1
|
Kothapalli KSD, Park HG, Kothapalli NSL, Brenna JT. FADS2 function at the major cancer hotspot 11q13 locus alters fatty acid metabolism in cancer. Prog Lipid Res 2023; 92:101242. [PMID: 37597812 DOI: 10.1016/j.plipres.2023.101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA
| | | | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| |
Collapse
|
2
|
Kariri YA, Joseph C, Alsaleem MA, Elsharawy KA, Alsaeed S, Toss MS, Mongan NP, Green AR, Rakha EA. Mechanistic and Clinical Evidence Supports a Key Role for Cell Division Cycle Associated 5 (CDCA5) as an Independent Predictor of Outcome in Invasive Breast Cancer. Cancers (Basel) 2022; 14:cancers14225643. [PMID: 36428736 PMCID: PMC9688237 DOI: 10.3390/cancers14225643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cell Division Cycle Associated 5 (CDCA5) plays a role in the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signalling pathway involving cell division, cancer cell migration and apoptosis. This study aims to assess the prognostic and biological value of CDCA5 in breast cancer (BC). METHODS The biological and prognostic value of CDCA5 were evaluated at mRNA (n = 5109) and protein levels (n = 614) utilizing multiple well-characterized early stage BC cohorts. The effects of CDCA5 knockdown (KD) on multiple oncogenic assays were assessed in vitro using a panel of BC cell lines. RESULTS this study examined cohorts showed that high CDCA5 expression was correlated with features characteristic of aggressive behavior and poor prognosis, including the presence of high grade, large tumor size, lymphovascular invasion (LVI), hormone receptor negativity and HER2 positivity. High CDCA5 expression, at both mRNA and protein levels, was associated with shorter BC-specific survival independent of other variables (p = 0.034, Hazard ratio (HR) = 1.6, 95% CI; 1.1-2.3). In line with the clinical data, in vitro models indicated that CDCA5 depletion results in a marked decrease in BC cell invasion and migration abilities and a significant accumulation of the BC cells in the G2/M-phase. CONCLUSIONS These results provide evidence that CDCA5 plays an important role in BC development and metastasis and could be used as a potential biomarker to predict disease progression in BC.
Collapse
Affiliation(s)
- Yousif A. Kariri
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University, Shaqra 11961, Saudi Arabia
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
| | - Chitra Joseph
- School of Medicine, Nottingham City Hospital, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham NG5 1PB, UK
| | - Mansour A. Alsaleem
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- Department of Applied Medical Science, Applied College, Qassim University, Unayzah 56435, Saudi Arabia
| | - Khloud A. Elsharawy
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- Department of Zoology, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - Sami Alsaeed
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- Department of Clinical Laboratory Science, Faculty of Applied Medical Sciences, Northern Border University, Arar 73244, Saudi Arabia
| | - Michael S. Toss
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- School of Medicine, Nottingham City Hospital, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham NG5 1PB, UK
| | - Nigel P. Mongan
- Biodiscovery Institute, Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew R. Green
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
| | - Emad A. Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- School of Medicine, Nottingham City Hospital, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham NG5 1PB, UK
- Correspondence: or ; Tel.: +44-0115-9691169; Fax: +44-0115-9627768
| |
Collapse
|
3
|
Torcivia JP, Mazumder R. Scanning window analysis of non-coding regions within normal-tumor whole-genome sequence samples. Brief Bioinform 2021; 22:bbaa203. [PMID: 32940334 PMCID: PMC8138877 DOI: 10.1093/bib/bbaa203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 11/15/2022] Open
Abstract
Genomics has benefited from an explosion in affordable high-throughput technology for whole-genome sequencing. The regulatory and functional aspects in non-coding regions may be an important contributor to oncogenesis. Whole-genome tumor-normal paired alignments were used to examine the non-coding regions in five cancer types and two races. Both a sliding window and a binning strategy were introduced to uncover areas of higher than expected variation for additional study. We show that the majority of cancer associated mutations in 154 whole-genome sequences covering breast invasive carcinoma, colon adenocarcinoma, kidney renal papillary cell carcinoma, lung adenocarcinoma and uterine corpus endometrial carcinoma cancers and two races are found outside of the coding region (4 432 885 in non-gene regions versus 1 412 731 in gene regions). A pan-cancer analysis found significantly mutated windows (292 to 3881 in count) demonstrating that there are significant numbers of large mutated regions in the non-coding genome. The 59 significantly mutated windows were found in all studied races and cancers. These offer 16 regions ripe for additional study within 12 different chromosomes-2, 4, 5, 7, 10, 11, 16, 18, 20, 21 and X. Many of these regions were found in centromeric locations. The X chromosome had the largest set of universal windows that cluster almost exclusively in Xq11.1-an area linked to chromosomal instability and oncogenesis. Large consecutive clusters (super windows) were found (19 to 114 in count) providing further evidence that large mutated regions in the genome are influencing cancer development. We show remarkable similarity in highly mutated non-coding regions across both cancer and race.
