1
|
Vantieghem T, Aslam NA, Osipov EM, Akele M, Van Belle S, Beelen S, Drexler M, Paulovcakova T, Lux V, Fearon D, Douangamath A, von Delft F, Christ F, Veverka V, Verwilst P, Van Aerschot A, Debyser Z, Strelkov SV. Rational fragment-based design of compounds targeting the PWWP domain of the HRP family. Eur J Med Chem 2024; 280:116960. [PMID: 39461037 DOI: 10.1016/j.ejmech.2024.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Lens epithelium-derived growth factor p75 (LEDGF/p75), member of the hepatoma-derived growth-factor-related protein (HRP) family, is a transcriptional co-activator and involved in several pathologies including HIV infection and malignancies such as MLL-rearranged leukemia. LEDGF/p75 acts by tethering proteins to the chromatin through its integrase binding domain. This chromatin interaction occurs between the PWWP domain of LEDGF/p75 and nucleosomes carrying a di- or trimethylation mark on histone H3 Lys36 (H3K36me2/3). Our aim is to rationally devise small molecule drugs capable of inhibiting such interaction. To bootstrap this development, we resorted to X-ray crystallography-based fragment screening (FBS-X). Given that the LEDGF PWWP domain crystals were not suitable for FBS-X, we employed crystals of the closely related PWWP domain of paralog HRP-2. As a result, as many as 68 diverse fragment hits were identified, providing a detailed sampling of the H3K36me2/3 pocket pharmacophore. Subsequent structure-guided fragment expansion in three directions yielded multiple compound series binding to the pocket, as verified through X-ray crystallography, nuclear magnetic resonance and differential scanning fluorimetry. Our best compounds have double-digit micromolar affinity and optimally sample the interactions available in the pocket, judging by the Kd-based ligand efficiency exceeding 0.5 kcal/mol per non-hydrogen atom. Beyond π-stacking within the aromatic cage of the pocket and hydrogen bonding, the best compounds engage in a σ-hole interaction between a halogen atom and a conserved water buried deep in the pocket. Notably, the binding pocket in LEDGF PWWP is considerably smaller compared to the related PWWP1 domains of NSD2 and NSD3 which feature an additional subpocket and for which nanomolar affinity compounds have been developed recently. The absence of this subpocket in LEDGF PWWP limits the attainable affinity. Additionally, these structural differences in the H3K36me2/3 pocket across the PWWP domain family translate into a distinct selectivity of the compounds we developed. Our top-ranked compounds are interacting with both homologous LEDGF and HRP-2 PWWP domains, yet they showed no affinity for the NSD2 PWWP1 and BRPF2 PWWP domains which belong to other PWWP domain subfamilies. Nevertheless, our developed compound series provide a strong foundation for future drug discovery targeting the LEDGF PWWP domain as they can further be explored through combinatorial chemistry. Given that the affinity of H3K36me2/3 nucleosomes to LEDGF/p75 is driven by interactions within the pocket as well as with the DNA-binding residues, we suggest that future compound development should target the latter region as well. Beyond drug discovery, our compounds can be employed to devise tool compounds to investigate the mechanism of LEDGF/p75 in epigenetic regulation.
Collapse
Affiliation(s)
| | - Nayyar A Aslam
- Biocrystallography, KU Leuven, Leuven, Belgium; Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Muluembet Akele
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Siska Van Belle
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | | | - Matúš Drexler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | | | - Vanda Lux
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, United Kingdom
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, United Kingdom
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, United Kingdom; Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, United Kingdom; Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, United Kingdom; Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Frauke Christ
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Prague, 128 00, Czech Republic
| | - Peter Verwilst
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Arthur Van Aerschot
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
2
|
Sanchez-Hernandez ES, Ochoa PT, Suzuki T, Ortiz-Hernandez GL, Unternaehrer JJ, Alkashgari HR, Diaz Osterman CJ, Martinez SR, Chen Z, Kremsky I, Wang C, Casiano CA. Glucocorticoid Receptor Regulates and Interacts with LEDGF/p75 to Promote Docetaxel Resistance in Prostate Cancer Cells. Cells 2023; 12:2046. [PMID: 37626856 PMCID: PMC10453226 DOI: 10.3390/cells12162046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Patients with advanced prostate cancer (PCa) invariably develop resistance to anti-androgen therapy and taxane-based chemotherapy. Glucocorticoid receptor (GR) has been implicated in PCa therapy resistance; however, the mechanisms underlying GR-mediated chemoresistance remain unclear. Lens epithelium-derived growth factor p75 (LEDGF/p75, also known as PSIP1 and DFS70) is a glucocorticoid-induced transcription co-activator implicated in cancer chemoresistance. We investigated the contribution of the GR-LEDGF/p75 axis to docetaxel (DTX)-resistance in PCa cells. GR silencing in DTX-sensitive and -resistant PCa cells decreased LEDGF/p75 expression, and GR upregulation in enzalutamide-resistant cells correlated with increased LEDGF/p75 expression. ChIP-sequencing revealed GR binding sites in the LEDGF/p75 promoter. STRING protein-protein interaction analysis indicated that GR and LEDGF/p75 belong to the same transcriptional network, and immunochemical studies demonstrated their co-immunoprecipitation and co-localization in DTX-resistant cells. The GR modulators exicorilant and relacorilant increased the sensitivity of chemoresistant PCa cells to DTX-induced cell death, and this effect was more pronounced upon LEDGF/p75 silencing. RNA-sequencing of DTX-resistant cells with GR or LEDGF/p75 knockdown revealed a transcriptomic overlap targeting signaling pathways associated with cell survival and proliferation, cancer, and therapy resistance. These studies implicate the GR-LEDGF/p75 axis in PCa therapy resistance and provide a pre-clinical rationale for developing novel therapeutic strategies for advanced PCa.
