1
|
Kim YY, Kim JS, Che JH, Ku SY, Kang BC, Yun JW. Comparison of Genetically Engineered Immunodeficient Animal Models for Nonclinical Testing of Stem Cell Therapies. Pharmaceutics 2021; 13:130. [PMID: 33498509 PMCID: PMC7909568 DOI: 10.3390/pharmaceutics13020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
For the recovery or replacement of dysfunctional cells and tissue-the goal of stem cell research-successful engraftment of transplanted cells and tissues are essential events. The event is largely dependent on the immune rejection of the recipient; therefore, the immunogenic evaluation of candidate cells or tissues in immunodeficient animals is important. Understanding the immunodeficient system can provide insights into the generation and use of immunodeficient animal models, presenting a unique system to explore the capabilities of the innate immune system. In this review, we summarize various immunodeficient animal model systems with different target genes as valuable tools for biomedical research. There have been numerous immunodeficient models developed by different gene defects, resulting in many different features in phenotype. More important, mice, rats, and other large animals exhibit very different immunological and physiological features in tissue and organs, including genetic background and a representation of human disease conditions. Therefore, the findings from this review may guide researchers to select the most appropriate immunodeficient strain, target gene, and animal species based on the research type, mutant gene effects, and similarity to human immunological features for stem cell research.
Collapse
Affiliation(s)
- Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Jin-Soo Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun-Won Yun
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| |
Collapse
|
2
|
Son YW, Choi HN, Che JH, Kang BC, Yun JW. Advances in selecting appropriate non-rodent species for regulatory toxicology research: Policy, ethical, and experimental considerations. Regul Toxicol Pharmacol 2020; 116:104757. [PMID: 32758521 DOI: 10.1016/j.yrtph.2020.104757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
In vivo animal studies are required by regulatory agencies to investigate drug safety before clinical trials. In this review, we summarize the process of selecting a relevant non-rodent species for preclinical studies. The dog is the primary, default non-rodent used in toxicology studies with multiple scientific advantages, including adequate background data and availability. Rabbit has many regulatory advantages as the first non-rodent for the evaluation of reproductive and developmental as well as local toxicity. Recently, minipigs have increasingly replaced dogs and rabbits in toxicology studies due to ethical and scientific advantages including similarity to humans and breeding habits. When these species are not relevant, nonhuman primates (NHPs) can be used as the available animal models, especially in toxicology studies investigating biotherapeutics. Particularly, based on the phylogenetic relationships, the use of New-World marmosets can be considered before Old-World monkeys, especially cynomolgus with robust historical data. Importantly, the use of NHPs should be justified in terms of scientific benefits considering target affinity, expression pattern, and pharmacological cross-reactivity. Strict standards are required for the use of animals. Therefore, this review is helpful for the selection of appropriate non-rodent in regulatory toxicology studies by providing sufficient regulatory, ethical, and scientific data for each species.
Collapse
Affiliation(s)
- Yong-Wook Son
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Ha-Ni Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea.
| |
Collapse
|
3
|
Yun JW, Kim YY, Ahn JH, Kang BC, Ku SY. Use of nonhuman primates for the development of bioengineered female reproductive organs. Tissue Eng Regen Med 2016; 13:323-334. [PMID: 30603414 DOI: 10.1007/s13770-016-9091-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/13/2015] [Accepted: 12/09/2015] [Indexed: 01/02/2023] Open
Abstract
Nonhuman primates (NHPs) have been widely used in reproductive biology, neuroscience, and drug development since a number of primate species are phylogenetically close to humans. In this review, we summarize the use of NHPs for nonclinical application in the reproductive system disorders including the loss or failure of an organ or tissue. Causes of infertility include congenital aplasia and acquired disorders of the reproductive organs. In addition, anti-cancer treatments can deplete ovarian follicles, leading to premature ovarian failure, infertility and long-term health risks. Along with a limited supply of human reproductive organs, anatomic/physiologic similarities to humans support the need for NHP models (New-World monkeys such as the common marmoset and Old-World monkeys such as cynomolgus and rhesus monkeys) to promote the advances in female infertility studies. For maintaining and executing animal studies using NHP, special protocols including animal care, anesthetic protocol, surgical technique, and immunosuppressive protocol are necessary. With a growing interest in the potential therapies such as endometrial tissue engineering, and ovary/follicle cryopreservation and grafting in Korea, this review can be useful in selecting appropriate animal models and can bridge between nonclinical studies and clinical applications by providing detailed information on the use of NHPs in the field of reproductive organ disorders.
