1
|
Liang X, Ren H, Han F, Liang R, Zhao J, Liu H. The new direction of drug development: Degradation of undruggable targets through targeting chimera technology. Med Res Rev 2024; 44:632-685. [PMID: 37983964 DOI: 10.1002/med.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/13/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Imbalances in protein and noncoding RNA levels in vivo lead to the occurrence of many diseases. In addition to the use of small molecule inhibitors and agonists to restore these imbalances, recently emerged targeted degradation technologies provide a new direction for disease treatment. Targeted degradation technology directly degrades target proteins or RNA by utilizing the inherent degradation pathways, thereby eliminating the functions of pathogenic proteins (or RNA) to treat diseases. Compared with traditional therapies, targeted degradation technology which avoids the principle of traditional inhibitor occupation drive, has higher efficiency and selectivity, and widely expands the range of drug targets. It is one of the most promising and hottest areas for future drug development. Herein, we systematically introduced the in vivo degradation systems applied to degrader design: ubiquitin-proteasome system, lysosomal degradation system, and RNA degradation system. We summarized the development progress, structural characteristics, and limitations of novel chimeric design technologies based on different degradation systems. In addition, due to the lack of clear ligand-binding pockets, about 80% of disease-associated proteins cannot be effectively intervened with through traditional therapies. We deeply elucidated how to use targeted degradation technology to discover and design molecules for representative undruggable targets including transcription factors, small GTPases, and phosphatases. Overall, this review provides a comprehensive and systematic overview of targeted degradation technology-related research advances and a new guidance for the chimeric design of undruggable targets.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Fengyang Han
- School of Pharmacy, Fudan University, Shanghai, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiayan Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
2
|
Foda BM, Neubig RR. Role of Rho/MRTF in Aggressive Vemurafenib-Resistant Murine Melanomas and Immune Checkpoint Upregulation. Int J Mol Sci 2023; 24:13785. [PMID: 37762086 PMCID: PMC10531039 DOI: 10.3390/ijms241813785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Cutaneous melanoma is the deadliest skin cancer. Most have Ras-MAPK pathway (BRAFV600E or NRAS) mutations and highly effective targeted therapies exist; however, they and immune therapies are limited by resistance, in part driven by small GTPase (Rho and Rac) activation. To facilitate preclinical studies of combination therapies to provide durable responses, we describe the first mouse melanoma lines resistant to BRAF inhibitors. Treatment of mouse lines, YUMM1.7 and YUMMER, with vemurafenib (Vem), the BRAFV600E-selective inhibitor, resulted in high-level resistance (IC50 shifts 20-30-fold). Resistant cells showed enhanced activation of Rho and the downstream transcriptional coactivator, myocardin-related transcription factor (MRTF). Resistant cells exhibited increased stress fibers, nuclear translocation of MRTF-A, and an increased MRTF-A gene signature. Pharmacological inhibition of the Rho/MRTF pathway using CCG-257081 reduced viability of resistant lines and enhanced sensitivity to Vem. Remarkably, co-treatment of parental lines with Vem and CCG-257081 eliminated resistant colony development. Resistant cells grew more slowly in vitro, but they developed highly aggressive tumors with a shortened survival of tumor-bearing mice. Increased expression of immune checkpoint inhibitor proteins (ICIs) in resistant lines may contribute to aggressive in vivo behavior. Here, we introduce the first drug-resistant mouse melanoma models for assessing combinations of targeted and immune therapies.
Collapse
Affiliation(s)
- Bardees M. Foda
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA;
- Molecular Genetics and Enzymology Department, National Research Centre, Dokki 12622, Egypt
| | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA;
- Nicholas V. Perricone, M.D. Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
3
|
Penas C, Arroyo-Berdugo Y, Apraiz A, Rasero J, Muñoa-Hoyos I, Andollo N, Cancho-Galán G, Izu R, Gardeazabal J, Ezkurra PA, Subiran N, Alvarez-Dominguez C, Alonso S, Bosserhoff AK, Asumendi A, Boyano MD. Pirin is a prognostic marker of human melanoma that dampens the proliferation of malignant cells by downregulating JARID1B/KDM5B expression. Sci Rep 2023; 13:9561. [PMID: 37308689 DOI: 10.1038/s41598-023-36684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Originally considered to act as a transcriptional co-factor, Pirin has recently been reported to play a role in tumorigenesis and the malignant progression of many tumors. Here, we have analyzed the diagnostic and prognostic value of Pirin expression in the early stages of melanoma, and its role in the biology of melanocytic cells. Pirin expression was analyzed in a total of 314 melanoma biopsies, correlating this feature with the patient's clinical course. Moreover, PIR downregulated primary melanocytes were analyzed by RNA sequencing, and the data obtained were validated in human melanoma cell lines overexpressing PIR by functional assays. The immunohistochemistry multivariate analysis revealed that early melanomas with stronger Pirin expression were more than twice as likely to develop metastases during the follow-up. Transcriptome analysis of PIR downregulated melanocytes showed a dampening of genes involved in the G1/S transition, cell proliferation, and cell migration. In addition, an in silico approach predicted that JARID1B as a potential transcriptional regulator that lies between PIR and its downstream modulated genes, which was corroborated by co-transfection experiments and functional analysis. Together, the data obtained indicated that Pirin could be a useful marker for the metastatic progression of melanoma and that it participates in the proliferation of melanoma cells by regulating the slow-cycling JARID1B gene.
