1
|
Kouprina N, Larionov V. Transformation-associated recombination (TAR) cloning and its applications for gene function; genome architecture and evolution; biotechnology and biomedicine. Oncotarget 2023; 14:1009-1033. [PMID: 38147065 PMCID: PMC10750837 DOI: 10.18632/oncotarget.28546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Transformation-associated recombination (TAR) cloning represents a unique tool to selectively and efficiently recover a given chromosomal segment up to several hundred kb in length from complex genomes (such as animals and plants) and simple genomes (such as bacteria and viruses). The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. In this review, we summarize multiple applications of the pioneering TAR cloning technique, developed previously for complex genomes, for functional, evolutionary, and structural studies, and extended the modified TAR versions to isolate biosynthetic gene clusters (BGCs) from microbes, which are the major source of pharmacological agents and industrial compounds, and to engineer synthetic viruses with novel properties to design a new generation of vaccines. TAR cloning was adapted as a reliable method for the assembly of synthetic microbe genomes for fundamental research. In this review, we also discuss how the TAR cloning in combination with HAC (human artificial chromosome)- and CRISPR-based technologies may contribute to the future.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Kouprina N, Kim J, Larionov V. Highly Selective, CRISPR/Cas9-Mediated Isolation of Genes and Genomic Loci from Complex Genomes by TAR Cloning in Yeast. Curr Protoc 2021; 1:e207. [PMID: 34370406 PMCID: PMC8363120 DOI: 10.1002/cpz1.207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here we describe an updated TAR cloning protocol for the selective and efficient isolation of any genomic fragment or gene of interest up to 280 kb in size from genomic DNA. The method exploits the special recombination machinery of the yeast Saccharomyces cerevisiae. TAR cloning is based on the high level of in vivo recombination that occurs between a specific genomic DNA fragment of interest and targeting sequences (hooks) in a TAR vector that are homologous to the 5' and 3' ends of the targeted region. Upon co-transformation into yeast, this results in the isolation of the chromosomal region of interest as a circular YAC molecule, which then propagates and segregates in yeast cells and can be selected for. In the updated TAR cloning protocol described here, the fraction of region-positive clones typically obtained is increased from 1% up to 35% by pre-treatment of the genomic DNA with specifically designed CRISPR/Cas9 endonucleases that create double-strand breaks (DSBs) bracketing the target genomic DNA sequence, thereby making the ends of the chromosomal region of interest highly recombinogenic. In addition, a new TAR vector was constructed that contains YAC and BAC cassettes, permitting direct transfer of a TAR-cloned DNA from yeast to bacterial cells. Once the TAR vector with the hooks is constructed and genomic DNA is prepared, the entire procedure takes 3 weeks to complete. The updated TAR protocol does not require significant yeast experience or extensively time-consuming yeast work because screening only about a dozen yeast transformants is typically enough to find a clone with the region of interest. TAR cloning of chromosomal fragments, individual genes, or gene families can be used for functional, structural, and population studies, for comparative genomics, and for long-range haplotyping, and has potential for gene therapy. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of CRISPR/Cas9-treated genomic DNA for TAR cloning Basic Protocol 2: Isolation of a gene or genomic locus by TAR cloning Basic Protocol 3: Transfer of TAR/YAC/BAC isolates from yeast to E. coli.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer InstituteNIHBethesdaMaryland
| | - Jung‐Hyun Kim
- Developmental Therapeutics Branch, National Cancer InstituteNIHBethesdaMaryland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer InstituteNIHBethesdaMaryland
| |
Collapse
|
3
|
Zhu F, Bo H, Liu G, Li R, Liu Z, Fan L. SPANXN2 functions a cell migration inhibitor in testicular germ cell tumor cells. PeerJ 2020; 8:e9358. [PMID: 32612888 PMCID: PMC7319028 DOI: 10.7717/peerj.9358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background SPANX family members are thought to play an important role in cancer progression. The SPANXN2 is a gene expressed mainly in normal testis, but its role in testicular germ cell tumors (TGCTs) has yet to be investigated. TGCT is one of the most common solid tumors in young men and is associated with poor prognosis; however, effective prognostic indicators remain elusive. Therefore, we investigated the role of SPANXN2 in TGCT development. Methods SPANXN2 expression levels were validated by quantitative real-time polymerase chain reaction (qRT-PCR) analyses of 14 TGCT samples and five adjacent normal tissue samples. SPANXN2 was transiently overexpressed in TGCT cells to study the consequences for cell function. The effects of SPANXN2 on cell migration were evaluated in transwell and wound healing assays. The effects on cloning ability were evaluated in colony formation assays. MTT assays and cell cycle analysis were used to detect the effects of SPANXN2 on cell proliferation. The expression levels of EMT- and AKT-related proteins in cells overexpressing SPANXN2 were analyzed by Western blotting. Results Compared with adjacent normal tissues, the Gene Expression Profiling Interactive Analysis database showed SPANXN2 expression was downregulated in TGCTs which was consistent with the qRT-PCR analysis. SPANXN2 overexpression reduced cell migration and colony formation capability and downregulated expression of EMT- and AKT-related proteins, Vimentin, Snail, AKT, and p-AKT. Conclusion Our results suggest that SPANXN2 regulates TGCT cell migration via EMT- and AKT-related proteins although its role in the occurrence and development of TGCT remains to be fully elucidated.