Collapse
Affiliation(s)
- Evelyn S. Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Pedro T. Ochoa
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Tise Suzuki
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Greisha L. Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
| | - Juli J. Unternaehrer
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Hossam R. Alkashgari
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Department of Physiology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Carlos J. Diaz Osterman
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, PR 00716, USA; (C.J.D.O.); (S.R.M.)
| | - Shannalee R. Martinez
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, PR 00716, USA; (C.J.D.O.); (S.R.M.)
| | - Zhong Chen
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Isaac Kremsky
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Charles Wang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Rheumatology Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
3
|
Impact of EcSOD Perturbations in Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10081219. [PMID: 34439467 PMCID: PMC8388922 DOI: 10.3390/antiox10081219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/29/2023] Open
Abstract
Reactive oxygen species (ROS) are a normal byproduct of cellular metabolism and are required components in cell signaling and immune responses. However, an imbalance of ROS can lead to oxidative stress in various pathological states. Increases in oxidative stress are one of the hallmarks in cancer cells, which display an altered metabolism when compared to corresponding normal cells. Extracellular superoxide dismutase (EcSOD) is an antioxidant enzyme that catalyzes the dismutation of superoxide anion (O2−) in the extracellular environment. By doing so, this enzyme provides the cell with a defense against oxidative damage by contributing to redox balance. Interestingly, EcSOD expression has been found to be decreased in a variety of cancers, and this loss of expression may contribute to the development and progression of malignancies. In addition, recent compounds can increase EcSOD activity and expression, which has the potential for altering this redox signaling and cellular proliferation. This review will explore the role that EcSOD expression plays in cancer in order to better understand its potential as a tool for the detection, predicted outcomes and potential treatment of malignancies.
Collapse
|
4
|
Unlike Its Paralog LEDGF/p75, HRP-2 Is Dispensable for MLL-R Leukemogenesis but Important for Leukemic Cell Survival. Cells 2021; 10:cells10010192. [PMID: 33477970 PMCID: PMC7835958 DOI: 10.3390/cells10010192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
HDGF-related protein 2 (HRP-2) is a member of the Hepatoma-Derived Growth Factor-related protein family that harbors the structured PWWP and Integrase Binding Domain, known to associate with methylated histone tails or cellular and viral proteins, respectively. Interestingly, HRP-2 is a paralog of Lens Epithelium Derived Growth Factor p75 (LEDGF/p75), which is essential for MLL-rearranged (MLL-r) leukemia but dispensable for hematopoiesis. Sequel to these findings, we investigated the role of HRP-2 in hematopoiesis and MLL-r leukemia. Protein interactions were investigated by co-immunoprecipitation and validated using recombinant proteins in NMR. A systemic knockout mouse model was used to study normal hematopoiesis and MLL-ENL transformation upon the different HRP-2 genotypes. The role of HRP-2 in MLL-r and other leukemic, human cell lines was evaluated by lentiviral-mediated miRNA targeting HRP-2. We demonstrate that MLL and HRP-2 interact through a conserved interface, although this interaction proved less dependent on menin than the MLL-LEDGF/p75 interaction. The systemic HRP-2 knockout mice only revealed an increase in neutrophils in the peripheral blood, whereas the depletion of HRP-2 in leukemic cell lines and transformed primary murine cells resulted in reduced colony formation independently of MLL-rearrangements. In contrast, primary murine HRP-2 knockout cells were efficiently transformed by the MLL-ENL fusion, indicating that HRP-2, unlike LEDGF/p75, is dispensable for the transformation of MLL-ENL leukemogenesis but important for leukemic cell survival.
Collapse
|
5
|
Galasso C, Piscitelli C, Brunet C, Sansone C. New In Vitro Model of Oxidative Stress: Human Prostate Cells Injured with 2,2-diphenyl-1-picrylhydrazyl (DPPH) for the Screening of Antioxidants. Int J Mol Sci 2020; 21:ijms21228707. [PMID: 33218067 PMCID: PMC7698958 DOI: 10.3390/ijms21228707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
The antioxidant activity of natural compounds consists in their ability to modulate gene and protein expression, thus inducing an integrated cell protective response and repair processes against oxidative stress. New screening tools and methodologies are crucial for the actual requirement of new products with antioxidant activity to boost endogenous oxidative stress responsive pathways, Reactive Oxygen Species (ROS) metabolism and immune system activity, preserving human health and wellness. In this study, we performed and tested an integrated oxidative stress analysis, using DPPH assay and PNT2 cells injured with DPPH. We firstly investigated the mechanism of action of the oxidising agent (DPPH) on PNT2 cells, studying the variation in cell viability, oxidative stress genes, inflammatory mediator and ROS levels. The results reveal that DPPH activated ROS production and release of Prostaglandin E2 in PNT2 at low and intermediate doses, while cells switched from survival to cell death signals at high doses of the oxidising agent. This new in vitro oxidative stress model was validated by using Trolox, β-carotene and total extract of the green microalga Testraselmis suecica. Only the T. suecica extract can completely counteract DPPH-induced injury, since its chemical complexity demonstrated a multilevel protecting and neutralising effect against oxidative stress in PNT2.
Collapse
|
6
|
Ortiz-Hernandez GL, Sanchez-Hernandez ES, Casiano CA. Twenty years of research on the DFS70/LEDGF autoantibody-autoantigen system: many lessons learned but still many questions. AUTOIMMUNITY HIGHLIGHTS 2020; 11:3. [PMID: 32127038 PMCID: PMC7065333 DOI: 10.1186/s13317-020-0126-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
The discovery and initial characterization 20 years ago of antinuclear autoantibodies (ANAs) presenting a dense fine speckled (DFS) nuclear pattern with strong staining of mitotic chromosomes, detected by indirect immunofluorescence assay in HEp-2 cells (HEp-2 IIFA test), has transformed our view on ANAs. Traditionally, ANAs have been considered as reporters of abnormal immunological events associated with the onset and progression of systemic autoimmune rheumatic diseases (SARD), also called ANA-associated rheumatic diseases (AARD), as well as clinical biomarkers for the differential diagnosis of these diseases. However, based on our current knowledge, it is not apparent that autoantibodies presenting the DFS IIF pattern fall into these categories. These antibodies invariably target a chromatin-associated protein designated as dense fine speckled protein of 70 kD (DFS70), also known as lens epithelium-derived growth factor protein of 75 kD (LEDGF/p75) and PC4 and SFRS1 Interacting protein 1 (PSIP1). This multi-functional protein, hereafter referred to as DFS70/LEDGF, plays important roles in the formation of transcription complexes in active chromatin, transcriptional activation of specific genes, regulation of mRNA splicing, DNA repair, and cellular survival against stress. Due to its multiple functions, it has emerged as a key protein contributing to several human pathologies, including acquired immunodeficiency syndrome (AIDS), leukemia, cancer, ocular diseases, and Rett syndrome. Unlike other ANAs, "monospecific" anti-DFS70/LEDGF autoantibodies (only detectable ANA in serum) are not associated with SARD and have been detected in healthy individuals and some patients with non-SARD inflammatory conditions. These observations have led to the hypotheses that these antibodies could be considered as negative biomarkers of SARD and might even play a protective or beneficial role. In spite of 20 years of research on this autoantibody-autoantigen system, its biological and clinical significance still remains enigmatic. Here we review the current state of knowledge of this system, focusing on the lessons learned and posing emerging questions that await further scrutiny as we continue our quest to unravel its significance and potential clinical and therapeutic utility.