Collapse
Affiliation(s)
- Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon University, Pittsburg, PA, 15213, USA
| | - Iraia Muñoa-Hoyos
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | | | - Rosa Izu
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Basurto University Hospital, 48013, Bilbo, Spain
| | - Jesús Gardeazabal
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Cruces University Hospital, 48903, Barakaldo, Spain
| | - Pilar A Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Nerea Subiran
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Carmen Alvarez-Dominguez
- MEDONLINE Multidisciplinary Research Group, Faculty of Health Sciences and Faculty of Education, International University of La Rioja, 26006, Logroño, Spain
| | - Santos Alonso
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940, Leioa, Spain
| | - Anja K Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054, Erlangen, Germany
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - María D Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain.
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain.
| |
Collapse
|
4
|
Sequence, structural and functional conservation among the human and fission yeast ELL and EAF transcription elongation factors. Mol Biol Rep 2021; 49:1303-1320. [PMID: 34807377 DOI: 10.1007/s11033-021-06958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Transcription elongation is a dynamic and tightly regulated step of gene expression in eukaryotic cells. Eleven nineteen Lysine rich Leukemia (ELL) and ELL Associated Factors (EAF) family of conserved proteins are required for efficient RNA polymerase II-mediated transcription elongation. Orthologs of these proteins have been identified in different organisms, including fission yeast and humans. METHODS AND RESULTS In the present study, we have examined the sequence, structural and functional conservation between the fission yeast and human ELL and EAF orthologs. Our computational analysis revealed that these proteins share some sequence characteristics, and were predominantly disordered in both organisms. Our functional complementation assays revealed that both human ELL and EAF proteins could complement the lack of ell1+ or eaf1+ in Schizosaccharomyces pombe respectively. Furthermore, our domain mapping experiments demonstrated that both the amino and carboxyl terminal domains of human EAF proteins could functionally complement the S. pombe eaf1 deletion phenotypes. However, only the carboxyl-terminus domain of human ELL was able to partially rescue the phenotypes associated with lack of ell1+ in S. pombe. CONCLUSIONS Collectively, our work adds ELL-EAF to the increasing list of human-yeast complementation gene pairs, wherein the simpler fission yeast can be used to further enhance our understanding of the role of these proteins in transcription elongation and human disease.
Collapse
|
5
|
Han W, Shen GL. Systematic expression analysis of EAF family reveals the importance of EAF2 in melanoma. Int Immunopharmacol 2020; 88:106958. [PMID: 33182068 DOI: 10.1016/j.intimp.2020.106958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) accounts for over 75% of skin cancer-related deaths each year. EAF2, as a member of EAF family, has been found in several cancers, however, the role of EAF2 in SKCM is rarely studied. METHODS In this study, we utilized multiple bioinformatics tools to systematically analyze the expression of EAF family and investigate the prognostic value of EAF2 in melanoma. RESULTS We found both transcriptional and proteomics expression expressions of EAF2 were elevated in SKCM. Survival analysis and ROC curves showed significant diagnostic and prognostic ability of EAF2. Importantly, EAF2 expression was closely associated with the immune-infiltrating levels of B cells, CD4+ T, CD8+ T, neutrophils, macrophages and dendritic cells. Co-expression analysis showed EAF2 has a strong positive correlation with CD19, implying they may be functional partners in the immune response of SKCM. CONCLUSIONS In summary, our study is the first to reveal that increased expression of EAF2 is significantly correlated with tumor progression and better prognosis in SKCM patients. The role of EAF2 in SKCM demonstrated that it might be a potential and promising biomarker for the diagnosis and prediction of prognosis in patients with SKCM.