Collapse
Affiliation(s)
- J P Torcivia
- The Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - R Mazumder
- The Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC, USA
- McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC, USA
| |
Collapse
|
4
|
Heidegger I, Tsaur I, Borgmann H, Surcel C, Kretschmer A, Mathieu R, Visschere PD, Valerio M, van den Bergh RCN, Ost P, Tilki D, Gandaglia G, Ploussard G. Hereditary prostate cancer - Primetime for genetic testing? Cancer Treat Rev 2019; 81:101927. [PMID: 31783313 DOI: 10.1016/j.ctrv.2019.101927] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) remains the most common cancer in men. The proportion of all PCa attributable to high-risk hereditary factors has been estimated to 5-15%. Recent landmark discoveries in PCa genetics led to the identification of germline mutations/alterations (eg. BRCA1, BRCA2, ATM or HOXB13), single nucleotide polymorphisms or copy number variations associated with PCa incidence and progression. However, offering germline testing to men with an assumed hereditary component is currently controversial. In the present review article, we provide an overview about the epidemiology and the genetic basis of PCa predisposition and critically discuss the significance and consequence in the clinical routine. In addition, we give an overview about genetic tests and report latest findings from ongoing clinical studies. Lastly, we discuss the impact of genetic testing in personalized therapy in advanced stages of the disease.
Collapse
Affiliation(s)
- Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria.
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, Mainz University Medicine, Mainz, Germany
| | - Hendrik Borgmann
- Department of Urology and Pediatric Urology, Mainz University Medicine, Mainz, Germany
| | - Christian Surcel
- Department of Urology, Fundeni Clinical Institute, University of Medicine and Pharmacy, Carol Davila Bucharest, Bucharest, Romania
| | | | | | - Pieter De Visschere
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | - Piet Ost
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Derya Tilki
- Martini Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, University Hospital-Hamburg Eppendorf, Hamburg, Germany
| | - Giorgio Gandaglia
- Department of Urology, Urological Research Institute, Vita-Salute University and San Raffaele Hospital, Milan, Italy
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hospital, Toulouse, France; Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | | |
Collapse
|
5
|
Lynch HT, Kosoko‐Lasaki O, Leslie SW, Rendell M, Shaw T, Snyder C, D'Amico AV, Buxbaum S, Isaacs WB, Loeb S, Moul JW, Powell I. Screening for familial and hereditary prostate cancer. Int J Cancer 2016; 138:2579-91. [DOI: 10.1002/ijc.29949] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Henry T. Lynch
- Hereditary Cancer Center and Department of Preventive MedicineCreighton University2500 California PlazaOmaha NE
| | - Omofolasade Kosoko‐Lasaki
- Departments of Surgery, Preventive Medicine & Public HealthCreighton University2500 California PlazaOmaha NE
| | - Stephen W. Leslie
- Department of Surgery (Urology)Creighton University Medical Center601 North 30th Street, Suite 3700Omaha NE
| | - Marc Rendell
- Department of Internal MedicineCreighton University Medical Center601 North 30th Street, Suite 3700Omaha NE
| | - Trudy Shaw
- Hereditary Cancer Center and Department of Preventive MedicineCreighton University2500 California PlazaOmaha NE
| | - Carrie Snyder
- Hereditary Cancer Center and Department of Preventive MedicineCreighton University2500 California PlazaOmaha NE
| | - Anthony V. D'Amico
- Department of Radiation OncologyBrigham and Women's Hospital and Dana Farber Cancer Institute, Harvard Medical SchoolBoston MA
| | - Sarah Buxbaum
- Jackson State University School of Health Sciences350 W. Woodrow Wilson DriveJackson MS
| | - William B. Isaacs
- Departments of Urology and OncologyJohns Hopkins University School of Medicine, Marburg 115, Johns Hopkins Hospital600 N. Wolfe StBaltimore MD
| | - Stacy Loeb
- Department of Urology and Population HealthNew York University550 1st Ave VZ30 (#612)New York NY
| | - Judd W. Moul
- Duke Prostate Center, Division of Urologic Surgery, DUMC 3707‐Room 1562 Duke SouthDuke University Medical CenterDurham NC
| | - Isaac Powell
- Department of UrologyWayne State University, Karmanos Cancer Institute, University Health Center 7‐CDetroit MI
| |
Collapse
|
6
|
Systematical analyses of variants in CTCF-binding sites identified a novel lung cancer susceptibility locus among Chinese population. Sci Rep 2015; 5:7833. [PMID: 25592173 PMCID: PMC4296290 DOI: 10.1038/srep07833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies identified genetic susceptibility variants mostly lie outside of protein-coding regions. It suggested variants located at transcriptional regulatory region should play an important role in cancer carcinogenesis including lung cancer. In the present study, we systematically investigated the associations between the variants in the binding sites of an extensive transcription factor CTCF and lung cancer risk in Chinese population. A two-stage case-control design was conducted to evaluate the variants located at the uniform CTCF ChIP-seq peaks in a Chinese population (2,331 vs 3,077; 1,115 vs 1,346). The ChIP-seq data for CTCF, specified on lung cancer cell line A549, were downloaded from ENCODE database. Imputation was performed to increase the genome coverage in the CTCF binding regions. Three variants in CTCF binding sites were found to associate with lung cancer risk in the first stage. Further replication revealed a novel single nucleotide polymorphism rs60507107 was significantly associated with increased risk of lung cancer in two stages (Additive model: OR = 1.19, 95%CI = 1.11–1.27, P = 6.98 × 10−7). Our results indicate that rs60507107 in the binding site of CTCF is associated with an increased risk of lung cancer. This may further advance our understanding of regulatory DNA sequences in cancer development.