Collapse
Affiliation(s)
- Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Evelyn S Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA. .,Department of Medicine/Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, USA.
| |
Collapse
|
7
|
Infantino M, Pregnolato F, Bentow C, Mahler M, Benucci M, Li Gobbi F, Damiani A, Grossi V, Franceschini F, Bodio C, Borghi MO, Manfredi M. Only monospecific anti-DFS70 antibodies aid in the exclusion of antinuclear antibody associated rheumatic diseases: an Italian experience. ACTA ACUST UNITED AC 2019; 57:1764-1769. [DOI: 10.1515/cclm-2019-0454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/18/2019] [Indexed: 01/27/2023]
Abstract
Abstract
Background
The dense fine speckled (DFS) is one of the most common patterns that can be observed as a result of the anti-nuclear antibodies (ANA) test on HEp-2 cells and is mostly caused by antibodies to DFS70 as the main antigenic target. As was recently demonstrated, isolated anti-DFS70 positivity can be used as an aid in the exclusion of ANA associated rheumatic diseases (AARD) due to the opportunity to better interpret unexplained positive IIF ANA results.
Methods
Our study included 333 subjects with AARD, 51 undifferentiated connective tissue disease (UCTD) patients, 235 disease controls and 149 healthy blood donors from an Italian cohort. All samples were tested for anti-DFS70 and anti-ENA antibodies using QUANTA Flash assays (Inova Diagnostics, San Diego, CA, USA).
Results
No differences in the prevalence of anti-DFS70 antibodies were seen among AARD, non-AARD and UCTD (2.1% [7/333] vs. 2.3% [9/384] vs. 5.9% [3/51], respectively; p-value = 0.188). AARD patients positive for anti-DFS70 antibodies showed in all cases an accompanying anti-ENA specificity. In contrast, monospecific anti-DFS70 antibodies showed a significantly different distribution with a clear trend across the main groups (AARD vs. non-AARD vs. UCTD: 0% [0/7] vs. 22% [2/9] vs. 100% [3/3], p = 0.007). Anti-DFS70 antibody levels among AARD, non-AARD and UCTD patients were not significantly different (p = 0.094). Within the anti-DFS70 antibody positive cases, AARD cohort showed a higher variability (median [min–max]: 3.2 [3.2–450.8] CU) compared to non-AARD (median [min–max]: 3.2 [3.2–75.7] CU) and UCTD patients (median [min–max]: 3.2 [3.2–59.0] CU).
Conclusions
Our preliminary data showed a similar frequency of anti-DFS70 antibodies in AARD, UCTD and non-AARD cohorts. Monospecificity of anti-DFS70 antibodies but not their mere presence is the key element in the diagnostic algorithm. Mono-specific anti-DFS70 antibodies might be a helpful biomarker to discriminate individuals with AARD from non-AARD presenting with a positive ANA.
Collapse
Affiliation(s)
- Maria Infantino
- SOS Laboratorio Immunologia e Allegologia Ospedale S. Giovanni di Dio Firenze , Florence , Italy
| | - Francesca Pregnolato
- Istituto Auxologico Italiano, IRCCS , Experimental Laboratory of Immunorheumatology , Cusano Milanino, Milan , Italy
| | | | | | - Maurizio Benucci
- SOS Reumatologia Ospedale S. Giovanni di Dio Firenze , Florence , Italy
| | | | - Arianna Damiani
- SOS Reumatologia Ospedale S. Giovanni di Dio Firenze , Florence , Italy
| | - Valentina Grossi
- SOS Laboratorio Immunologia e Allegologia Ospedale S. Giovanni di Dio Firenze , Florence , Italy
| | - Franco Franceschini
- UOC Reumatologia e Immunologia Clinica – ASST Spedali Civili Brescia , Brescia , Italy
| | - Caterina Bodio
- Istituto Auxologico Italiano, IRCCS , Experimental Laboratory of Immunorheumatology , Cusano Milanino, Milan , Italy
| | - Maria Orietta Borghi
- Istituto Auxologico Italiano, IRCCS , Experimental Laboratory of Immunorheumatology , Cusano Milanino, Milan , Italy
- Department of Clinical Sciences and Community Health , University of Milan , Milan , Italy
| | - Mariangela Manfredi
- SOS Laboratorio Immunologia e Allegologia Ospedale S. Giovanni di Dio Firenze , Florence , Italy
| |
Collapse
|
8
|
Mahroum N, Perez D, Shovman O, Watad A, Gilburd B, Amital H, Levy I, Shoenfeld Y. Anti-DFS70 among HIV-positive individuals - A prospective study. Best Pract Res Clin Rheumatol 2019; 32:605-609. [PMID: 31174828 DOI: 10.1016/j.berh.2019.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anti-DFS70 is an anti-nuclear antibody directed against the DFS70 protein, which is produced in response to several stressful events. Since its discovery, this autoantigen-antibody complex has drawn the attention of many researchers, yet many questions remain unanswered. The DFS70 protein is crucial for HIV integration into the host DNA; however, the relationship between anti-DFS70 and HIV is unknown. A protective role of anti-DFS70 against HIV is possible due to the competition between the HIV integrase and the anti-DFS70 antibody on the same target site on DFS70. The current study aimed to assess the prevalence of anti-DFS70 in HIV-positive individuals seeking for possible interrelation. A total of 100 HIV-positive individuals followed up at the HIV unit at Sheba Medical Center were tested for the detection of anti-DFS70. A total of 92 non-HIV subjects, randomly selected, were tested and compared as controls. Chemiluminescence assay by QUANTA Flash was performed to evaluate the presence of anti-DFS70 antibodies. None of the HIV-positive individuals had a positive test result for anti-DFS70 (0%) compared to 10 out of 92 non-HIV individuals (10.9%). This is the first study addressing the prevalence of anti-DFS70 in HIV-positive patients. The rate of anti-DFS70 positivity was found to be significantly lower in HIV-positive individuals than in non-HIV individuals (p = 0.002). The absence of anti-DFS70 in HIV-positive subjects might imply that individuals who lack these antibodies are more susceptible to HIV infection. Further studies with large populations are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Naim Mahroum
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel; HIV Unit, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Dolores Perez
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel- Hashome, Israel.
