1
|
Huang SP, Chen LC, Chen YT, Lee CH, Huang CY, Yu CC, Lin VC, Lu TL, Bao BY. PTBP1 Genetic Variants Affect the Clinical Response to Androgen-deprivation Therapy in Patients With Prostate Cancer. Cancer Genomics Proteomics 2021; 18:325-334. [PMID: 33893085 DOI: 10.21873/cgp.20263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Heterogeneous nuclear ribonucleoproteins (hnRNPs) contribute to multiple cellular functions including RNA splicing, stabilization, transcriptional and translational regulation, and signal transduction. However, the prognostic importance of genetic variants of hnRNP genes in clinical outcomes of prostate cancer remains to be elucidated. PATIENTS AND METHODS We studied the association of 78 germline single-nucleotide polymorphisms (SNPs) in 23 hnRNP genes with the overall survival (OS), cancer-specific survival (CSS), and progression-free survival (PFS) in 630 patients with prostate cancer receiving androgen-deprivation therapy (ADT). RESULTS PTBP1 rs10420407 was the most significant SNP (false discovery rate q=0.003) and carriers of the A allele exhibited poor OS, CSS, and PFS. Multivariate Cox analysis confirmed PTBP1 rs10420407 A allele was an independent negative prognostic factor for OS and PFS. Expression quantitative trait loci analysis showed that the rs10420407 A allele had a trend towards increased PTBP1 mRNA expression, and higher expression was correlated with prostate cancer aggressiveness and poor patient prognosis. Meta-analysis of 16 independent studies further indicated a tumorigenic effect of PTBP1, with a higher expression in prostate cancers than in adjacent normal tissues (p<0.001). CONCLUSION Our data suggest that PTBP1 rs10420407 may influence patient response to ADT, and PTBP1 may be involved in the pathogenesis of prostate cancer progression.
Collapse
Affiliation(s)
- Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, R.O.C.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, R.O.C
| | - Yei-Tsung Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, R.O.C.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C.,Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan, R.O.C
| | - Victor C Lin
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan, R.O.C.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C.; .,Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Nursing, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
2
|
Ishizuya Y, Uemura M, Narumi R, Tomiyama E, Koh Y, Matsushita M, Nakano K, Hayashi Y, Wang C, Kato T, Hatano K, Kawashima A, Ujike T, Fujita K, Imamura R, Adachi J, Tomonaga T, Nonomura N. The role of actinin-4 (ACTN4) in exosomes as a potential novel therapeutic target in castration-resistant prostate cancer. Biochem Biophys Res Commun 2020; 523:588-594. [PMID: 31941606 DOI: 10.1016/j.bbrc.2019.12.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022]
Abstract
Prostate cancer is the second leading cause of cancer death in men in the United States. Several novel therapeutic agents have been developed for castration-resistant prostate cancer (CRPC), but the prognosis for patients with CRPC remains poor. The identification of novel therapeutic targets for CRPC is an urgent issue. Exosomes are small vesicles secreted by a variety of cells, and exosomes derived from cancer cells have been reported to circulate in the patient's bodily fluids, promoting metastasis and invasion. We aimed to identify novel therapeutic targets for CRPC by proteomic analysis of serum exosomes. Exosomes were isolated by ultracentrifugation of sera from 36 men with metastatic prostate cancer: untreated (n = 8), well-controlled with primary androgen deprivation therapy (ADT) (n = 8), and CRPC (n = 20). We identified 823 proteins in the serum exosomes. Six proteins were increased in CRPC patients compared with untreated patients. In contrast, only ACTN4 was increased in the CRPC patients compared to the ADT patients. We focused on ACTN4 as a candidate for targeted therapeutics. ACTN4 was highly expressed in the prostate cancer cell line DU145 as well as exosomes from this line. RNA interference-mediated downregulation of ACTN4 significantly attenuated cell proliferation and invasion in DU145 cells. ACTN4 could be a potential therapeutic target for CRPC.