Collapse
Affiliation(s)
- Fang Zhu
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China
| | - Hao Bo
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Guangmin Liu
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China
| | - Ruixue Li
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China
| | - Zhizhong Liu
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China.,Hunan Cancer Hospital, Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, Hunan, China
| | - Liqing Fan
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| |
Collapse
|
4
|
Kouprina N, Larionov V. TAR Cloning: Perspectives for Functional Genomics, Biomedicine, and Biotechnology. Mol Ther Methods Clin Dev 2019; 14:16-26. [PMID: 31276008 PMCID: PMC6586605 DOI: 10.1016/j.omtm.2019.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Completion of the human genome sequence and recent advances in engineering technologies have enabled an unprecedented level of understanding of DNA variations and their contribution to human diseases and cellular functions. However, in some cases, long-read sequencing technologies do not allow determination of the genomic region carrying a specific mutation (e.g., a mutation located in large segmental duplications). Transformation-associated recombination (TAR) cloning allows selective, most accurate, efficient, and rapid isolation of a given genomic fragment or a full-length gene from simple and complex genomes. Moreover, this method is the only way to simultaneously isolate the same genomic region from multiple individuals. As such, TAR technology is currently in a leading position to create a library of the individual genes that comprise the human genome and physically characterize the sites of chromosomal alterations (copy number variations [CNVs], inversions, translocations) in the human population, associated with the predisposition to different diseases, including cancer. It is our belief that such a library and analysis of the human genome will be of great importance to the growing field of gene therapy, new drug design methods, and genomic research. In this review, we detail the motivation for TAR cloning for human genome studies, biotechnology, and biomedicine, discuss the recent progress of some TAR-based projects, and describe how TAR technology in combination with HAC (human artificial chromosome)-based and CRISPR-based technologies may contribute in the future.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Kouprina N, Liskovykh M, Lee NCO, Noskov VN, Waterfall JJ, Walker RL, Meltzer PS, Topol EJ, Larionov V. Analysis of the 9p21.3 sequence associated with coronary artery disease reveals a tendency for duplication in a CAD patient. Oncotarget 2018; 9:15275-15291. [PMID: 29632643 PMCID: PMC5880603 DOI: 10.18632/oncotarget.24567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/10/2018] [Indexed: 11/25/2022] Open
Abstract
Tandem segmental duplications (SDs) greater than 10 kb are widespread in complex genomes. They provide material for gene divergence and evolutionary adaptation, while formation of specific de novo SDs is a hallmark of cancer and some human diseases. Most SDs map to distinct genomic regions termed ‘duplication blocks’. SDs organization within these blocks is often poorly characterized as they are mosaics of ancestral duplicons juxtaposed with younger duplicons arising from more recent duplication events. Structural and functional analysis of SDs is further hampered as long repetitive DNA structures are underrepresented in existing BAC and YAC libraries. We applied Transformation-Associated Recombination (TAR) cloning, a versatile technique for large DNA manipulation, to selectively isolate the coronary artery disease (CAD) interval sequence within the 9p21.3 chromosome locus from a patient with coronary artery disease and normal individuals. Four tandem head-to-tail duplicons, each ∼50 kb long, were recovered in the patient but not in normal individuals. Sequence analysis revealed that the repeats varied by 10-15 SNPs between each other and by 82 SNPs between the human genome sequence (version hg19). SNPs polymorphism within the junctions between repeats allowed two junction types to be distinguished, Type 1 and Type 2, which were found at a 2:1 ratio. The junction sequences contained an Alu element, a sequence previously shown to play a role in duplication. Knowledge of structural variation in the CAD interval from more patients could help link this locus to cardiovascular diseases susceptibility, and maybe relevant to other cases of regional amplification, including cancer.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nicholas C O Lee
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir N Noskov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Robert L Walker
- Genetics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paul S Meltzer
- Genetics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eric J Topol
