: PMC3855421 DOI: 10.1016/j.jsbmb.2009.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 12/18/2022]
Abstract
Cystic fibrosis (CF) is a major genetic disease in Caucasians affecting 1 in 2500 newborns. Hepatobiliary pathology is a major cause of morbidity and mortality in CF second only to pulmonary disease. SULT1E1 activity is significantly elevated, generally 20-30-fold, in hepatocytes of mouse models of CF. SULT1E1 is responsible for the inactivation of beta-estradiol (E2) at physiological concentrations via conjugation with sulfonate. The increase in SULT1E1 activity results in the alteration of E2-regulated protein expression in CF mouse liver. To investigate the mechanism by which the absence of CFTR in human cholangiocytes induces SULT1E1 expression in hepatocytes, a membrane-separated human MMNK-1 cholangiocyte and human HepG2 hepatocyte co-culture system was developed. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in bile duct cholangiocytes but not hepatocytes, whereas SULT1E1 is expressed in hepatocytes but not cholangiocytes. CFTR expression in MMNK-1 cells was inhibited with siRNA by >90% as determined by immunoblot and immunohistochemical analysis. Control and CFTR-siRNA-MMNK-1 cells were co-cultured with HepG2 cells in a Transwell membrane-separated system. After 8h of co-culture, HepG2 cells were removed from exposure to MMNK-1 cells and placed in fresh medium. After 24-48h, expression of SULT1E1 and selected E2-regulated proteins was analyzed in the HepG2 cells. Results demonstrated that SULT1E1 message and activity were selectively induced in HepG2 cells co-cultured with CFTR-deficient MMNK-1 cells. The expression of E2-regulated proteins (IGF-1, GST-P1 and carbonic anhydrase II) was also altered in response to decreased E2 levels. Thus, the loss of CFTR activity in cholangiocytes stimulates the expression of SULT1E1 in hepatocytes by a paracrine mechanism. SULT1E1 expression in HepG2 cells is inducible by sterol mediated liver-X-receptor (LXR) activation although not by progestins that induce SULT1E1 in the endometrium. SULT1E1 induction in the human cholangiocyte/hepatocyte co-culture system is consistent with and supports the results observed in CF mice. The changes in hepatocyte gene expression affect liver biochemistry and may facilitate the development of CF liver disease.
Collapse
Affiliation(s)
- Charles N Falany
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Lee JH, Gong H, Khadem S, Lu Y, Gao X, Li S, Zhang J, Xie W. Androgen deprivation by activating the liver X receptor. Endocrinology 2008; 149:3778-88. [PMID: 18450964 PMCID: PMC2488233 DOI: 10.1210/en.2007-1605] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostate cancer is the most commonly diagnosed and the second leading cause of cancer death in men. The androgens-androgen receptor signaling plays an important role in normal prostate development, as well as in prostatic diseases, such as benign hyperplasia and prostate cancer. Accordingly, androgen ablation has been the most effective endocrine therapy for hormone-dependent prostate cancer. Here, we report a novel nuclear receptor-mediated mechanism of androgen deprivation. Genetic or pharmacological activation of the liver X receptor (LXR) in vivo lowered androgenic activity by inducing the hydroxysteroid sulfotransferase 2A1, an enzyme essential for the metabolic deactivation of androgens. Activation of LXR also inhibited the expression of steroid sulfatase in the prostate, which may have helped to prevent the local conversion of sulfonated androgens back to active metabolites. Interestingly, LXR also induced the expression of selected testicular androgen synthesizing enzymes. At the physiological level, activation of LXR in mice inhibited androgen-dependent prostate regeneration in castrated mice. Treatment with LXR agonists inhibited androgen-dependent proliferation of prostate cancer cells in a LXR- and sulfotransferase 2A1-dependent manner. In summary, we have revealed a novel function of LXR in androgen homeostasis, an endocrine role distinct to the previously known sterol sensor function of this receptor. LXR may represent a novel therapeutic target for androgen deprivation, and may aid in the treatment and prevention of hormone-dependent prostate cancer.
Collapse
MESH Headings
- Androgens/biosynthesis
- Androgens/pharmacology
- Animals
- Benzoates/pharmacology
- Benzoates/therapeutic use
- Benzylamines/pharmacology
- Benzylamines/therapeutic use
- Cells, Cultured
- DNA-Binding Proteins/agonists
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Hydroxycholesterols/pharmacology
- Hydroxycholesterols/therapeutic use
- Liver X Receptors
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/metabolism
- Orphan Nuclear Receptors
- Prostate/drug effects
- Prostate/physiology
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Regeneration/drug effects
- Sulfotransferases/genetics
- Testosterone/blood
Collapse
Affiliation(s)
- Jung Hoon Lee
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pelletier G. Expression of steroidogenic enzymes and sex-steroid receptors in human prostate. Best Pract Res Clin Endocrinol Metab 2008; 22:223-8. [PMID: 18471781 DOI: 10.1016/j.beem.2008.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Identification of the cell types expressing the steroidogenic enzymes and sex steroid receptors in the human prostate has recently been performed using immunocytochemistry and in-situ hybridization. The enzymes 3beta-hydroxysteroid dehydrogenase (3beta-HSD), which converts dehydroepiandrosterone (DHEA) into androstenedione, and type 5 17beta-HSD, which catalyzes the reduction of androstenedione to testosterone, have been localized in basal cells of alveoli as well as in stromal cells and endothelial cells of blood vessels. On the other hand, type-2 5alpha-reductase, which converts testosterone into the most potent androgen dihydrotestosterone (DHT), has been mostly observed in the luminal cells in alveoli. Aromatase, which converts testosterone into estradiol, has also been found to be expressed in the luminal cells of the alveoli as well as in stromal cells. Androgen receptor (AR) has been localized in luminal cell nuclei of alveoli and a large number of stromal cells, while estrogen receptor beta has been detected in both basal and luminal cells in alveoli and also in stromal cells.
Collapse
Affiliation(s)
- Georges Pelletier
- Oncology and Molecular Endocrinology Laboratory Research Center, Laval University Hospital Research Center (CRCHUL) and Laval University, Quebec, Canada.
| |
Collapse
|
11
|
Kapoor R, Sheng JJ. Transfection of Human Prostate Cancer CA-HPV-10 Cells with Cytosolic Sulfotransferase SULT1E1 Affects Estrogen Signaling and Gene Transcription. Drug Metab Dispos 2007; 36:316-21. [DOI: 10.1124/dmd.107.017632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|