Collapse
Affiliation(s)
- Yu Ishizuya
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Urological Immuno-Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoko Koh
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kosuke Nakano
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Cong Wang
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Urological Immuno-Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Ujike
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Capaia M, Granata I, Guarracino M, Petretto A, Inglese E, Cattrini C, Ferrari N, Boccardo F, Barboro P. A hnRNP K⁻AR-Related Signature Reflects Progression toward Castration-Resistant Prostate Cancer. Int J Mol Sci 2018; 19:ijms19071920. [PMID: 29966326 PMCID: PMC6073607 DOI: 10.3390/ijms19071920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
The major challenge in castration-resistant prostate cancer (CRPC) remains the ability to predict the clinical responses to improve patient selection for appropriate treatments. The finding that androgen deprivation therapy (ADT) induces alterations in the androgen receptor (AR) transcriptional program by AR coregulators activity in a context-dependent manner, offers the opportunity for identifying signatures discriminating different clinical states of prostate cancer (PCa) progression. Gel electrophoretic analyses combined with western blot showed that, in androgen-dependent PCa and CRPC in vitro models, the subcellular distribution of spliced and serine-phosphorylated heterogeneous nuclear ribonucleoprotein K (hnRNP K) isoforms can be associated with different AR activities. Using mass spectrometry and bioinformatic analyses, we showed that the protein sets of androgen-dependent (LNCaP) and ADT-resistant cell lines (PDB and MDB) co-immunoprecipitated with hnRNP K varied depending on the cell type, unravelling a dynamic relationship between hnRNP K and AR during PCa progression to CRPC. By comparing the interactome of LNCaP, PDB, and MDB cell lines, we identified 51 proteins differentially interacting with hnRNP K, among which KLK3, SORD, SPON2, IMPDH2, ACTN4, ATP1B1, HSPB1, and KHDRBS1 were associated with AR and differentially expressed in normal and tumor human prostate tissues. This hnRNP K–AR-related signature, associated with androgen sensitivity and PCa progression, may help clinicians to better manage patients with CRPC.
Collapse
Affiliation(s)
- Matteo Capaia
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Ilaria Granata
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Mario Guarracino
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147 Genova, Italy.
| | - Elvira Inglese
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147 Genova, Italy.
| | - Carlo Cattrini
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genova, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Nicoletta Ferrari
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Francesco Boccardo
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genova, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Paola Barboro
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
4
|
Ferrari N, Granata I, Capaia M, Piccirillo M, Guarracino MR, Venè R, Brizzolara A, Petretto A, Inglese E, Morini M, Astigiano S, Amaro AA, Boccardo F, Balbi C, Barboro P. Adaptive phenotype drives resistance to androgen deprivation therapy in prostate cancer. Cell Commun Signal 2017; 15:51. [PMID: 29216878 PMCID: PMC5721601 DOI: 10.1186/s12964-017-0206-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Abstract
Background Prostate cancer (PCa), the second most common cancer affecting men worldwide, shows a broad spectrum of biological and clinical behaviour representing the epiphenomenon of an extreme heterogeneity. Androgen deprivation therapy is the mainstay of treatment for advanced forms but after few years the majority of patients progress to castration-resistant prostate cancer (CRPC), a lethal form that poses considerable therapeutic challenges. Methods Western blotting, immunocytochemistry, invasion and reporter assays, and in vivo studies were performed to characterize androgen resistant sublines phenotype in comparison to the parental cell line LNCaP. RNA microarray, mass spectrometry, integrative transcriptomic and