- The Scripps Translational Science Institute, The Scripps Research Institute and Scripps Health, La Jolla, CA 92037, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Adeola HA, Smith M, Kaestner L, Blackburn JM, Zerbini LF. Novel potential serological prostate cancer biomarkers using CT100+ cancer antigen microarray platform in a multi-cultural South African cohort. Oncotarget 2017; 7:13945-64. [PMID: 26885621 PMCID: PMC4924690 DOI: 10.18632/oncotarget.7359] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 01/29/2016] [Indexed: 12/17/2022] Open
Abstract
There is a growing need for high throughput diagnostic tools for early diagnosis and treatment monitoring of prostate cancer (PCa) in Africa. The role of cancer-testis antigens (CTAs) in PCa in men of African descent is poorly researched. Hence, we aimed to elucidate the role of 123 Tumour Associated Antigens (TAAs) using antigen microarray platform in blood samples (N = 67) from a South African PCa, Benign prostatic hyperplasia (BPH) and disease control (DC) cohort. Linear (fold-over-cutoff) and differential expression quantitation of autoantibody signal intensities were performed. Molecular signatures of candidate PCa antigen biomarkers were identified and analyzed for ethnic group variation. Potential cancer diagnostic and immunotherapeutic inferences were drawn. We identified a total of 41 potential diagnostic/therapeutic antigen biomarkers for PCa. By linear quantitation, four antigens, GAGE1, ROPN1, SPANXA1 and PRKCZ were found to have higher autoantibody titres in PCa serum as compared with BPH where MAGEB1 and PRKCZ were highly expressed. Also, p53 S15A and p53 S46A were found highly expressed in the disease control group. Statistical analysis by differential expression revealed twenty-four antigens as upregulated in PCa samples, while 11 were downregulated in comparison to BPH and DC (FDR = 0.01). FGFR2, COL6A1and CALM1 were verifiable biomarkers of PCa analysis using urinary shotgun proteomics. Functional pathway annotation of identified biomarkers revealed similar enrichment both at genomic and proteomic level and ethnic variations were observed. Cancer antigen arrays are emerging useful in potential diagnostic and immunotherapeutic antigen biomarker discovery.
Collapse
Affiliation(s)
- Henry A Adeola
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Muneerah Smith
- Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lisa Kaestner
- Urology Department, Grootes Schuur Hospital, Cape Town, South Africa
| | - Jonathan M Blackburn
- Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 2016; 125:621-32. [PMID: 27116033 DOI: 10.1007/s00412-016-0588-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 12/25/2022]
Abstract
Transformation-associated recombination (TAR) cloning represents a unique tool for isolation and manipulation of large DNA molecules. The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. So far, TAR cloning is the only method available to selectively recover chromosomal segments up to 300 kb in length from complex and simple genomes. In addition, TAR cloning allows the assembly and cloning of entire microbe genomes up to several Mb as well as engineering of large metabolic pathways. In this review, we summarize applications of TAR cloning for functional/structural genomics and synthetic biology.
Collapse
|
8
|
Cheung HH, Yang Y, Lee TL, Rennert O, Chan WY. Hypermethylation of genes in testicular embryonal carcinomas. Br J Cancer 2015; 114:230-6. [PMID: 26625006 PMCID: PMC4815804 DOI: 10.1038/bjc.2015.408] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 10/15/2015] [Accepted: 11/04/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Testicular embryonal carcinoma (EC) is a major subtype of non-seminomatous germ cell tumours in males. Embryonal carcinomas are pluripotent, undifferentiated germ cell tumours believed to originate from primordial germ cells. Epigenetic changes during testicular EC tumorigenesis require better elucidation. METHODS To identify epigenetic changes during testicular neoplastic transformation, we profiled DNA methylation of six ECs. These samples represent different stages (stage I and stage III) of divergent invasiveness. Non-cancerous testicular tissues were included. Expression of a number of hypermethylated genes were examined by quantitative RT-PCR and immunohistochemistry (IHC). RESULTS A total of 1167 tumour-hypermethylated differentially methylated regions (DMRs) were identified across the genome. Among them, 40 genes/ncRNAs were found to have hypermethylated promoters. Quantitative RT-PCR confirmed downregulation of 8 out of 9 of the genes. Among the confirmed genes, five were sex-linked genes, including X-linked genes STAG2, SPANXD/E and MIR1184, and Y-linked genes RBMY1A1/1B/1D and FAM197Y2P. RBMY1A is a testis-specific gene for spermatogenesis. RNF168 and USP13 are potential tumour suppressors. Expression of RBMY1A was lost in EC and seminoma as documented in the Protein Atlas. We confirmed downregulation of USP13 in EC by IHC. CONCLUSIONS Our genome-wide analysis of testicular EC identified methylation changes in several previously unknown genes. This may provide insight of crosstalk between normal germ cell development and carcinogenesis.