Collapse
|
7
|
Nascimento e Pontes MG, da Silveira SM, de Souza Trindade Filho JC, Rogatto SR, Viana de Camargo JL. Chromosomal imbalances in successive moments of human bladder urothelial carcinoma. Urol Oncol 2013; 31:827-35. [DOI: 10.1016/j.urolonc.2011.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/02/2011] [Accepted: 05/24/2011] [Indexed: 02/06/2023]
|
8
|
Cuperlovic-Culf M, Belacel N, Davey M, Ouellette RJ. Multi-gene biomarker panel for reference free prostate cancer diagnosis: determination and independent validation. Biomarkers 2010; 15:693-706. [PMID: 20883156 DOI: 10.3109/1354750x.2010.511268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Identification of biomarkers that can accurately and reliably diagnose prostate cancer is clinically highly desirable. A novel classification method, K-closest resemblance was applied to several high-quality transcriptomic datasets of prostate cancer leading to the discovery of a panel of eight gene biomarkers that can detect prostate cancer with over 96% specificity and sensitivity in leave-one-out cross-validation. Independent validation on clinical samples confirmed the discriminatory power of this gene panel, yielding over 95% accuracy of diagnosis based on receiver-operating characteristic curve analyses. Different levels of validation of the proposed biomarker panel have shown that it allows extremely accurate diagnosis of prostate cancer. Application of this panel can possibly add a fast and objective tool to the pathologist's arsenal following further clinical testing.
Collapse
|
9
|
Fitzgerald LM, McDonnell SK, Carlson EE, Langeberg W, McIntosh LM, Deutsch K, Ostrander EA, Schaid DJ, Stanford JL. Genome-wide linkage analyses of hereditary prostate cancer families with colon cancer provide further evidence for a susceptibility locus on 15q11-q14. Eur J Hum Genet 2010; 18:1141-7. [PMID: 20407467 DOI: 10.1038/ejhg.2010.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The search for susceptibility loci in hereditary prostate cancer (HPC) is challenging because of locus and disease heterogeneity. One approach to reduce disease heterogeneity is to stratify families on the basis of the occurrence of multiple cancer types. This method may increase the power for detecting susceptibility loci, including those with pleiotropic effects. We have completed a genome-wide SNP linkage analysis of 96 HPC families, each of which has one or more first-degree relatives with colon cancer (CCa), and further analyzed the subset of families with two or more CCa cases (n = 27). When only a prostate cancer (PCa) phenotype was considered to be affected, we observed suggestive evidence for linkage (LOD ≥1.86) at 15q14, 18q21 and 19q13 in all families, and at 1p32 and 15q11-q14 in families with two or more CCa cases. When both the PCa and CCa phenotypes were considered affected, suggestive evidence for linkage was observed at 11q25, 15q14 and 18q21 in all families, and at 1q31, 11q14 and 15q11-14 in families with two or more CCa cases. The strongest linkage signal was identified at 15q14 when both PCa and CCa phenotypes were considered to be affected in families with two or more CCa cases (recessive HLOD = 3.88). These results provide further support for the presence of HPC susceptibility loci on chromosomes 11q14, 15q11-q14 and 19q13 and highlight loci at 1q31, 11q, 15q11-14 and 18q21 as having possible pleiotropic effects. This study shows the benefit of using a comprehensive family cancer history to create more genetically homogenous subsets of HPC families for linkage analyses.
Collapse
Affiliation(s)
- Liesel M Fitzgerald
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hood L. A personal journey of discovery: developing technology and changing biology. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:1-43. [PMID: 20636073 DOI: 10.1146/annurev.anchem.1.031207.113113] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This autobiographical article describes my experiences in developing chemically based, biological technologies for deciphering biological information: DNA, RNA, proteins, interactions, and networks. The instruments developed include protein and DNA sequencers and synthesizers, as well as ink-jet technology for synthesizing DNA chips. Diverse new strategies for doing biology also arose from novel applications of these instruments. The functioning of these instruments can be integrated to generate powerful new approaches to cloning and characterizing genes from a small amount of protein sequence or to using gene sequences to synthesize peptide fragments so as to characterize various properties of the proteins. I also discuss the five paradigm changes in which I have participated: the development and integration of biological instrumentation; the human genome project; cross-disciplinary biology; systems biology; and predictive, personalized, preventive, and participatory (P4) medicine. Finally, I discuss the origins, the philosophy, some accomplishments, and the future trajectories of the Institute for Systems Biology.
Collapse
Affiliation(s)
- Lee Hood
- Institute for Systems Biology, Seattle, Washington 98103, USA.
| |
Collapse
|