1
|
Cabri W, Cantelmi P, Corbisiero D, Fantoni T, Ferrazzano L, Martelli G, Mattellone A, Tolomelli A. Therapeutic Peptides Targeting PPI in Clinical Development: Overview, Mechanism of Action and Perspectives. Front Mol Biosci 2021; 8:697586. [PMID: 34195230 PMCID: PMC8236712 DOI: 10.3389/fmolb.2021.697586] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Targeting protein-protein interactions (PPIs) has been recently recognized as an emerging therapeutic approach for several diseases. Up today, more than half a million PPI dysregulations have been found to be involved in pathological events. The dynamic nature of these processes and the involvement of large protein surfaces discouraged anyway the scientific community in considering them promising therapeutic targets. More recently peptide drugs received renewed attention since drug discovery has offered a broad range of structural diverse sequences, moving from traditionally endogenous peptides to sequences possessing improved pharmaceutical profiles. About 70 peptides are currently on the marked but several others are in clinical development. In this review we want to report the update on these novel APIs, focusing our attention on the molecules in clinical development, representing the direct consequence of the drug discovery process of the last 10 years. The comprehensive collection will be classified in function of the structural characteristics (native, analogous, heterologous) and on the basis of the therapeutic targets. The mechanism of interference on PPI will also be reported to offer useful information for novel peptide design.
Collapse
Affiliation(s)
- Walter Cabri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | - Alessandra Tolomelli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Gonadotropin-Releasing Hormone Receptors in Prostate Cancer: Molecular Aspects and Biological Functions. Int J Mol Sci 2020; 21:ijms21249511. [PMID: 33327545 PMCID: PMC7765031 DOI: 10.3390/ijms21249511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Pituitary Gonadotropin-Releasing Hormone receptors (GnRH-R) mediate the activity of the hypothalamic decapeptide GnRH, thus playing a key role in the regulation of the reproductive axis. Early-stage prostate cancer (PCa) is dependent on serum androgen levels, and androgen-deprivation therapy (ADT), based on GnRH agonists and antagonists, represents the standard therapeutic approach for PCa patients. Unfortunately, the tumor often progresses towards the more aggressive castration-resistant prostate cancer (CRPC) stage. GnRH receptors are also expressed in CRPC tissues, where their binding to both GnRH agonists and antagonists is associated with significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic effects, mediated by the Gαi/cAMP signaling cascade. GnRH agonists and antagonists are now considered as an effective therapeutic strategy for CRPC patients with many clinical trials demonstrating that the combined use of these drugs with standard therapies (i.e., docetaxel, enzalutamide, abiraterone) significantly improves disease-free survival. In this context, GnRH-based bioconjugates (cytotoxic drugs covalently linked to a GnRH-based decapeptide) have been recently developed. The rationale of this treatment is that the GnRH peptide selectively binds to its receptors, delivering the cytotoxic drug to CRPC cells while sparing nontumor cells. Some of these compounds have already entered clinical trials.
Collapse
|
3
|
Down‐regulation of intracellular anti‐apoptotic proteins, particularly c‐FLIP by therapeutic agents; the novel view to overcome resistance to TRAIL. J Cell Physiol 2018; 233:6470-6485. [DOI: 10.1002/jcp.26585] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
|
4
|
Thomas D, Chughtai B, Kini M, Te A. Emerging drugs for the treatment of benign prostatic hyperplasia. Expert Opin Emerg Drugs 2017; 22:201-212. [PMID: 28829208 DOI: 10.1080/14728214.2017.1369953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Benign prostatic hyperplasia (BPH) is a common condition affecting over 50% of men as they reach their 5th decade of life. This leads to a number of sequelae such as lower urinary tract symptoms, urinary retention and a decrease in quality of life. Currently, the available treatments for BPH are alpha blockers and 5-alpha reductase inhibitors. Clinical studies have demonstrated these medical options are effective in alleviating a patient's symptoms, however there are a number of side effects. There is a paucity of information regarding long-term use of these medications. The purpose of this review is to identify potential and emerging medications for the treatment of BPH. Areas covered: Articles used in this review were retrieved from Pubmed, Google and through searching the PharmaProjects database over the last 10 years, giving the reader an in-depth knowledge about the current pharmacological agents available and other potential treatments for BPH. Expert opinion: The new paradigm of BPH treatment depends on addressing a patient's specific constellation of symptoms. This allows to tailor therapy of increasing efficacy and reduce adverse events that our patients have by increasing dosage.