Collapse
Affiliation(s)
- Hoi-Hung Cheung
- The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Ningxia 750004, China
| | - Tin-Lap Lee
- Reproduction, Development and Endocrinology Theme, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Owen Rennert
- The Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wai-Yee Chan
- The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Reproduction, Development and Endocrinology Theme, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
9
|
Genetic heterogeneity in Finnish hereditary prostate cancer using ordered subset analysis. Eur J Hum Genet 2012; 21:437-43. [PMID: 22948022 DOI: 10.1038/ejhg.2012.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Prostate cancer (PrCa) is the most common male cancer in developed countries and the second most common cause of cancer death after lung cancer. We recently reported a genome-wide linkage scan in 69 Finnish hereditary PrCa (HPC) families, which replicated the HPC9 locus on 17q21-q22 and identified a locus on 2q37. The aim of this study was to identify and to detect other loci linked to HPC. Here we used ordered subset analysis (OSA), conditioned on nonparametric linkage to these loci to detect other loci linked to HPC in subsets of families, but not the overall sample. We analyzed the families based on their evidence for linkage to chromosome 2, chromosome 17 and a maximum score using the strongest evidence of linkage from either of the two loci. Significant linkage to a 5-cM linkage interval with a peak OSA nonparametric allele-sharing LOD score of 4.876 on Xq26.3-q27 (ΔLOD=3.193, empirical P=0.009) was observed in a subset of 41 families weakly linked to 2q37, overlapping the HPCX1 locus. Two peaks that were novel to the analysis combining linkage evidence from both primary loci were identified; 18q12.1-q12.2 (OSA LOD=2.541, ΔLOD=1.651, P=0.03) and 22q11.1-q11.21 (OSA LOD=2.395, ΔLOD=2.36, P=0.006), which is close to HPC6. Using OSA allows us to find additional loci linked to HPC in subsets of families, and underlines the complex genetic heterogeneity of HPC even in highly aggregated families.
Collapse
|
10
|
Kouprina N, Lee NCO, Pavlicek A, Samoshkin A, Kim JH, Lee HS, Varma S, Reinhold WC, Otstot J, Solomon G, Davis S, Meltzer PS, Schleutker J, Larionov V. Exclusion of the 750-kb genetically unstable region at Xq27 as a candidate locus for prostate malignancy in HPCX1-linked families. Genes Chromosomes Cancer 2012; 51:933-48. [PMID: 22733720 DOI: 10.1002/gcc.21977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/08/2012] [Indexed: 12/14/2022] Open
Abstract
Several linkage studies provided evidence for the presence of the hereditary prostate cancer locus, HPCX1, at Xq27-q28. The strongest linkage peak of prostate cancer overlies a variable region of ~750 kb at Xq27 enriched by segmental duplications (SDs), suggesting that the predisposition to prostate cancer may be a genomic disorder caused by recombinational interaction between SDs. The large size of SDs and their sequence similarity make it difficult to examine this region for possible rearrangements using standard methods. To overcome this problem, direct isolation of a set of genomic segments by in vivo recombination in yeast (a TAR cloning technique) was used to perform a mutational analysis of the 750 kb region in X-linked families. We did not detect disease-specific rearrangements within this region. In addition, transcriptome and computational analyses were performed to search for nonannotated genes within the Xq27 region, which may be associated with genetic predisposition to prostate cancer. Two candidate genes were identified, one of which is a novel gene termed SPANXL that represents a highly diverged member of the SPANX gene family, and the previously described CDR1 gene that is expressed at a high level in both normal and malignant prostate cells, and mapped 210 kb of upstream the SPANX gene cluster. No disease-specific alterations were identified in these genes. Our results exclude the 750-kb genetically unstable region at Xq27 as a candidate locus for prostate malignancy. Adjacent regions appear to be the most likely candidates to identify the elusive HPCX1 locus.