proteomic differential analysis coupled with GeneOntology and multivariate analyses were applied to identify deregulated genes and proteins involved in CRPC evolution. Results Treating the androgen-responsive LNCaP cell line for over a year with 10 μM bicalutamide both in the presence and absence of 0.1 nM 5-α-dihydrotestosterone (DHT) we obtained two cell sublines, designated PDB and MDB respectively, presenting several analogies with CRPC. Molecular and functional analyses of PDB and MDB, compared to the parental cell line, showed that both resistant cell lines were PSA low/negative with comparable levels of nuclear androgen receptor devoid of activity due to altered phosphorylation; cell growth and survival were dependent on AKT and p38MAPK activation and PARP-1 overexpression; their malignant phenotype increased both in vitro and in vivo. Performing bioinformatic analyses we highlighted biological processes related to environmental and stress adaptation supporting cell survival and growth. We identified 15 proteins that could direct androgen-resistance acquisition. Eleven out of these 15 proteins were closely related to biological processes involved in PCa progression. Conclusions Our models suggest that environmental factors and epigenetic modulation can activate processes of phenotypic adaptation driving drug-resistance. The identified key proteins of these adaptive phenotypes could be eligible targets for innovative therapies as well as molecules of prognostic and predictive value. Electronic supplementary material The online version of this article (10.1186/s12964-017-0206-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicoletta Ferrari
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Ilaria Granata
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Matteo Capaia
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Marina Piccirillo
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Mario Rosario Guarracino
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Roberta Venè
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Antonella Brizzolara
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147, Genoa, Italy
| | - Elvira Inglese
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147, Genoa, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147, Genoa, Italy
| | - Simonetta Astigiano
- Immunology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Adriana Agnese Amaro
- Molecular Pathology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Francesco Boccardo
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.,Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genova, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Cecilia Balbi
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Paola Barboro
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
5
|
Sugimasa H, Taniue K, Kurimoto A, Takeda Y, Kawasaki Y, Akiyama T. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells. Biochem Biophys Res Commun 2015; 459:29-35. [DOI: 10.1016/j.bbrc.2015.02.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
|
6
|
Barboro P, Ferrari N, Balbi C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Lett 2014; 352:152-9. [DOI: 10.1016/j.canlet.2014.06.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 12/18/2022]
|
7
|
Farooqi AA, Hou MF, Chen CC, Wang CL, Chang HW. Androgen receptor and gene network: Micromechanics reassemble the signaling machinery of TMPRSS2-ERG positive prostate cancer cells. Cancer Cell Int 2014; 14:34. [PMID: 24739220 PMCID: PMC4002202 DOI: 10.1186/1475-2867-14-34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 04/08/2014] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is a gland tumor in the male reproductive system. It is a multifaceted and genomically complex disease. Transmembrane protease, serine 2 and v-ets erythroblastosis virus E26 homolog (TMPRSS2-ERG) gene fusions are the common molecular signature of prostate cancer. Although tremendous advances have been made in unraveling various facets of TMPRSS2-ERG-positive prostate cancer, many research findings must be sequentially collected and re-interpreted. It is important to understand the activation or repression of target genes and proteins in response to various stimuli and the assembly in signal