| | - Ora Shovman
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel- Hashome, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Abdulla Watad
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel- Hashome, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Boris Gilburd
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel- Hashome, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Howard Amital
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel- Hashome, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Itzchak Levy
- HIV Unit, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel- Hashome, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
9
|
Glucocorticoids Induce Stress Oncoproteins Associated with Therapy-Resistance in African American and European American Prostate Cancer Cells. Sci Rep 2018; 8:15063. [PMID: 30305646 PMCID: PMC6180116 DOI: 10.1038/s41598-018-33150-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoid receptor (GR) is emerging as a key driver of prostate cancer (PCa) progression and therapy resistance in the absence of androgen receptor (AR) signaling. Acting as a bypass mechanism, GR activates AR-regulated genes, although GR-target genes contributing to PCa therapy resistance remain to be identified. Emerging evidence also shows that African American (AA) men, who disproportionately develop aggressive PCa, have hypersensitive GR signaling linked to cumulative stressful life events. Using racially diverse PCa cell lines (MDA-PCa-2b, 22Rv1, PC3, and DU145) we examined the effects of glucocorticoids on the expression of two stress oncoproteins associated with PCa therapy resistance, Clusterin (CLU) and Lens Epithelium-Derived Growth Factor p75 (LEDGF/p75). We observed that glucocorticoids upregulated LEDGF/p75 and CLU in PCa cells. Blockade of GR activation abolished this upregulation. We also detected increased GR transcript expression in AA PCa tissues, compared to European American (EA) tissues, using Oncomine microarray datasets. These results demonstrate that glucocorticoids upregulate the therapy resistance-associated oncoproteins LEDGF/p75 and CLU, and suggest that this effect may be enhanced in AA PCa. This study provides an initial framework for understanding the contribution of glucocorticoid signaling to PCa health disparities.
Collapse
|
10
|
Ríos-Colón L, Cajigas-Du Ross CK, Basu A, Elix C, Alicea-Polanco I, Sanchez TW, Radhakrishnan V, Chen CS, Casiano CA. Targeting the stress oncoprotein LEDGF/p75 to sensitize chemoresistant prostate cancer cells to taxanes. Oncotarget 2018; 8:24915-24931. [PMID: 28212536 PMCID: PMC5421899 DOI: 10.18632/oncotarget.15323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/13/2016] [Indexed: 12/05/2022] Open
Abstract
Prostate cancer (PCa) is associated with chronic prostate inflammation resulting in activation of stress and pro-survival pathways that contribute to disease progression and chemoresistance. The stress oncoprotein lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 autoantigen, promotes cellular survival against environmental stressors, including oxidative stress, radiation, and cytotoxic drugs. Furthermore, LEDGF/p75 overexpression in PCa and other cancers has been associated with features of tumor aggressiveness, including resistance to cell death and chemotherapy. We report here that the endogenous levels of LEDGF/p75 are upregulated in metastatic castration resistant prostate cancer (mCRPC) cells selected for resistance to the taxane drug docetaxel (DTX). These cells also showed resistance to the taxanes cabazitaxel (CBZ) and paclitaxel (PTX), but not to the classical inducer of apoptosis TRAIL. Silencing LEDGF/p75 effectively sensitized taxane-resistant PC3 and DU145 cells to DTX and CBZ, as evidenced by a significant decrease in their clonogenic potential. While TRAIL induced apoptotic blebbing, caspase-3 processing, and apoptotic LEDGF/p75 cleavage, which leads to its inactivation, in both taxane-resistant and -sensitive PC3 and DU145 cells, treatment with DTX and CBZ failed to robustly induce these signature apoptotic events. These observations suggested that taxanes induce both caspase-dependent and -independent cell death in mCRPC cells, and that maintaining the structural integrity of LEDGF/p75 is critical for its role in promoting taxane-resistance. Our results further establish LEDGF/p75 as a stress oncoprotein that plays an important role in taxane-resistance in mCRPC cells, possibly by antagonizing drug-induced caspase-independent cell death.
Collapse
Affiliation(s)
- Leslimar Ríos-Colón
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Christina K Cajigas-Du Ross
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Anamika Basu
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Catherine Elix
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Ivana Alicea-Polanco
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Tino W Sanchez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Vinodh Radhakrishnan
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Department of Medicine, Division of Hematology/Medical Oncology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.,Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
11
|
Woods-Burnham L, Basu A, Cajigas-Du Ross CK, Love A, Yates C, De Leon M, Roy S, Casiano CA. The 22Rv1 prostate cancer cell line carries mixed genetic ancestry: Implications for prostate cancer health disparities research using pre-clinical models. Prostate 2017; 77:1601-1608. [PMID: 29030865 PMCID: PMC5687283 DOI: 10.1002/pros.23437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/13/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Understanding how biological factors contribute to prostate cancer (PCa) health disparities requires mechanistic functional analysis of specific genes or pathways in pre-clinical cellular and animal models of this malignancy. The 22Rv1 human prostatic carcinoma cell line was originally derived from the parental CWR22R cell line. Although 22Rv1 has been well characterized and used in numerous mechanistic studies, no racial identifier has ever been disclosed for this cell line. In accordance with the need for racial diversity in cancer biospecimens and recent guidelines by the NIH on authentication of key biological resources, we sought to determine the ancestry of 22RV1 and authenticate previously reported racial identifications for four other PCa cell lines. METHODS We used 29 established Ancestry Informative Marker (AIM) single nucleotide polymorphisms (SNPs) to conduct DNA ancestry analysis and assign ancestral proportions to a panel of five PCa cell lines that included 22Rv1, PC3, DU145, MDA-PCa-2b, and RC-77T/E. RESULTS We found that 22Rv1 carries mixed genetic ancestry. The main ancestry proportions for this cell line were 0.41 West African (AFR) and 0.42 European (EUR). In addition, we verified the previously reported racial identifications for PC3 (0.73 EUR), DU145 (0.63 EUR), MDA-PCa-2b (0.73 AFR), and RC-77T/E (0.74 AFR) cell lines. CONCLUSIONS Considering the mortality disparities associated with PCa, which disproportionately affect African American men, there remains a burden on the scientific community to diversify the availability of biospecimens, including cell lines, for mechanistic studies on potential biological mediators of these disparities. This study is beneficial by identifying another PCa cell line that carries substantial AFR ancestry. This finding may also open the door to new perspectives on previously published studies using this cell line.