Collapse
Affiliation(s)
- Natalay Kouprina
- Laboratory of Molecular Pharmacology, NCI, NIH, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bailey-Wilson JE, Childs EJ, Cropp CD, Schaid DJ, Xu J, Camp NJ, Cannon-Albright LA, Farnham JM, George A, Powell I, Carpten JD, Giles GG, Hopper JL, Severi G, English DR, Foulkes WD, Mæhle L, Møller P, Eeles R, Easton D, Guy M, Edwards S, Badzioch MD, Whittemore AS, Oakley-Girvan I, Hsieh CL, Dimitrov L, Stanford JL, Karyadi DM, Deutsch K, McIntosh L, Ostrander EA, Wiley KE, Isaacs SD, Walsh PC, Thibodeau SN, McDonnell SK, Hebbring S, Lange EM, Cooney KA, Tammela TLJ, Schleutker J, Maier C, Bochum S, Hoegel J, Grönberg H, Wiklund F, Emanuelsson M, Cancel-Tassin G, Valeri A, Cussenot O, Isaacs WB. Analysis of Xq27-28 linkage in the international consortium for prostate cancer genetics (ICPCG) families. BMC MEDICAL GENETICS 2012; 13:46. [PMID: 22712434 PMCID: PMC3495053 DOI: 10.1186/1471-2350-13-46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 04/30/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. METHODS Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. RESULTS Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2-3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. CONCLUSIONS Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2-3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region.
Collapse
Affiliation(s)
- Joan E Bailey-Wilson
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, 21224, USA
- African American Hereditary Prostate Cancer ICPCG Group, Phoenix, AZ, USA
- University of Tampere ICPCG Group, Tampere, Finland
| | - Erica J Childs
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, 21224, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Cheryl D Cropp
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jianfeng Xu
- Data Coordinating Center for the ICPCG and Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Nicola J Camp
- University of Utah ICPCG Group and Division of Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Lisa A Cannon-Albright
- University of Utah ICPCG Group and Division of Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - James M Farnham
- University of Utah ICPCG Group and Division of Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Asha George
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, 21224, USA
- African American Hereditary Prostate Cancer ICPCG Group, Phoenix, AZ, USA
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Isaac Powell
- African American Hereditary Prostate Cancer ICPCG Group, Phoenix, AZ, USA
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - John D Carpten
- African American Hereditary Prostate Cancer ICPCG Group, Phoenix, AZ, USA
- Translational Genomics Research Institute, Genetic Basis of Human Disease Research Division, Phoenix, AZ, USA
| | - Graham G Giles
- ACTANE consortium
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Australia
| | - John L Hopper
- ACTANE consortium
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Australia
| | - Gianluca Severi
- ACTANE consortium
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Australia
| | - Dallas R English
- ACTANE consortium
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Australia
| | - William D Foulkes
- ACTANE consortium
- Program in Cancer Genetics, McGill University, Montreal, QC, Canada
| | - Lovise Mæhle
- ACTANE consortium
- Department of Medical Genetics, Oslo University Hospital, The Norwegian Radium Hospital, Oslo,Norway
| | - Pål Møller
- ACTANE consortium
- Department of Medical Genetics, Oslo University Hospital, The Norwegian Radium Hospital, Oslo,Norway
| | - Rosalind Eeles
- ACTANE consortium
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| | - Douglas Easton
- ACTANE consortium
- Cancer Research UK Genetic Epidemiology Unit, Cambridge, UK
| | - Michelle Guy
- ACTANE consortium
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| | - Steve Edwards
- ACTANE consortium
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| | - Michael D Badzioch
- ACTANE consortium
- Division of Medical Genetics, University of Washington Medical Center, Seattle, WA, USA
| | - Alice S Whittemore
- BC/CA/HI ICPCG Group, Stanford, CA, USA
- Department of Health Research and Policy, Stanford School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Ingrid Oakley-Girvan
- BC/CA/HI ICPCG Group, Stanford, CA, USA
- Department of Health Research and Policy, Stanford School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
- Cancer Prevention Institute of California