transduction in TMPRSS2-ERG fusion-positive prostate cancer cells. Accordingly, we divide this multi-component review ofprostate cancer cells into several segments: 1) The role of TMPRSS2-ERG fusion in genomic instability and methylated regulation in prostate cancer and normal cells; 2) Signal transduction cascades in TMPRSS2-ERG fusion-positive prostate cancer; 3) Overexpressed genes in TMPRSS2-ERG fusion-positive prostate cancer cells; 4) miRNA mediated regulation of the androgen receptor (AR) and its associated protein network; 5) Quantitative control of ERG in prostate cancer cells; 6) TMPRSS2-ERG encoded protein targeting; In conclusion, we provide a detailed understanding of TMPRSS2-ERG fusion related information in prostate cancer development to provide a rationale for exploring TMPRSS2-ERG fusion-mediated molecular network machinery.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, 35 Km Ferozepur Road, Lahore, Pakistan
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ; Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ; Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chien-Chi Chen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan ; Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
BARBORO PAOLA, SALVI SANDRA, RUBAGOTTI ALESSANDRA, BOCCARDO SIMONA, SPINA BRUNO, TRUINI MAURO, CARMIGNANI GIORGIO, INTROINI CARLO, FERRARI NICOLETTA, BOCCARDO FRANCESCO, BALBI CECILIA. Prostate cancer: Prognostic significance of the association of heterogeneous nuclear ribonucleoprotein K and androgen receptor expression. Int J Oncol 2014; 44:1589-98. [DOI: 10.3892/ijo.2014.2345] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/23/2014] [Indexed: 11/05/2022] Open
|
9
|
Barboro P, Borzì L, Repaci E, Ferrari N, Balbi C. Androgen receptor activity is affected by both nuclear matrix localization and the phosphorylation status of the heterogeneous nuclear ribonucleoprotein K in anti-androgen-treated LNCaP cells. PLoS One 2013; 8:e79212. [PMID: 24236111 PMCID: PMC3827347 DOI: 10.1371/journal.pone.0079212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022] Open
Abstract
The androgen receptor (AR) plays a central role in the development and progression of prostate cancer (PCa) and anti-androgen therapy is a standard treatment. Unfortunately, after a few years, the majority of patients progress, developing androgen-independent PCa. AR-driven gene transcription recruits a large number of co-activator/co-repressor complexes; among these, the heterogeneous nuclear ribonucleoprotein K (hnRNP K) directly interacts with and regulates the AR translational apparatus. Here we examined AR and hnRNP K expression in response to the treatment of LNCaP cells with anti-androgen cyproterone acetate (CPA) or bicalutamide (BIC). AR and hnRNP K modulation and compartmentalization were studied by Western blot and confocal microscopy. Phosphate-affinity gel electrophoresis was employed to examine how anti-androgens modified hnRNP K phosphorylation. 10(-6) M CPA significantly stimulated LNCaP proliferation, whereas for 10(-4) M CPA or 10(-5) M BIC an antagonistic effect was observed. After anti-androgen treatment, AR expression was remarkably down-regulated within both the cytoplasm and the nucleus; however, when CPA had an agonist activity, the AR associated with the nuclear matrix (NM) increased approximately 2.5 times. This increase was synchronous with a higher PSA expression, indicating that the NM-associated AR represents the active complex. After BIC treatment, hnRNP K expression was significantly lower in the NM, the protein was hypophosphorylated and the co-localization of AR and hnRNP K decreased. In contrast, CPA as an agonist caused hnRNP K hyperphosphorylation and an increase in the co-localization of two proteins. These findings demonstrate that, in vitro, there is a strong relationship between NM-associated AR and both cell viability and PSA levels, indicating that AR transcriptional activity is critically dependent on its subnuclear localization. Moreover, the agonistic/antagonistic activity of anti-androgens is associated with modifications in hnRNP K phosphorylation, indicating an involvement of this protein in the AR transcriptional activity and likely in the onset of the androgen-independent phenotype.