Collapse
Affiliation(s)
- Wei Han
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215000, PR China; Department of Surgery, Soochow University, Suzhou 215000, PR China.
| | - Guo-Liang Shen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215000, PR China; Department of Surgery, Soochow University, Suzhou 215000, PR China.
| |
Collapse
|
6
|
Arai T, Kojima S, Yamada Y, Sugawara S, Kato M, Yamazaki K, Naya Y, Ichikawa T, Seki N. Pirin: a potential novel therapeutic target for castration-resistant prostate cancer regulated by miR-455-5p. Mol Oncol 2018; 13:322-337. [PMID: 30444038 PMCID: PMC6360383 DOI: 10.1002/1878-0261.12405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/16/2018] [Accepted: 10/27/2018] [Indexed: 12/11/2022] Open
Abstract
Androgen deprivation therapy is frequently used to treat prostate cancer (PCa), but resistance can occur, a condition known as castration‐resistant prostate cancer (CRPC). Thus, novel approaches for identification of CRPC are important for designing effective PCa treatments. Analysis of microRNA (miRNA) expression signatures by RNA sequencing showed that both passenger and guide strands of the miR‐455‐duplex (miR‐455‐5p and miR‐455‐3p, respectively) acted as antitumor miRNAs in PCa cells. The involvement of miRNA passenger strands in cancer pathogenesis is a novel concept for miRNA functionality. Based on a large patient cohort in The Cancer Genome Atlas, expression of eight miR‐455‐5p/‐3p target genes (PIR: P = 0.0137, LRP8: P = 0.0495, IGFBP3: P = 0.0172, DMBX1: P = 0.0175, CCDC64: P = 0.0446, TUBB1: P = 0.0149, KIF21B: P = 0.0336, and NFAM1: P = 0.0013) was significantly associated with poor prognosis of PCa patients. Here, we focused on PIR (pirin), a highly conserved member of the cupin superfamily. PIR expression was directly regulated by miR‐455‐5p, and PIR overexpression was detected in hormone‐sensitive prostate cancer (HSPC) surgical specimens and CRPC autopsy specimens. Loss‐of‐function assays using siRNA or an inhibitor (bisamide) showed that downregulation of PIR expression blocked cancer cell migration and invasion. Moreover, the miR‐455‐5p/PIR axis contributed to cancer cell aggressiveness. These results suggest that PIR might be a promising diagnostic marker for HSPC and CRPC. Furthermore, CRPC treatment strategies targeting PIR may be possible in the future. Identification of antitumor miRNAs, including miRNA passenger strands, may contribute to the development of new diagnostic markers and therapeutic strategies for CRPC.
Collapse
Affiliation(s)
- Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Sho Sugawara
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Kazuto Yamazaki
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yukio Naya
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan
| |
Collapse
|
7
|
Dabas P, Sweta K, Ekka M, Sharma N. Structure function characterization of the ELL Associated Factor (EAF) from Schizosaccharomyces pombe. Gene 2017; 641:117-128. [PMID: 29032152 DOI: 10.1016/j.gene.2017.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023]
Abstract
EAF (ELL Associated Factor) proteins interact with the transcription elongation factor, ELL (Eleven nineteen Lysine rich Leukemia) and enhance its ability to stimulate RNA polymerase II-mediated transcriptional elongation in vitro. Schizosaccharomyces pombe contains a single homolog of EAF (SpEAF), which is not essential for survival of S. pombe in contrast to its essential higher eukaryotic homologs. The physiological role of SpEAF is not well understood. In this study, we show that S. pombe EAF is important in regulating growth of S. pombe cells during normal growth conditions. Moreover, SpEAF is also essential for survival under conditions of DNA damage, while its deletion does not affect growth under environmental stress conditions. Our in vivo structure-function studies further demonstrate that while both the amino and carboxyl terminal domains of SpEAF possess the potential to activate transcription, only the amino terminal domain of SpEAF is involved in interaction with the S. pombe ELL protein. The carboxyl-terminus of SpEAF is required for rescue of the growth defect under normal and DNA damaging conditions that is associated with the absence of SpEAF. Using bioinformatics and circular dichroism spectroscopy, we show that the carboxyl-terminus of SpEAF has a disordered conformation. Furthermore, addition of trifluoroethanol triggered its transition from a disordered to α-helical conformation. Taken together, the results presented here identify novel structural and functional features of SpEAF protein, providing insights into how EAF proteins may enforce transcriptional control of gene expression.
