1
|
Zhang Z, Shen Q, Ji Y, Ma Y, Hou H, Yang H, Zhu Y, Chen Y, Hu Y. Structural Optimization of Isoquinoline Derivatives from Lycobetaine and Their Inhibitory Activity against Neuroendocrine Prostate Cancer Cells. Molecules 2024; 29:4503. [PMID: 39339498 PMCID: PMC11435415 DOI: 10.3390/molecules29184503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive cancer that is resistant to hormone therapy and characterized by poor prognosis, as well as limited therapeutic options. Since the natural product lycobetaine was reported to exhibit good antitumor activities against various types of cancers, we initially simplified the scaffold of lycobetaine to obtain the active compound 1, an isoquinoline derivative with an aryl moiety substitution at the 4-position, which showed apparent antiproliferative activities against NPEC cell line LASCPC-01 in vitro. Subsequently, we carried out structural optimization and systematic structure-activity relationship (SAR) studies on compound 1, leading to the discovery of compound 46, which demonstrated potent inhibitory activities against the LASCPC-01 cell line with an IC50 value of 0.47 μM. Moreover, compound 46 displayed remarkable selectivity over prostate cancer cell line PC-3 with a selectivity index greater than 190-fold. Further cell-based mechanism studies revealed that compound 46 and lycobetaine can effectively induce G1 cell cycle arrest and apoptosis dose dependently. However, lycobetaine inhibited the expression of neuroendocrine markers, while compound 46 slightly upregulated these proteins. This suggested that compound 46 might exert its antitumor activities through a different mechanism than lycobetaine, warranting further study.
Collapse
Affiliation(s)
- Zhuo Zhang
- School of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China;
| | - Qianqian Shen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.S.); (H.H.); (Y.C.)
| | - Yiyi Ji
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China;
| | - Yanjie Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-ChongZhi Road, Shanghai 201203, China; (Y.M.); (H.Y.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Haiyang Hou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.S.); (H.H.); (Y.C.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Huajie Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-ChongZhi Road, Shanghai 201203, China; (Y.M.); (H.Y.)
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China;
| | - Yi Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.S.); (H.H.); (Y.C.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Youhong Hu
- School of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-ChongZhi Road, Shanghai 201203, China; (Y.M.); (H.Y.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1st Xiangshan Branch Alley, Hangzhou 310024, China
| |
Collapse
|
2
|
Izady M, Khatami F, Ahadi Z, Roudgari H, Aghamir SMK. Updates on Overcoming Bicalutamide Resistance: A Glimpse into Resistance to a Novel Antiandrogen. ACS Pharmacol Transl Sci 2024; 7:905-914. [PMID: 38633597 PMCID: PMC11020064 DOI: 10.1021/acsptsci.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/19/2024]
Abstract
The standard androgen deprivation therapy for advanced prostate cancer includes the use of bicalutamide, which is a well-known antagonist of androgen receptors. Despite numerous benefits of the drugs in prostate cancer treatment, there is always a risk of developing a resistant phenotype, which paves the way for a more aggressive and low-survival type of prostate cancer. Over the years, many studies have investigated the candidate mechanisms of such resistance and have managed to find possible therapeutic solutions. In this Review, we shed light on the heterogeneous dynamics of progression to resistance against bicalutamide treatment, referring to the most recent studies and the approaches that have been so far discussed. This Review tries to offer a deep and comprehensive understanding about how the resistant cells become sensitive to the drug and what corresponding pathways lead to an appropriate solution for the antiandrogen resistance challenge.