Collapse
Affiliation(s)
- Paola Barboro
- Translational Urologic Research Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Luana Borzì
- Translational Urologic Research Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Erica Repaci
- Translational Urologic Research Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Nicoletta Ferrari
- Molecular Oncology and Angiogenesis Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Cecilia Balbi
- Translational Urologic Research Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
- * E-mail:
| |
Collapse
|
10
|
Hu W, Wang J, Luo G, Luo B, Wu C, Wang W, Xiao Y, Li J. Proteomics-based analysis of differentially expressed proteins in the CXCR1-knockdown gastric carcinoma MKN45 cell line and its parental cell. Acta Biochim Biophys Sin (Shanghai) 2013; 45:857-66. [PMID: 23924695 DOI: 10.1093/abbs/gmt086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
C-X-C chemokine receptor types 1 (CXCR1), a cell-surface G-protein-coupled receptor has been found to be associated with tumorigenesis, development, and progression of some tumors. Previously, we have found that CXCR1 overexpression is associated with late-stage gastric adenocarcinoma. We also have demonstrated that knockdown of CXCR1 could inhibit cell proliferation in vitro and in vivo. In this study, we compared the changes of protein expression profile between gastric carcinoma MKN45 cell line and CXCR1-knockdown MKN45 cell line by 2D electrophoresis. Among the 101 quantified proteins, 29 spots were significantly different, among which 13 were down-regulated and 16 were up-regulated after CXCR1 knockdown. These proteins were further identified by mass spectrometry analysis. Among them, several up-regulated proteins such as hCG2020155, Keratin8, heterogeneous nuclear ribonucleoprotein C (C1/C2), and several down-regulated proteins such as Sorcin, heat shock protein 27, serpin B6 isoform b, and heterogeneous nuclear ribonucleoprotein K were confirmed. These proteins are related to cell cycle, the transcription regulation, cell adherence, cellular metabolism, drug resistance, and so on. These results provide an additional support to the hypothesis that CXCR1 might play an important role in proliferation, invasion, metastasis, and prognosis, and drug resistance of gastric carcinoma.
Collapse
Affiliation(s)
- Wanming Hu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Barboro P, Repaci E, D’Arrigo C, Balbi C. The role of nuclear matrix proteins binding to matrix attachment regions (Mars) in prostate cancer cell differentiation. PLoS One 2012; 7:e40617. [PMID: 22808207 PMCID: PMC3394767 DOI: 10.1371/journal.pone.0040617] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/11/2012] [Indexed: 11/19/2022] Open
Abstract
In tumor progression definite alterations in nuclear matrix (NM) protein composition as well as in chromatin structure occur. The NM interacts with chromatin via specialized DNA sequences called matrix attachment regions (MARs). In the present study, using a proteomic approach along with a two-dimensional Southwestern assay and confocal laser microscopy, we show that the differentiation of stabilized human prostate carcinoma cells is marked out by modifications both NM protein composition and bond between NM proteins and MARs. Well-differentiated androgen-responsive and slowly growing LNCaP cells are characterized by a less complex pattern and by a major number of proteins binding MAR sequences in comparison to 22Rv1 cells expressing androgen receptor but androgen-independent. Finally, in the poorly differentiated and strongly aggressive androgen-independent PC3 cells the complexity of NM pattern further increases and a minor number of proteins bind the MARs. Furthermore, in this cell line with respect to LNCaP cells, these changes are synchronous with modifications in both the nuclear distribution of the MAR sequences and in the average loop dimensions that significantly increase. Although the expression of many NM proteins changes during dedifferentiation, only a very limited group of MAR-binding proteins seem to play a key role in this process. Variations in the expression of poly (ADP-ribose) polymerase (PARP) and special AT-rich sequence-binding protein-1 (SATB1) along with an increase in the phosphorylation of lamin B represent changes that might trigger passage towards a more aggressive phenotype. These results suggest that elucidating the MAR-binding proteins that are involved in the differentiation of prostate cancer cells could be an important tool to improve our understanding of this carcinogenesis process, and they could also be novel targets for prostate cancer therapy.
Collapse
Affiliation(s)
- Paola Barboro
- IRCCS Azienda Ospedaliera Universitaria San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Department of Diagnostic Technologies, Genoa, Italy
| | - Erica Repaci
- IRCCS Azienda Ospedaliera Universitaria San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Department of Diagnostic Technologies, Genoa, Italy
| | - Cristina D’Arrigo
- C.N.R., Istituto per lo Studio delle Macromolecole, ISMAC, Sezione di Genova, Genoa, Italy
| | - Cecilia Balbi
- IRCCS Azienda Ospedaliera Universitaria San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Department of Diagnostic Technologies, Genoa, Italy
- * E-mail:
| |
Collapse
|