| | - Chih-Lin Hsieh
- BC/CA/HI ICPCG Group, Stanford, CA, USA
- Department of Urology and Department of Biochemistry and Molecular Biology, University of Southern California, Los Ageles, CA, USA
| | - Latchezar Dimitrov
- Data Coordinating Center for the ICPCG and Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Janet L Stanford
- FHCRC ICPCG Group, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Danielle M Karyadi
- FHCRC ICPCG Group, Seattle, WA, USA
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerry Deutsch
- FHCRC ICPCG Group, Seattle, WA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - Laura McIntosh
- FHCRC ICPCG Group, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Elaine A Ostrander
- FHCRC ICPCG Group, Seattle, WA, USA
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen E Wiley
- Johns Hopkins University ICPCG Group and Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Sarah D Isaacs
- Johns Hopkins University ICPCG Group and Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Patrick C Walsh
- Johns Hopkins University ICPCG Group and Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | - Ethan M Lange
- University of Michigan ICPCG Group, Ann Arbor, MI, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Kathleen A Cooney
- University of Michigan ICPCG Group, Ann Arbor, MI, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Teuvo LJ Tammela
- University of Tampere ICPCG Group, Tampere, Finland
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- Centre for Laboratory Medicine and Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Johanna Schleutker
- University of Tampere ICPCG Group, Tampere, Finland
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- Centre for Laboratory Medicine and Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Christiane Maier
- University of Ulm ICPCG Group, Ulm, Germany
- Dept of Urology, University of Ulm, Ulm, Germany
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Sylvia Bochum
- University of Ulm ICPCG Group, Ulm, Germany
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Josef Hoegel
- University of Ulm ICPCG Group, Ulm, Germany
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Olivier Cussenot
- CeRePP ICPCG Group, 75020, Paris, France
- Hopital Tenon, Assistance Publique-Hopitaux de Paris, 75020, Paris, France
| | - William B Isaacs
- Johns Hopkins University ICPCG Group and Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
12
|
Mattila H, Schindler M, Isotalo J, Ikonen T, Vihinen M, Oja H, Tammela TLJ, Wahlfors T, Schleutker J. NMD and microRNA expression profiling of the HPCX1 locus reveal MAGEC1 as a candidate prostate cancer predisposition gene. BMC Cancer 2011; 11:327. [PMID: 21810217 PMCID: PMC3162583 DOI: 10.1186/1471-2407-11-327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 08/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several predisposition loci for hereditary prostate cancer (HPC) have been suggested, including HPCX1 at Xq27-q28, but due to the complex structure of the region, the susceptibility gene has not yet been identified. METHODS In this study, nonsense-mediated mRNA decay (NMD) inhibition was used for the discovery of truncating mutations. Six prostate cancer (PC) patients and their healthy brothers were selected from a group of HPCX1-linked families. Expression analyses were done using Agilent 44 K oligoarrays, and selected genes were screened for mutations by direct sequencing. In addition, microRNA expression levels in the lymphoblastic cells were analyzed to trace variants that might alter miRNA expression and explain partly an inherited genetic predisposion to PC. RESULTS Seventeen genes were selected for resequencing based on the NMD array, but no truncating mutations were found. The most interesting variant was MAGEC1 p.Met1?. An association was seen between the variant and unselected PC (OR = 2.35, 95% CI = 1.10-5.02) and HPC (OR = 3.38, 95% CI = 1.10-10.40). miRNA analysis revealed altogether 29 miRNAs with altered expression between the PC cases and controls. miRNA target analysis revealed that 12 of them also had possible target sites in the MAGEC1 gene. These miRNAs were selected for validation process including four miRNAs located in the X chromosome. The expressions of 14 miRNAs were validated in families that contributed to the significant signal differences in Agilent arrays. CONCLUSIONS Further functional studies are needed to fully understand the possible contribution of these miRNAs and MAGEC1 start codon variant to PC.