Collapse
Affiliation(s)
- Leanne Woods-Burnham
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | - Anamika Basu
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | - Christina K. Cajigas-Du Ross
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | - Arthur Love
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | - Clayton Yates
- Tuskegee University, Department of Biology and Center for Cancer Research, Tuskegee, AL
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | - Sourav Roy
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA
| |
Collapse
|
12
|
Prasad KN, Bondy SC. MicroRNAs in Hearing Disorders: Their Regulation by Oxidative Stress, Inflammation and Antioxidants. Front Cell Neurosci 2017; 11:276. [PMID: 28955205 PMCID: PMC5600967 DOI: 10.3389/fncel.2017.00276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) are small non-coding single-stranded RNAs that bind to their complimentary sequences in the 3′-untranslated regions (3′-UTRs) of the target mRNAs that prevent their translation into the corresponding proteins. Since miRs are strongly expressed in cells of inner ear and play a role in regulating their differentiation, survival and function, alterations in their expression may be involved in the pathogenesis of hearing disorders. Although increased oxidative stress and inflammation are involved in initiation and progression of hearing disorders, it is unknown whether the mechanisms of damage produced by these biochemical events on inner ear cells are mediated by altering the expression of miRs. In neurons and non-neuronal cells, reactive oxygen species (ROS) and pro-inflammatory cytokines mediate their damaging effects by altering the expression of miRs. Preliminary data indicate that a similar mechanism of damage on hair cells produced by oxidative stress may exist in this disease. Antioxidants protect against hearing disorders induced by ototoxic agents or adverse health conditions; however, it is unknown whether the protective effects of antioxidants in hearing disorders are mediated by changing the expression of miRs. Antioxidants protect mammalian cells against oxidative damage by changing the expression of miRs. Therefore, it is proposed that a similar mechanism of protection by antioxidants against stress may be found in hearing disorders. This review article discusses novel concepts: (a) alterations in the expression of miRs may be involved in the pathogenesis of hearing disorders; (b) presents evidence from neurons and glia cells to show that oxidative stress and pro-inflammatory cytokines mediate their damaging effects by altering the expression of miRs; and proposes that a similar mechanism of damage by these biochemical events may be found in hearing loss; and (c) present data to show that antioxidants protect mammalian cells against oxidative by altering the expression of miRs. A similar role of antioxidants in protecting against hearing disorders is put forward. New studies are proposed to fill the gaps in the areas listed above.
Collapse
Affiliation(s)
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, IrvineIrvine, CA, United States
| |
Collapse
|
13
|
Basu A, Cajigas-Du Ross CK, Rios-Colon L, Mediavilla-Varela M, Daniels-Wells TR, Leoh LS, Rojas H, Banerjee H, Martinez SR, Acevedo-Martinez S, Casiano CA. LEDGF/p75 Overexpression Attenuates Oxidative Stress-Induced Necrosis and Upregulates the Oxidoreductase ERP57/PDIA3/GRP58 in Prostate Cancer. PLoS One 2016; 11:e0146549. [PMID: 26771192 PMCID: PMC4714844 DOI: 10.1371/journal.pone.0146549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/19/2015] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) mortality is driven by highly aggressive tumors characterized by metastasis and resistance to therapy, and this aggressiveness is mediated by numerous factors, including activation of stress survival pathways in the pro-inflammatory tumor microenvironment. LEDGF/p75, also known as the DFS70 autoantigen, is a stress transcription co-activator implicated in cancer, HIV-AIDS, and autoimmunity. This protein is targeted by autoantibodies in certain subsets of patients with PCa and inflammatory conditions, as well as in some apparently healthy individuals. LEDGF/p75 is overexpressed in PCa and other cancers, and promotes resistance to chemotherapy-induced cell death via the transactivation of survival proteins. We report in this study that overexpression of LEDGF/p75 in PCa cells attenuates oxidative stress-induced necrosis but not staurosporine-induced apoptosis. This finding was consistent with the observation that while LEDGF/p75 was robustly cleaved in apoptotic cells into a p65 fragment that lacks stress survival activity, it remained relatively intact in necrotic cells. Overexpression of LEDGF/p75 in PCa cells led to the upregulation of transcript and protein levels of the thiol-oxidoreductase ERp57 (also known as GRP58 and PDIA3), whereas its depletion led to ERp57 transcript downregulation. Chromatin immunoprecipitation and transcription reporter assays showed LEDGF/p75 binding to and transactivating the ERp57 promoter, respectively. Immunohistochemical analysis revealed significantly elevated co-expression of these two proteins in clinical prostate tumor tissues. Our results suggest that LEDGF/p75 is not an inhibitor of apoptosis but rather an antagonist of oxidative stress-induced necrosis, and that its overexpression in PCa leads to ERp57 upregulation. These findings are of significance in clarifying the role of the LEDGF/p75 stress survival pathway in PCa.