Collapse
Affiliation(s)
- Preeti Dabas
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India
| | - Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India
| | - Mary Ekka
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Opp. Sukhdev Vihar Bus Depot, New Delhi, Delhi 110025, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India.
| |
Collapse
|
8
|
Cheeseman M, Chessum NEA, Rye CS, Pasqua AE, Tucker M, Wilding B, Evans LE, Lepri S, Richards M, Sharp SY, Ali S, Rowlands M, O’Fee L, Miah A, Hayes A, Henley AT, Powers M, te Poele R, De Billy E, Pellegrino L, Raynaud F, Burke R, van Montfort RLM, Eccles SA, Workman P, Jones K. Discovery of a Chemical Probe Bisamide (CCT251236): An Orally Bioavailable Efficacious Pirin Ligand from a Heat Shock Transcription Factor 1 (HSF1) Phenotypic Screen. J Med Chem 2017; 60:180-201. [PMID: 28004573 PMCID: PMC6014687 DOI: 10.1021/acs.jmedchem.6b01055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 12/20/2022]
Abstract
Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased phenotypic screen to detect inhibitors of the HSF1 stress pathway. The chemical probe is orally bioavailable and displays efficacy in a human ovarian carcinoma xenograft model. By developing cell-based SAR and using chemical proteomics, we identified pirin as a high affinity molecular target, which was confirmed by SPR and crystallography.
Collapse
Affiliation(s)
- Matthew
D. Cheeseman
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Nicola E. A. Chessum
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Carl S. Rye
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - A. Elisa Pasqua
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Michael
J. Tucker
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Birgit Wilding
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lindsay E. Evans
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Susan Lepri
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Meirion Richards
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Swee Y. Sharp
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Salyha Ali
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
- Division
of Structural Biology at The Institute of
Cancer Research, London SW7 3RP, United Kingdom
| | - Martin Rowlands
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lisa O’Fee
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Asadh Miah
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Angela Hayes
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Alan T. Henley
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Marissa Powers
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Robert te Poele
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Emmanuel De Billy
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Loredana Pellegrino
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Florence Raynaud
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rob L. M. van Montfort
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
- Division
of Structural Biology at The Institute of
Cancer Research, London SW7 3RP, United Kingdom
| | - Suzanne A. Eccles
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Keith Jones
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| |
Collapse
|
9
|
Jungk C, Mock A, Exner J, Geisenberger C, Warta R, Capper D, Abdollahi A, Friauf S, Lahrmann B, Grabe N, Beckhove P, von Deimling A, Unterberg A, Herold-Mende C. Spatial transcriptome analysis reveals Notch pathway-associated prognostic markers in IDH1 wild-type glioblastoma involving the subventricular zone. BMC Med 2016; 14:170. [PMID: 27782828 PMCID: PMC5080721 DOI: 10.1186/s12916-016-0710-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/01/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The spatial relationship of glioblastoma (GBM) to the subventricular zone (SVZ) is associated with inferior patient survival. However, the underlying molecular phenotype is largely unknown. We interrogated an SVZ-dependent transcriptome and potential location-specific prognostic markers. METHODS mRNA microarray data of a discovery set (n = 36 GBMs) were analyzed for SVZ-dependent gene expression and process networks using the MetaCore™ workflow. Differential gene expression was confirmed by qPCR in a validation set of 142 IDH1 wild-type GBMs that was also used for survival analysis. RESULTS Microarray analysis revealed a transcriptome distinctive of SVZ+ GBM that was enriched for genes associated with Notch signaling. No overlap was found to The Cancer Genome Atlas's molecular subtypes. Independent validation of SVZ-dependent expression confirmed four genes with simultaneous prognostic impact: overexpression of HES4 (p = 0.034; HR 1.55) and DLL3 (p = 0.017; HR 1.61) predicted inferior, and overexpression of NTRK2 (p = 0.049; HR 0.66) and PIR (p = 0.025; HR 0.62) superior overall survival (OS). Additionally, overexpression of DLL3 was predictive of shorter progression-free survival (PFS) (p = 0.043; HR 1.64). Multivariate analysis revealed overexpression of HES4 to be independently associated with inferior OS (p = 0.033; HR 2.03), and overexpression of DLL3 with inferior PFS (p = 0.046; HR 1.65). CONCLUSIONS We identified four genes with SVZ-dependent expression and prognostic significance, among those HES4 and DLL3 as part of Notch signaling, suggesting further evaluation of location-tailored targeted therapies.