Collapse
Affiliation(s)
- Henna Mattila
- Institute of Biomedical Technology, University of Tampere and Centre for Laboratory Medicine, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Salemi M, Calogero AE, Zaccarello G, Castiglione R, Cosentino A, Campagna C, Vicari E, Rappazzo G. Expression of SPANX proteins in normal prostatic tissue and in prostate cancer. Eur J Histochem 2011; 54:e41. [PMID: 20839415 PMCID: PMC3167315 DOI: 10.4081/ejh.2010.e41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The sperm protein associated with the nucleus in the X chromosome (SPANX) gene family encodes for proteins that are not only expressed in germ cells, but also in a number of tumors. In addition, SPANX genes map in an interval of the X chromosome (namely, Xq27), which has been found to be associated with familial prostate cancer by linkage analysis. The aim of this study was therefore to evaluate SPANX protein expression in normal prostate tissues and in prostate carcinoma. For this purpose, formalin-fixed and paraffin-embedded sections obtained from 15 normal (at autopsy) donors and 12 men with prostate cancer were analyzed by immunohistochemistry. About 40% of both normal and tumor prostate samples resulted SPANX positive. Signals were exclusively within the nucleus in normal prostate cells, whereas both nuclear and cytoplasmic positivity was observed in tumor cells. In conclusion, these findings showed that SPANX genes are expressed in both normal and tumor prostate gland, but the latter showed a peculiar cytoplasmic staining positivity. This suggests a possible association between SPANX over expression and prostate cancer development. Additional studies are needed to corroborate this hypothesis.
Collapse
Affiliation(s)
- M Salemi
- Section of Endocrinology, Andrology and Internal Medicine, Department of Biomedical Sciences, University of Catania, Policlinico G. Rodolico, via S. Sofia 78, Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Stouffs K, Tournaye H, Liebaers I, Lissens W. Male infertility and the involvement of the X chromosome. Hum Reprod Update 2009; 15:623-37. [PMID: 19515807 DOI: 10.1093/humupd/dmp023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Male infertility is a worldwide problem, keeping many researchers puzzled. Besides environmental factors, much attention is paid to single gene defects. In this view, the sex chromosomes are particularly interesting since men only have a single copy of these chromosomes. The involvement of the Y chromosome in male infertility is obvious since the detection of Yq microdeletions. The role of the X chromosome, however, remains less understood. METHODS Articles were obtained by searching PubMed until December 2008. A first search attempted to identify genes located on the X chromosome potentially important for spermatogenesis. A second part of the study was focused on those genes for which the role has already been studied in infertile patients. RESULTS Multiple genes located on the X chromosome are expressed in testicular tissues. The function of many genes, especially the cancer-testis genes, has not been studied so far. There were striking differences between mouse and human genes. In the second part of the study, the results of mutation analyses of seven genes (AR, SOX3, USP26, NXF2, TAF7L, FATE and AKAP4) are described. Except for AR, no infertility causing mutations have, thus far, been described. It cannot be excluded that some of the observed changes should be considered as risk factors for impaired spermatogenesis. CONCLUSIONS It can be concluded that, so far, the mutation analysis of X-linked genes in humans, presumed to be crucial for spermatogenesis or sperm quality, has been disappointing. Other approaches to learn more about male infertility are necessary.
Collapse
Affiliation(s)
- Katrien Stouffs
- Department of Embryology and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
15
|
Gene induction by glycyrol to apoptosis through endonuclease G in tumor cells and prediction of oncogene function by microarray analysis. Anticancer Drugs 2008; 19:503-15. [DOI: 10.1097/cad.0b013e3282fba582] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
A haplotype at chromosome Xq27.2 confers susceptibility to prostate cancer. Hum Genet 2008; 123:379-86. [PMID: 18350320 DOI: 10.1007/s00439-008-0486-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
We conducted an association study to identify risk variants for familial prostate cancer within the HPCX locus at Xq27 among Americans of Northern European descent. We investigated a total of 507 familial prostate cancer probands and 507 age-matched controls without a personal or family history of prostate cancer. The study population was subdivided into a set of training subjects to explore genetic variation of the locus potentially impacting risk of prostate cancer, and an independent set of test subjects to confirm the association and to assign significance, addressing multiple comparisons. We identified a 22.9 kb haplotype nominally associated with prostate cancer among training subjects (292 cases, 292 controls; chi(2) = 5.08, P = 0.020), that was confirmed among test subjects (215 cases, 215 controls; chi(2) = 3.73, P = 0.040). The haplotype predisposed to prostate cancer with an odds ratio of 3.41 (95% CI 1.04-11.17, P = 0.034) among test subjects. The haplotype extending from rs5907859 to rs1493189 is concordant with a prior study of the region within the Finnish founder population, and warrants further independent investigation.
Collapse
|
17
|
Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat Protoc 2008; 3:371-7. [DOI: 10.1038/nprot.2008.5] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|