Collapse
Affiliation(s)
- Anamika Basu
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
- * E-mail:
| | - Christina K. Cajigas-Du Ross
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Leslimar Rios-Colon
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Melanie Mediavilla-Varela
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Tracy R. Daniels-Wells
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Lai Sum Leoh
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Heather Rojas
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Hiya Banerjee
- Novartis Pharmaceutical Oncology, East Hanover, New Jersey 08807, United States of America
| | - Shannalee R. Martinez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Stephanny Acevedo-Martinez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| |
Collapse
|
14
|
Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer. PLoS One 2015; 10:e0145322. [PMID: 26683658 PMCID: PMC4687717 DOI: 10.1371/journal.pone.0145322] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/02/2015] [Indexed: 11/30/2022] Open
Abstract
Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The “transforming growth factor-beta signaling” and “Ran regulation of mitotic spindle formation” pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran) for investigation in prostate cancer pathogenesis.
Collapse
|
15
|
Basu A, Woods-Burnham L, Ortiz G, Rios-Colon L, Figueroa J, Albesa R, Andrade LE, Mahler M, Casiano CA. Specificity of antinuclear autoantibodies recognizing the dense fine speckled nuclear pattern: Preferential targeting of DFS70/LEDGFp75 over its interacting partner MeCP2. Clin Immunol 2015; 161:241-50. [PMID: 26235378 PMCID: PMC4712632 DOI: 10.1016/j.clim.2015.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 11/26/2022]
Abstract
Human antinuclear autoantibodies (ANAs) targeting the dense fine speckled (DFS) nuclear protein DFS70, commonly known as lens epithelium derived growth factor p75 (LEDGFp75), present a clinical puzzle since their significance remains elusive. While their frequencies are low in ANA-positive autoimmune rheumatic diseases, they are relatively elevated in clinical laboratory referrals, diverse inflammatory conditions, and 'apparently' healthy individuals. We reported previously that DFS70/LEDGFp75 is an autoantigen in prostate cancer that closely interacts with another 70kD DFS nuclear protein, methyl CpG binding protein 2 (MeCP2). This led us to investigate if anti-DFS sera exclusively target DFS70/LEDGFp75 or also recognize MeCP2. Using several complementary autoantibody detection platforms and cellular/molecular approaches we evaluated 65 human sera producing anti-DFS autoantibodies. Our results show that these antibodies are highly specific for DFS70/LEDGFp75 and do not target MeCP2. Establishing the specificity of anti-DFS autoantibodies has implications for increasing our understanding of their biological significance and clinical utility.
Collapse
Affiliation(s)
- Anamika Basu
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Leanne Woods-Burnham
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Greisha Ortiz
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Leslimar Rios-Colon
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Johnny Figueroa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Roger Albesa
- Department of Research, Inova Diagnostics, Inc., San Diego, CA, USA
| | - Luis E Andrade
- Rheumatology Division, Universidade Federal de Sao Paulo, Immunology Division, Fleury Medicine and Health Laboratories, Sao Paulo, Brazil
| | - Michael Mahler
- Department of Research, Inova Diagnostics, Inc., San Diego, CA, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
16
|
Ochs RL, Mahler M, Basu A, Rios-Colon L, Sanchez TW, Andrade LE, Fritzler MJ, Casiano CA. The significance of autoantibodies to DFS70/LEDGFp75 in health and disease: integrating basic science with clinical understanding. Clin Exp Med 2015; 16:273-93. [PMID: 26088181 PMCID: PMC4684813 DOI: 10.1007/s10238-015-0367-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/03/2015] [Indexed: 12/16/2022]
Abstract
Antinuclear autoantibodies (ANAs) displaying the nuclear dense fine speckled immunofluorescence (DFS-IIF) pattern in HEp-2 substrates are commonly observed in clinical laboratory referrals. They target the dense fine speckled autoantigen of 70 kD (DFS70), most commonly known as lens epithelium-derived growth factor p75 (LEDGFp75). Interesting features of these ANAs include their low frequency in patients with systemic autoimmune rheumatic diseases (SARD), elevated prevalence in apparently healthy individuals, IgG isotype, strong trend to occur as the only ANA specificity in serum, and occurrence in moderate to high titers. These autoantibodies have also been detected at varied frequencies in patients with diverse non-SARD inflammatory and malignant conditions such as atopic diseases, asthma, eye diseases, and prostate cancer. These observations have recently stimulated vigorous research on their clinical and biological significance. Some studies have suggested that they are natural, protective antibodies that could serve as biomarkers to exclude a SARD diagnosis. Other studies suggest that they might be pathogenic in certain contexts. The emerging role of DFS70/LEDGFp75 as a stress protein relevant to human acquired immunodeficiency syndrome, cancer, and inflammation also points to the possibility that these autoantibodies could be sensors of cellular stress and inflammation associated with environmental factors. In this comprehensive review, we integrate our current knowledge of the biology of DFS70/LEDGFp75 with the clinical understanding of its autoantibodies in the contexts of health and disease.
Collapse
Affiliation(s)
- Robert L Ochs
- Ventana Medical, Roche Tissue Diagnostics, Tucson, AZ, USA
| | - Michael Mahler
- Department of Research, Inova Diagnostics, Inc., San Diego, CA, USA
| | - Anamika Basu
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St, Loma Linda, CA, 92350, USA
| | - Leslimar Rios-Colon
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St, Loma Linda, CA, 92350, USA
| | - Tino W Sanchez
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St, Loma Linda, CA, 92350, USA
| | - Luis E Andrade
- Rheumatology Division, Universidade Federal de Sao Paulo, and Immunology Division, Fleury Medicine and Health Laboratories, São Paulo, Brazil
| | | | - Carlos A Casiano
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St, Loma Linda, CA, 92350, USA.
- Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
17
|
Bawa P, Zackaria S, Verma M, Gupta S, Srivatsan R, Chaudhary B, Srinivasan S. Integrative Analysis of Normal Long Intergenic Non-Coding RNAs in Prostate Cancer. PLoS One 2015; 10:e0122143. [PMID: 25933431 PMCID: PMC4416928 DOI: 10.1371/journal.pone.0122143] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/10/2015] [Indexed: 02/03/2023] Open
Abstract
Recently, large numbers of normal human tissues have been profiled for non-coding RNAs and more than fourteen thousand long intergenic non-coding RNAs (lincRNAs) are found expressed in normal human tissues. The functional roles of these normal lincRNAs (nlincRNAs) in the regulation of protein coding genes in normal and disease biology are yet to be established. Here, we have profiled two RNA-seq datasets including cancer and matched non-neoplastic tissues from 12 individuals from diverse demography for both coding genes and nlincRNAs. We find 130 nlincRNAs significantly regulated in cancer, with 127 regulated in the same direction in the two datasets. Interestingly, according to Illumina Body Map, significant numbers of these nlincRNAs display baseline null expression in normal prostate tissues but are specific to other tissues such as thyroid, kidney, liver and testis. A number of the regulated nlincRNAs share loci with coding genes, which are either co-regulated or oppositely regulated in all cancer samples studied here. For example, in all cancer samples i) the nlincRNA, TCONS_00029157, and a neighboring tumor suppressor factor, SIK1, are both down regulated; ii) several thyroid-specific nlincRNAs in the neighborhood of the thyroid-specific gene TPO, are both up-regulated; and iii) the TCONS_00010581, an isoform of HEIH, is down-regulated while the neighboring EZH2 gene is up-regulated in cancer. Several nlincRNAs from a prostate cancer associated chromosomal locus, 8q24, are up-regulated in cancer along with other known prostate cancer associated genes including PCAT-1, PVT1, and PCAT-92. We observe that there is significant bias towards up-regulation of nlincRNAs with as high as 118 out of 127 up-regulated in cancer, even though regulation of coding genes is skewed towards down-regulation. Considering that all reported cancer associated lincRNAs (clincRNAs) are biased towards up-regulation, we conclude that this bias may be functionally relevant.
Collapse
Affiliation(s)
- Pushpinder Bawa
- IBAB, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
- Manipal University, Manipal, Karnataka, India
| | - Sajna Zackaria
- IBAB, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Mohit Verma
- IBAB, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Saurabh Gupta
- IBAB, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - R Srivatsan
- IBAB, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Bibha Chaudhary
- IBAB, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Subhashini Srinivasan
- IBAB, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
18
|
Basu A, Sanchez TW, Casiano CA. DFS70/LEDGFp75: An Enigmatic Autoantigen at the Interface between Autoimmunity, AIDS, and Cancer. Front Immunol 2015; 6:116. [PMID: 25852687 PMCID: PMC4367441 DOI: 10.3389/fimmu.2015.00116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/02/2015] [Indexed: 11/25/2022] Open
Abstract
Clinical and diagnostic laboratories often encounter patient sera containing antinuclear antibodies (ANAs) that produce a nuclear dense fine speckled immunofluorescence pattern on HEp-2 cells. These autoantibodies usually target the dense fine speckled protein of 70 kDa (DFS70), commonly known as lens epithelium-derived growth factor p75 (LEDGFp75). Anti-DFS70/LEDGFp75 autoantibodies have recently attracted much interest because of their relatively common occurrence in sera from patients with positive ANA tests with no clinical evidence of systemic autoimmune rheumatic disease (SARD). Their presence has been documented primarily in patients with diverse non-SARD inflammatory conditions and “apparently healthy” individuals. While there is circumstantial evidence that depending on the context these autoantibodies could play protective, pathogenic, or sensor roles, their significance remains elusive. DFS70/LEDGFp75 has emerged during the past decade as a stress transcription co-activator relevant to HIV integration, cancer, and inflammation. It is not clear, however, what makes this protein the target of such a common autoantibody response. We suggest that a better understanding of DFS70/LEDGFp75 biology is key to elucidating the significance of its associated autoantibodies. Here, we discuss briefly our current understanding of this enigmatic autoantigen and potential scenarios leading to its targeting by the immune system.
Collapse
Affiliation(s)
- Anamika Basu
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, CA , USA
| | - Tino W Sanchez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, CA , USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, CA , USA ; Department of Medicine, Loma Linda University School of Medicine , Loma Linda, CA , USA
| |
Collapse
|
19
|
Chakraborty S, John R, Nag A. Cytoglobin in tumor hypoxia: novel insights into cancer suppression. Tumour Biol 2014; 35:6207-19. [PMID: 24816917 DOI: 10.1007/s13277-014-1992-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/17/2014] [Indexed: 01/19/2023] Open
Abstract
Emerging new and intriguing roles of cytoglobin (Cygb) have attracted considerable attention of cancer researchers in recent years. Hypoxic upregulation of Cygb as well as its altered expression in various human cancers suggest another possible role of this newly discovered globin in tumor cell response under low oxygen tension. Since tumor hypoxia is strongly associated with malignant progression of disease and poor treatment response, it constitutes an area of paramount importance for rational design of cancer selective therapies. However, the mechanisms involved during this process are still elusive. This review outlines the current understanding of Cygb's involvement in tumor hypoxia and discusses its role in tumorigenesis. A better perception of Cygb in tumor hypoxia response is likely to open novel perspectives for future tumor therapy.
Collapse
Affiliation(s)
- Sankalpa Chakraborty
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | | | | |
Collapse
|
20
|
Leitz J, Reuschenbach M, Lohrey C, Honegger A, Accardi R, Tommasino M, Llano M, von Knebel Doeberitz M, Hoppe-Seyler K, Hoppe-Seyler F. Oncogenic human papillomaviruses activate the tumor-associated lens epithelial-derived growth factor (LEDGF) gene. PLoS Pathog 2014; 10:e1003957. [PMID: 24604027 PMCID: PMC3946365 DOI: 10.1371/journal.ppat.1003957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/13/2014] [Indexed: 12/20/2022] Open
Abstract
The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic. Specific types of human papillomaviruses (HPVs) are closely linked to the development of malignant tumors, such as cervical cancer. Virtually all cervical cancers contain HPV DNA and the tumorigenic growth behavior of cervical cancer cells is dependent on the activity of two viral oncogenes, called E6 and E7. It is important to study the activities by which the HPV oncogenes can support the growth of tumor cells. This should allow new insights into the molecular mechanisms of virus-induced carcinogenesis and could also be useful for developing novel approaches for cancer therapy. We here show that the HPV oncogenes stimulate and maintain expression of the cellular LEDGF gene in HPV-positive cancer cells. Consistently, pre-malignant and malignant lesions of the cervix exhibit significantly increased LEDGF protein levels. LEDGF is crucial for the protection of tumor cells against various forms of cellular stress, including DNA damage. LEDGF stimulation by the viral oncogenes could be a critical survival mechanism by which HPVs support the growth of cervical cancer cells and provide resistance towards chemo- and radiotherapy in the clinic.