Collapse
Affiliation(s)
- Christine Jungk
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Andreas Mock
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Janina Exner
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christoph Geisenberger
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Heidelberg University Hospital; CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amir Abdollahi
- Department of Radiation Oncology, Heidelberg University Hospital; Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sara Friauf
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Bernd Lahrmann
- Hamamatsu Tissue and Imaging Analysis Center, University of Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Hamamatsu Tissue and Imaging Analysis Center, University of Heidelberg, Heidelberg, Germany
| | - Philipp Beckhove
- Division of Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Regensburg Center for Interventional Immunology (RCI), University Hospital, Regensburg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital; CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Sharma N. Regulation of RNA polymerase II-mediated transcriptional elongation: Implications in human disease. IUBMB Life 2016; 68:709-16. [DOI: 10.1002/iub.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University; Dwarka New Delhi 110078 India
| |
Collapse
|
11
|
EAF2 mediates germinal centre B-cell apoptosis to suppress excessive immune responses and prevent autoimmunity. Nat Commun 2016; 7:10836. [PMID: 26935903 PMCID: PMC4782062 DOI: 10.1038/ncomms10836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/25/2016] [Indexed: 01/03/2023] Open
Abstract
Regulated apoptosis of germinal centre (GC) B cells is critical for normal humoral immune responses. ELL-associated factor 2 (EAF2) regulates transcription elongation and has been shown to be an androgen-responsive potential tumour suppressor in prostate by inducing apoptosis. Here we show that EAF2 is selectively upregulated in GC B cells among various immune cell types and promotes apoptosis of GC B cells both in vitro and in vivo. EAF2 deficiency results in enlarged GCs and elevated antibody production during a T-dependent immune response. After immunization with type II collagen, mice lacking EAF2 produce high levels of collagen-specific autoantibodies and rapidly develop severe arthritis. Moreover, the mutant mice spontaneously produce anti-dsDNA, rheumatoid factor and anti-nuclear antibodies as they age. These results demonstrate that EAF2-mediated apoptosis in GC B cells limits excessive humoral immune responses and is important for maintaining self-tolerance.
Collapse
|
12
|
Wang D, Nguyen MM, Masoodi KZ, Singh P, Jing Y, O'Malley K, Dar JA, Dhir R, Wang Z. Splicing Factor Prp8 Interacts With NES(AR) and Regulates Androgen Receptor in Prostate Cancer Cells. Mol Endocrinol 2015; 29:1731-42. [PMID: 26371515 DOI: 10.1210/me.2015-1112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Androgen receptor (AR) plays a pivotal role in the development of primary as well as advanced castration-resistant prostate cancer. Previous work in our lab identified a novel nuclear export signal (NES) (NES(AR)) in AR ligand-binding domain essential for AR nucleocytoplasmic trafficking. By characterizing the localization of green fluorescence protein (GFP)-tagged NES(AR), we designed and executed a yeast mutagenesis screen and isolated 7 yeast mutants that failed to display the NES(AR) export function. One of those mutants was identified as the splicing factor pre-mRNA processing factor 8 (Prp8). We further showed that Prp8 could regulate NES(AR) function using short hairpin RNA knockdown of Prp8 coupled with a rapamycin export assay in mammalian cells and knockdown of Prp8 could induce nuclear accumulation of GFP-tagged AR in PC3 cells. Prp8 expression was decreased in castration-resistant LuCaP35 xenograft tumors as compared with androgen-sensitive xenografts. Laser capture microdissection and quantitative PCR showed Prp8 mRNA levels were decreased in human prostate cancer specimens with high Gleason scores. In prostate cancer cells, coimmunoprecipitation and deletion mutagenesis revealed a physical interaction between Prp8 and AR mainly mediated by NES(AR). Luciferase assay with prostate specific antigen promoter-driven reporter demonstrated that Prp8 regulated AR transcription activity in prostate cancer cells. Interestingly, Prp8 knockdown also increased polyubiquitination of endogenous AR. This may be 1 possible mechanism by which it modulates AR activity. These results show that Prp8 is a novel AR cofactor that interacts with NES(AR) and regulates AR function in prostate cancer cells.
Collapse
Affiliation(s)
- Dan Wang
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Minh M Nguyen
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Khalid Z Masoodi
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Prabhpreet Singh
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Yifeng Jing
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Katherine O'Malley
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Javid A Dar
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Rajiv Dhir
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Zhou Wang
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| |
Collapse
|