Collapse
Affiliation(s)
- Mehrnaz Izady
- Urology
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
- Department
of Stem Cells Technology and Tissue Regeneration, School of Biology,
College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Fatemeh Khatami
- Urology
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| | - Zeinab Ahadi
- Urology
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| | - Hassan Roudgari
- Genomic
Research Center (GRC), Shahid Beheshti University
of Medical Sciences (SBMU), Tehran 19839-63113, Iran
- Department
of Applied Medicine, Medical School, Aberdeen
University, Aberdeen AB24 3FX, United Kingdom
| | | |
Collapse
|
3
|
Zalcman N, Larush L, Ovadia H, Charbit H, Magdassi S, Lavon I. Intracranial Assessment of Androgen Receptor Antagonists in Mice Bearing Human Glioblastoma Implants. Int J Mol Sci 2023; 25:332. [PMID: 38203506 PMCID: PMC10779261 DOI: 10.3390/ijms25010332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The median survival time of patients with an aggressive brain tumor, glioblastoma, is still poor due to ineffective treatment. The discovery of androgen receptor (AR) expression in 56% of cases offers a potential breakthrough. AR antagonists, including bicalutamide and enzalutamide, induce dose-dependent cell death in glioblastoma and glioblastoma-initiating cell lines (GIC). Oral enzalutamide at 20 mg/kg reduces subcutaneous human glioblastoma xenografts by 72% (p = 0.0027). We aimed to further investigate the efficacy of AR antagonists in intracranial models of human glioblastoma. In U87MG intracranial models, nude mice administered Xtandi (enzalutamide) at 20 mg/kg and 50 mg/kg demonstrated a significant improvement in survival compared to the control group (p = 0.24 and p < 0.001, respectively), confirming a dose-response relationship. Additionally, we developed a newly reformulated version of bicalutamide, named "soluble bicalutamide (Bic-sol)", with a remarkable 1000-fold increase in solubility. This reformulation significantly enhanced bicalutamide levels within brain tissue, reaching 176% of the control formulation's area under the curve. In the U87MG intracranial model, both 2 mg/kg and 4 mg/kg of Bic-sol exhibited significant efficacy compared to the vehicle-treated group (p = 0.0177 and p = 0.00364, respectively). Furthermore, combination therapy with 8 mg/kg Bic-sol and Temozolomide (TMZ) demonstrated superior efficacy compared to either Bic-sol or TMZ as monotherapies (p = 0.00706 and p = 0.0184, respectively). In the ZH-161 GIC mouse model, the group treated with 8 mg/kg Bic-sol as monotherapy had a significantly longer lifespan than the groups treated with TMZ or the vehicle (p < 0.001). Our study demonstrated the efficacy of androgen receptor antagonists in extending the lifespan of mice with intracranial human glioblastoma, suggesting a promising approach to enhance patient outcomes in the fight against this challenging disease.
Collapse
Affiliation(s)
- Nomi Zalcman
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.Z.)
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Liraz Larush
- Casali Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (L.L.); (S.M.)
| | - Haim Ovadia
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Hanna Charbit
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.Z.)
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Shlomo Magdassi
- Casali Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (L.L.); (S.M.)
| | - Iris Lavon
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.Z.)
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| |
Collapse
|
4
|
Itsumi M, Shiota M, Kajioka S, Eto M. Profile of androgen receptor activators identified using high-throughput screen. Andrologia 2020; 53:e13856. [PMID: 33079406 DOI: 10.1111/and.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Momoe Itsumi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunichi Kajioka
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Chen Z, Cai A, Zheng H, Huang H, Sun R, Cui X, Ye W, Yao Q, Chen R, Kou L. Carbidopa suppresses prostate cancer via aryl hydrocarbon receptor-mediated ubiquitination and degradation of androgen receptor. Oncogenesis 2020; 9:49. [PMID: 32404918 PMCID: PMC7220950 DOI: 10.1038/s41389-020-0236-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022] Open
Abstract
Carbidopa, a peripheral decarboxylase inhibitor used with L-DOPA to treat Parkinson’s disease, has attracted significant interest in recent years for its anticancer effect. Increasing evidence reveals that Carbidopa can inhibit cancer cell growth and induce apoptosis through aryl hydrocarbon receptor (AHR) in some cancers. However, the antitumor effect of Carbidopa in prostate cancer (PCa) is not fully understood. Androgen receptor (AR) plays a central role in PCa, even in advanced “castrate-resistant” disease. In the present study, we report that Carbidopa suppresses the growth of PCa by downregulating the protein expression of AR. Carbidopa inhibits proliferation and migration of LNCaP cells and promotes apoptosis, but has no effect on the AR-independent prostate cell line DU145. Carbidopa increases ubiquitination of AR in LNCaP cells. Several studies have shown that AHR can act as an E3 ubiquitin ligase and promote the proteasomal degradation of AR. Quantitative RT-PCR, immunofluorescence staining and immunoblotting assay demonstrate that AHR is induced and activated by Carbidopa, and the co-immunoprecipitation assay shows that AR interacts with AHR, firmly confirming that Carbidopa decreases AR protein level though AHR-induced proteasomal degradation. In addition, Carbidopa suppresses PCa growth in vivo when xenografted into immunocompromised mice. Carbidopa treatment increases AHR protein level and decreases AR protein level in tumor tissues. Taken together, our study implicates Carbidopa for the first time in effective suppression of prostate cancer via a mechanism, involving AHR-mediated proteasomal degradation of AR.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China
| | - Aimin Cai
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hailun Zheng
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Rui Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiao Cui
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Weijian Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China. .,Department of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China. .,Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China.