Collapse
Affiliation(s)
- Jun-Won Yun
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yoon Young Kim
- 2Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Hun Ahn
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,3Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong-Cheol Kang
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,3Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,4Designed Animal Research Center, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang, Korea.,5Biomedical Center for Animal Resource and Development, N-BIO, Seoul National University, Seoul, Korea.,6Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Seung-Yup Ku
- 2Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea.,7Graduate School of Translational Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|
4
|
Abstract
The onset of chronic disease is often the prelude to the subsequent physiological and mental twilight in the aging population of modern society. While rates of obesity, specific types of cancer and cardiovascular disorders seem to be on the rise in this group, many new therapies have addressed diseases that have been largely untreatable in the past. Alzheimer's disease has also recently come to the forefront of ongoing maladies most typically associated with an aging population. Ironically, though, many people seem to be living longer than expected. Recent biochemical, nutritional and genomic approaches have been able to elucidate some of the complex mechanisms, which lead to chronic diseases associated with an aging population such as Alzheimer's, metabolic syndrome, tumor metastasis and cardiovascular disease. These diseases and their sequalae seem to be related in many respects, with the common culprit being the inflammatory environment created by the presence of excess fat - particularly within the vascular network. Although a substantial effort has been focused on the development of new-line therapeutics to address these issues, nutrition and overall fitness and their effects on stalling or potentially reversing the advent of these diseases has not been fully embraced in the research arena. This review discusses the role of the inflammatory environment in the development of chronic diseases in the aging population and also proposes a common pathology. The benefits that improvements and dedication in nutrition and fitness approaches may offer at the molecular level are also discussed.
Collapse
|
5
|
Wu D, Liu Q, Wei S, Zhang YA, Yue F. A preliminary report on oral fat tolerance test in rhesus monkeys. Lipids Health Dis 2014; 13:11. [PMID: 24410972 PMCID: PMC3895841 DOI: 10.1186/1476-511x-13-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/08/2014] [Indexed: 12/24/2022] Open
Abstract
Background Oral fat tolerance test (OFTT) has been widely used to assess the postprandial lipemia in human beings, but there is few studies concerning OFTT in nonhuman primates. This study is designed to explore the feasibility of OFTT in rhesus monkeys. Methods In a cross-over study, a total of 8 adult female rhesus monkeys were fed with normal monkey diet (NND), high sugar high fat diet (HHD), and extremely high fat diet (EHD), respectively. Each monkey consumed NND, HHD and EHD respectively, each weighing 60 g. Serial blood samples were collected at 1, 2, 3, 4, 5, and 6 h after ingesting each kind of food. Triglyceride, cholesterol, glucose, and insulin at each time point were measured. The area under the curve of triglyceride (TG-AUC) and triglyceride peak response (TG-PR) were also calculated. Results All monkeys ingested 3 kinds of foods within 15 minutes. TG-AUC and TG-PR of HHD group were higher than those of the other two groups. Postprandial triglyceride levels at 2, 3, 4, and 5 hours in HHD group during OFTT were also higher than those in NND and EHD group. Conclusions HHD diet can be used in OFTT for nonhuman primates.
Collapse
Affiliation(s)
| | | | | | | | - Feng Yue
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|