Collapse
Affiliation(s)
- Dominique Thomas
- a Department of Urology , Weill Cornell Medicine-New York Presbyterian , New York , NY , USA
| | - Bilal Chughtai
- a Department of Urology , Weill Cornell Medicine-New York Presbyterian , New York , NY , USA
| | - Mitali Kini
- a Department of Urology , Weill Cornell Medicine-New York Presbyterian , New York , NY , USA
| | - Alexis Te
- a Department of Urology , Weill Cornell Medicine-New York Presbyterian , New York , NY , USA
| |
Collapse
|
5
|
Crystal structure of 2-ethyl-1- tert-butyl-2-((4-fluorophenyl)( tert-butoxycarbonylamino)methyl)-3-oxo-pyrrolidine-1,2-dicarboxylate, C 24H 33FN 2O 7. Z KRIST-NEW CRYST ST 2016. [DOI: 10.1515/ncrs-2015-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C24H33FN2O7, triclinic, P1̅ (no. 2), a = 11.0118(7) Å, b = 11.5684(7) Å, c = 11.7276(7) Å, α = 112.294(1)°, β = 100.557(1)°, γ = 105.775(2)°, V = 1259.56(13) Å3, Z = 2, R
gt(F) = 0.0411, wR
ref(F
2) = 0.1050, T = 173 K.
Collapse
|
6
|
Pham T, Sadowski MC, Li H, Richard DJ, d'Emden MC, Richard K. Advances in hormonal therapies for hormone naïve and castration-resistant prostate cancers with or without previous chemotherapy. Exp Hematol Oncol 2016; 5:15. [PMID: 27340608 PMCID: PMC4918127 DOI: 10.1186/s40164-016-0046-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/09/2016] [Indexed: 11/28/2022] Open
Abstract
Hormonal manipulation plays a significant role in the treatment of advanced hormone naïve prostate cancer and castration-resistant prostate cancer (CRPC) with or without previous chemotherapy. Combination of gonadotropin releasing hormone (GnRH) agonists and androgen receptor (AR) antagonists (combined androgen blockade; CAB) is the first line therapy for advanced hormone naïve prostate cancer, but current strategies are developing novel GnRH antagonists to overcome disadvantages associated with GnRH agonist monotherapy and CAB in the clinical setting. Abiraterone acetate and enzalutamide are hormonal agents currently available for patients with CRPC and are both shown to improve overall survival versus placebo. Recently, in clinical trials, testosterone has been administered in cycles with existing surgical and chemical androgen deprivation therapies (ADT) (intermittent therapy) to CRPC patients of different stages (low risk, metastatic) to abate symptoms of testosterone deficiency and reduce cost of treatment from current hormonal therapies for patients with CRPC. This review will provide an overview on the therapeutic roles of hormonal manipulation in advanced hormone naïve and castration-resistant prostate cancers, as well as the development of novel hormonal therapies currently in preclinical and clinical trials.