Collapse
Affiliation(s)
- Jenny Leitz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Reuschenbach
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Lohrey
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Honegger
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rosita Accardi
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | | | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (KHS); (FHS)
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (KHS); (FHS)
| |
Collapse
|
21
|
Chaput D, Kirouac LH, Bell-Temin H, Stevens SM, Padmanabhan J. SILAC-based proteomic analysis to investigate the impact of amyloid precursor protein expression in neuronal-like B103 cells. Electrophoresis 2013; 33:3728-37. [PMID: 23161580 DOI: 10.1002/elps.201200251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 11/05/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. Amyloid plaque formation through aggregation of the amyloid beta peptide derived from amyloid precursor protein (APP) is considered one of the hallmark processes leading to AD pathology; however, the precise role of APP in plaque formation and AD pathogenesis is yet to be determined. Using stable isotope labeling by amino acids in cell culture (SILAC) and MS, protein expression profiles of APP null, rat neuronal-like B103 cells were compared to B103-695 cells that express the APP isoform, APP-695. A total of 2979 unique protein groups were identified among three biological replicates and significant protein expression changes were identified in a total of 102 nonredundant proteins. Some of the top biological functions associated with the differentially expressed proteins identified include cellular assembly, organization and morphology, cell cycle, lipid metabolism, protein folding, and PTMs. We report several novel biological pathways influenced by APP-695 expression in neuronal-like cells and provide additional framework for investigating altered molecular mechanisms associated with APP expression and processing and contribution to AD pathology.
Collapse
Affiliation(s)
- Dale Chaput
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
22
|
Oleksiewicz U, Liloglou T, Tasopoulou KM, Daskoulidou N, Bryan J, Gosney JR, Field JK, Xinarianos G. Cytoglobin has bimodal: tumour suppressor and oncogene functions in lung cancer cell lines. Hum Mol Genet 2013; 22:3207-17. [PMID: 23591990 DOI: 10.1093/hmg/ddt174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cytoglobin (CYGB) is frequently downregulated in many types of human malignancies, and its exogenous overexpression reduces proliferation of cancer cells. Despite its implied tumour suppressor (TSG) functions, its exact role in carcinogenesis remains unclear as CYGB upregulation is also associated with tumour hypoxia and aggressiveness. In this study, we explore the TSG role of CYGB, its influence on the phenotype of cancerous cells under stress conditions and the clinical significance of CYGB expression and promoter methylation in non-small cell lung cancer (NSCLC). DNA methylation-dependent expression silencing of CYGB is demonstrated in both clinical samples and cell lines. CYGB promoter was more frequently methylated in lung adenocarcinomas (P = 1.4 × 10(-4)). Demethylation by 5'-azadeoxycytidine partially restored CYGB expression in cell lines. Interestingly, trichostatin A triggered upregulation of CYGB expression in cancer cell lines and downregulation in non-tumourigenic ones. CYGB mRNA expression in NSCLC surgical specimens correlated with that of HIF1α and VEGFa (P < 1 × 10(-4)). Overexpression of CYGB in cancer cell lines reduced cell migration, invasion and anchorage-independent growth. Moreover, CYGB impaired cell proliferation, but only in the lung adenocarcinoma cell line (H358). Upon hydrogen peroxide treatment, CYGB protected cell viability, migratory potential and anchorage independence by attenuating oxidative injury. In hypoxia, CYGB overexpression decreased cell viability, augmented migration and anchorage independence in a cell-type-specific manner. In conclusion, CYGB revealed TSG properties in normoxia but promoted tumourigenic potential of the cells exposed to stress, suggesting a bimodal function in lung tumourigenesis, depending on cell type and microenvironmental conditions.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, University of Liverpool, 200 London Rd, Liverpool L3 9TA,UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Basu A, Rojas H, Banerjee H, Cabrera IB, Perez KY, De León M, Casiano CA. Expression of the stress response oncoprotein LEDGF/p75 in human cancer: a study of 21 tumor types. PLoS One 2012; 7:e30132. [PMID: 22276150 PMCID: PMC3261859 DOI: 10.1371/journal.pone.0030132] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/09/2011] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress-modulated signaling pathways have been implicated in carcinogenesis and therapy resistance. The lens epithelium derived growth factor p75 (LEDGF/p75) is a transcription co-activator that promotes resistance to stress-induced cell death. This protein has been implicated in inflammatory and autoimmune conditions, HIV-AIDS, and cancer. Although LEDGF/p75 is emerging as a stress survival oncoprotein, there is scarce information on its expression in human tumors. The present study was performed to evaluate its expression in a comprehensive panel of human cancers. Transcript expression was examined in the Oncomine cancer gene microarray database and in a TissueScan Cancer Survey Panel quantitative polymerase chain reaction (Q-PCR) array. Protein expression was assessed by immunohistochemistry (IHC) in cancer tissue microarrays (TMAs) containing 1735 tissues representing single or replicate cores from 1220 individual cases (985 tumor and 235 normal tissues). A total of 21 major cancer types were analyzed. Analysis of LEDGF/p75 transcript expression in Oncomine datasets revealed significant upregulation (tumor vs. normal) in 15 out of 17 tumor types. The TissueScan Cancer Q-PCR array revealed significantly elevated LEDGF/p75 transcript expression in prostate, colon, thyroid, and breast cancers. IHC analysis of TMAs revealed significant increased levels of LEDGF/p75 protein in prostate, colon, thyroid, liver and uterine tumors, relative to corresponding normal tissues. Elevated transcript or protein expression of LEDGF/p75 was observed in several tumor types. These results further establish LEDGF/p75 as a cancer-related protein, and provide a rationale for ongoing studies aimed at understanding the clinical significance of its expression in specific human cancers.
Collapse
Affiliation(s)
- Anamika Basu
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|