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China. .,Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China.
| |
Collapse
|
6
|
Shi C, Chen X, Tan D. Development of patient-derived xenograft models of prostate cancer for maintaining tumor heterogeneity. Transl Androl Urol 2019; 8:519-528. [PMID: 31807428 DOI: 10.21037/tau.2019.08.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Prostate cancer (Pca) is a heterogeneous disease with multiple morphological patterns. Thus, the establishment of a patient-derived xenograft (PDX) model that retains key features of the primary tumor is of great significance. This review demonstrates the characteristics and advantages of the Pca PDX model and summarizes the main factors affecting the establishment of the model. Because this model well recapitulates the diverse heterogeneity observed in the clinic, it was extensively utilized to discover new therapeutic targets, screen drugs, and explore metastatic mechanisms. In the future, clinical phenotype and different stages of the Pca patient might be faithfully reflected by PDX model, which provides tremendous potential for understanding Pca biology and achieving individualized treatment.
Collapse
Affiliation(s)
- Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, the Fourth Military Medical University, Xi'an 710032, China.,School of Basic Medical Sciences, the Chengdu Medical University, Xindu 610500, China
| | - Xue Chen
- Division of Cancer Biology, Laboratory Animal Center, the Fourth Military Medical University, Xi'an 710032, China.,School of Basic Medical Sciences, the Chengdu Medical University, Xindu 610500, China
| | - Dengxu Tan
- Division of Cancer Biology, Laboratory Animal Center, the Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
7
|
Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite. Biomolecules 2019; 9:biom9090409. [PMID: 31450593 PMCID: PMC6770008 DOI: 10.3390/biom9090409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 01/02/2023] Open
Abstract
Carbidopa is used for the treatment of Parkinson’s disease (PD) as an inhibitor of DOPA decarboxylase, and PD patients taking carbidopa have a lower incidence of various tumors, except for breast cancer and melanoma. Recently, it was shown that carbidopa inhibits tryptophan-2,3-dioxygenase (TDO) and kynureninase enzymes. In the present study, the effect of carbidopa on the viability and metabolic profile of breast cancer MCF-7 and melanoma A375 cells was investigated. Carbidopa was not effective in inhibiting MCF-7 and A375 proliferation. Liquid chromatography and mass spectrometry revealed a new compound, identified as indole-3-acetonitrile (IAN), which promoted a concentration-dependent increase in the viability of both cell lines. The results suggest that treatment with carbidopa may alter tryptophan (Trp) metabolism in breast cancer and melanoma leading to the formation of a pro-proliferative Trp metabolite, which may contribute to its failure in reducing breast cancers and melanoma incidence in PD patients taking carbidopa.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Although the treatment of castration-resistant prostate cancer (CRPC) has benefited from the use of increasingly potent androgen synthesis inhibitors and androgen receptor (AR) antagonists, it is only marginally effective. There is therefore a critical need for a better understanding of the mechanisms underlying the CRPC development and more effective therapeutic approaches. Here, we focus on the advancements reported in the last 18 months, particularly with regard to the mechanisms of castration resistance and potential therapeutic targets emerging from the studies with in-vivo models. RECENT FINDINGS Recent findings indicate that AR-dependent mechanisms, for example, increased expression of CYP17A1 and AR splice variants, play important roles in in-vivo castration resistance to new antiandrogens and androgen synthesis inhibitors. Whereas current therapeutic approaches focus on AR-dependent CRPC, studies based on genetically engineered mouse models indicate that castration resistance can develop in the absence of robust AR signaling. Furthermore, increasing evidence suggests that cellular plasticity of prostate adenocarcinoma allows AR-independent CRPC development via various adaptive mechanisms. SUMMARY Significant progress has been made in the understanding of AR-dependent and AR-independent mechanisms involved in the development of CRPC. This may lead to identification of new therapeutic targets and improved therapy.