Collapse
Affiliation(s)
- Thy Pham
- Conjoint Endocrine Laboratory, Chemical Pathology, Pathology Queensland, Queensland Health, Level 9, Bancroft Centre, 300 Herston Road, Herston, QLD 4029 Australia
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102 Australia
| | - Huika Li
- Conjoint Endocrine Laboratory, Chemical Pathology, Pathology Queensland, Queensland Health, Level 9, Bancroft Centre, 300 Herston Road, Herston, QLD 4029 Australia
| | - Derek J Richard
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Michael C d'Emden
- Conjoint Endocrine Laboratory, Chemical Pathology, Pathology Queensland, Queensland Health, Level 9, Bancroft Centre, 300 Herston Road, Herston, QLD 4029 Australia ; Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Herston, QLD 4029 Australia
| | - Kerry Richard
- Conjoint Endocrine Laboratory, Chemical Pathology, Pathology Queensland, Queensland Health, Level 9, Bancroft Centre, 300 Herston Road, Herston, QLD 4029 Australia ; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000 Australia
| |
Collapse
|
7
|
Bhatt N, Samipillai M, Das SK, Kruger HG, Govender T, Maguire GE. Crystal structure of 2-(ethoxycarbonyl)-2-(2-nitro-1-phenylethyl)-3-oxopyrrolidinium chloride, C 15H 19N 2O 5Cl. Z KRIST-NEW CRYST ST 2016. [DOI: 10.1515/ncrs-2014-9095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C15H19N2O5Cl, triclinic, P1̅ (no. 2), a = 8.2232(9) Å, b = 8.5833(10) Å, c = 12.5916(13) Å, β = 100.713(5)°, V = 833.39 Å3, Z = 2, R
gt
(F) = 0.0331, wR
ref
(F
2
) = 0.0870, T = 173 K.
Collapse
Affiliation(s)
- Nilay Bhatt
- Catalysis and Peptide Research Unit, School of Health Sciences, University of, KwaZulu-Natal, Durban 4000, South Africa
| | - Marivale Samipillai
- Catalysis and Peptide Research Unit, School of Health Sciences, University of, KwaZulu-Natal, Durban 4000, South Africa
| | - Sukant Kishore Das
- Catalysis and Peptide Research Unit, School of Health Sciences, University of, KwaZulu-Natal, Durban 4000, South Africa
| | - Hendrik Gert Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of, KwaZulu-Natal, Durban 4000, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of, KwaZulu-Natal, Durban 4000, South Africa
| | - Glenn E.M. Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of, KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
8
|
Cancer cell growth inhibitory effect of bee venom via increase of death receptor 3 expression and inactivation of NF-kappa B in NSCLC cells. Toxins (Basel) 2014; 6:2210-28. [PMID: 25068924 PMCID: PMC4147578 DOI: 10.3390/toxins6082210] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/16/2014] [Accepted: 07/18/2014] [Indexed: 01/24/2023] Open
Abstract
Our previous findings have demonstrated that bee venom (BV) has anti-cancer activity in several cancer cells. However, the effects of BV on lung cancer cell growth have not been reported. Cell viability was determined with trypan blue uptake, soft agar formation as well as DAPI and TUNEL assay. Cell death related protein expression was determined with Western blotting. An EMSA was used for nuclear factor kappaB (NF-κB) activity assay. BV (1–5 μg/mL) inhibited growth of lung cancer cells by induction of apoptosis in a dose dependent manner in lung cancer cell lines A549 and NCI-H460. Consistent with apoptotic cell death, expression of DR3 and DR6 was significantly increased. However, deletion of DRs by small interfering RNA significantly reversed BV induced cell growth inhibitory effects. Expression of pro-apoptotic proteins (caspase-3 and Bax) was concomitantly increased, but the NF-κB activity and expression of Bcl-2 were inhibited. A combination treatment of tumor necrosis factor (TNF)-like weak inducer of apoptosis, TNF-related apoptosis-inducing ligand, docetaxel and cisplatin, with BV synergistically inhibited both A549 and NCI-H460 lung cancer cell growth with further down regulation of NF-κB activity. These results show that BV induces apoptotic cell death in lung cancer cells through the enhancement of DR3 expression and inhibition of NF-κB pathway.