Collapse
|
9
|
Culig Z, Santer FR. Molecular aspects of androgenic signaling and possible targets for therapeutic intervention in prostate cancer. Steroids 2013; 78:851-9. [PMID: 23643785 DOI: 10.1016/j.steroids.2013.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 01/18/2023]
Abstract
The androgen axis is of crucial importance in the development of novel therapeutic approaches for non-organ-confined prostate cancer. Recent studies revealed that tumor cells have the ability to synthesize androgenic hormones in an intracrine manner. This recognition opened the way for the development of a novel drug, abiraterone acetate, which shows benefits in clinical trials. A novel anti-androgen enzalutamide that inhibits androgen receptor (AR) nuclear translocation has also been developed and tested in the clinic. AR coactivators exert specific cellular regulatory functions, however it is difficult to improve the treatment because of a large number of coregulators overexpressed in prostate cancer. AR itself is a target of several miRNAs which may cause its increased degradation, inhibition of proliferation, and increased apoptosis. Truncated AR occur in prostate cancer as a consequence of alternative splicing. They exhibit ligand-independent transcriptional activity. Although there has been an improvement of endocrine therapy in prostate cancer, increased intracrine ligand synthesis and appearance of variant receptors may facilitate the development of resistance.
Collapse
Affiliation(s)
- Zoran Culig
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
10
|
Quantification and study of the L-DOPA decarboxylase expression in gastric adenocarcinoma cells treated with chemotherapeutic substances. Anticancer Drugs 2013; 24:291-9. [PMID: 23328075 DOI: 10.1097/cad.0b013e32835db25a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
3,4-Dihydroxy-L-phenylalanine decarboxylase (DDC) is an enzyme implicated in the biosynthetic pathways of the neurotransmitters dopamine and probably serotonin. DDC gene expression has been studied in numerous malignancies and the corresponding data have shown remarkable alterations in the mRNA and/or protein levels encoded by the gene. The aim of this study was to examine any modulations in the DDC mRNA levels in gastric cancer cells after their treatment with the chemotherapeutic agents 5-fluorouracil, leucovorin, irinotecan, etoposide, cisplatin, and taxol. The sensitivity of the AGS gastric adenocarcinoma cells to the antineoplastic drugs was evaluated using the MTT assay. Total RNA was extracted and reverse transcribed into cDNA. A highly sensitive quantitative real-time PCR methodology was developed for the quantification of DDC mRNA. GAPDH was used as a housekeeping gene. Relative quantification analysis was carried out using the comparative C T method ((Equation is included in full-text article.)). The treatment of AGS cells with several concentrations of various broadly used anticancer drugs resulted in significant modulations of the DDC mRNA levels compared with those in the untreated cells in a time-specific and drug-specific manner. Generally, DDC expression levels appeared to decrease after three time periods of exposure to the selected chemotherapeutic agents, suggesting a characteristic DDC mRNA expression profile that is possibly related to the mechanism of each drug. Our experimental data show that the DDC gene might serve as a new potential molecular biomarker predicting treatment response in gastric cancer cells.
Collapse
|
11
|
Current World Literature. Curr Opin Urol 2013. [DOI: 10.1097/mou.0b013e3283605159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|