Collapse
|
9
|
Abstract
Cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor and critical anti-apoptotic regulator that inhibits tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as well as chemotherapy-triggered apoptosis in malignant cells. c-FLIP is expressed as long (c-FLIP(L)), short (c-FLIP(S)), and c-FLIP(R) splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 in a ligand-dependent and-independent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. Moreover, c-FLIP(L) and c-FLIP(S) are known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective signaling molecules. Upregulation of c-FLIP has been found in various tumor types, and its downregulation has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIP(L) in diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA and protein levels of c-FLIP(L) and c-FLIP(S) splice variants have been found, and efforts are underway to develop other c-FLIP-targeted cancer therapies. This review focuses on (1) the functional role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and drug resistance; (2) the molecular mechanisms that regulate c-FLIP expression; and (3) strategies to inhibit c-FLIP expression and function.
Collapse
|
10
|
Abstract
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) is a death receptor ligand that has the ability to preferentially initiate apoptosis in malignant cells with minimal toxicity to normal cells. TRAIL-based therapeutics, including recombinant TRAIL, TRAIL-receptor agonistic antibodies and TRAIL gene therapy, have now entered clinical trials. Although these therapeutics are promising, concerns regarding TRAIL resistance are causing research efforts to shift towards the identification of effective combination therapies. Small-molecule inhibitors, natural compounds, and drugs approved for treatment of diseases other than cancer have been shown to affect TRAIL receptors, antiapoptotic proteins and survival pathways in prostate, bladder and renal cell lines and in preclinical models. Changes in endogenous TRAIL and TRAIL receptor expression during the development of genitourinary malignancies and the way in which the expression pattern is affected by treatment are of great interest, and understanding the biological consequences of such changes will be important to maximize the potential of TRAIL-based therapeutics.
Collapse
|
11
|
Boccon-Gibod L. An update on the use of gonadotropin-releasing hormone antagonists in prostate cancer. Ther Adv Urol 2011; 3:127-40. [PMID: 21904569 PMCID: PMC3159401 DOI: 10.1177/1756287211414457] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Androgen deprivation therapy (ADT) is the main treatment approach in advanced prostate cancer and in recent years has primarily involved the use of gonadotropin-releasing hormone (GnRH) agonists. However, despite their efficacy, GnRH agonists have several drawbacks associated with their mode of action. These include an initial testosterone surge and testosterone microsurges on repeat administration. GnRH antagonists provide an alternative approach to ADT with a more direct mode of action that involves immediate blockade of GnRH receptors. Antagonists produce a more rapid suppression of testosterone (and prostate-specific antigen [PSA]) without a testosterone surge or microsurges and appear to offer an effective and well tolerated option for the hormonal treatment of prostate cancer. Comparisons with GnRH agonists have shown GnRH antagonists to be at least as effective in achieving and maintaining castrate testosterone levels in patients with prostate cancer. Furthermore, with antagonists, the lack of an initial testosterone surge (which may cause clinical flare) may allow more rapid relief of symptoms related to prostate cancer, avoid the need for concomitant antiandrogens to prevent clinical flare (so avoiding any antiandrogen-associated adverse events) and allow GnRH antagonist use in patients with high tumour burden and/or acute problems such as spinal cord compression. Although several antagonists have been investigated, only degarelix and abarelix are currently available for clinical use in prostate cancer. Currently, degarelix is the most extensively studied and widely available agent in this class. Degarelix is one of a newer generation of antagonists which, in a comprehensive and ongoing clinical development programme, has been shown to provide rapid, profound and sustained testosterone suppression without the systemic allergic reactions associated with earlier antagonists. This review examines the currently available data on GnRH antagonists in prostate cancer.
Collapse
Affiliation(s)
- Laurent Boccon-Gibod
- Bichat-Claude Bernard University Hospital, Department of Urology, University of Paris VII Paris, France
| |
Collapse
|