1
|
Omidian H, Wilson RL, Castejon AM. Recent Advances in Peptide-Loaded PLGA Nanocarriers for Drug Delivery and Regenerative Medicine. Pharmaceuticals (Basel) 2025; 18:127. [PMID: 39861188 PMCID: PMC11768227 DOI: 10.3390/ph18010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Peptide-loaded poly(lactide-co-glycolide) (PLGA) nanocarriers represent a transformative approach to addressing the challenges of peptide-based therapies. These systems offer solutions to peptide instability, enzymatic degradation, and limited bioavailability by providing controlled release, targeted delivery, and improved stability. The versatility of PLGA nanocarriers extends across therapeutic domains, including cancer therapy, neurodegenerative diseases, vaccine development, and regenerative medicine. Innovations in polymer chemistry, surface functionalization, and advanced manufacturing techniques, such as microfluidics and electrospraying, have further enhanced the efficacy and scalability of these systems. This review highlights the key physicochemical properties, preparation strategies, and proven benefits of peptide-loaded PLGA systems, emphasizing their role in sustained drug release, immune activation, and tissue regeneration. Despite remarkable progress, challenges such as production scalability, cost, and regulatory hurdles remain.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (A.M.C.)
| | | | | |
Collapse
|
2
|
Liu S, Guo H, Li D, Wang C. Immunologically effective biomaterials enhance immunotherapy of prostate cancer. J Mater Chem B 2024; 12:9821-9834. [PMID: 39239675 DOI: 10.1039/d3tb03044j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Prostate cancer (PCa) is one of the most common malignant neoplasms affecting the male population. The onset of the disease is insidious and often associated with severe consequences, such as bone metastases at the time of initial diagnosis. Once it advances to metastatic castration-resistant PCa (mCRPC), conventional treatment methods become ineffective. As research on the mechanism of tumor therapy advances, immunotherapy has been evolving rapidly. However, PCa is a solid tumor type that primarily faces the challenges of poor immunogenicity and inhibitory tumor microenvironment (TME). Fortunately, the extensive use of biomaterials has led to continuous advancement in PCa immunotherapy. These innovative materials aim to address intractable issues, such as immune escape and immune desert, to inhibit tumor progression and metastasis. This detailed review focuses on the regulation of different aspects of tumor immunity by immunologically effective biomaterials, including modulating adaptive immunity, innate immunity, and the immune microenvironment, to enhance the efficacy of PCa immunotherapy. In addition, this review provides a perspective on the future prospects of immunotherapeutic nanoplatforms based on biomaterials in the treatment of PCa.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Hui Guo
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Di Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Chunxi Wang
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| |
Collapse
|
3
|
Harris PE, Burkholz S, Herst CV, Rubsamen RM. Bioinformatic, Biochemical, and Immunological Mining of MHC Class I Restricted T Cell Epitopes for a Marburg Nucleoprotein Microparticle Vaccine. Vaccines (Basel) 2024; 12:322. [PMID: 38543955 PMCID: PMC10976095 DOI: 10.3390/vaccines12030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
The Marburg virus (MARV), the virus responsible for Marburg hemorrhagic fever (MHF), is considered a top-priority pathogen for vaccine development. Recent outbreaks in Equatorial Africa have highlighted the urgency of MARV because of its high fatality rate and historical concerns about potential weaponization. Currently, there are no licensed vaccines for MARV. Existing vaccine candidates rely on attenuated recombinant vesicular stomatitis virus carrying MARV glycoprotein (VSVΔG) or the chimpanzee replication-defective adenovirus 3 vector ChAd3-MARV. Although these platforms provide significant protection in animal models, they face challenges because of their limited thermal stability and the need for cold storage during deployment in resource-poor areas. An alternative approach involves using adjuvanted poly (lactic-co-glycolic acid) (PLGA) microparticles loaded with synthetic peptides representing MHC class I-restricted T cell epitopes. This vaccine platform has demonstrated effectiveness in protecting against SARS-CoV-2 and EBoV disease in animal models and has the advantage of not requiring cold storage and remaining stable at room temperature for over six months. This report outlines the design, manufacturing, and in vivo immunogenicity testing of PLGA microparticle human vaccines designed to prevent Marburg hemorrhagic fever.
Collapse
Affiliation(s)
- Paul E. Harris
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA
| | | | | | - Reid M. Rubsamen
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA
- Cleveland Medical Center, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Fu D, Zhang X, Zhou Y, Hu S. A novel prognostic signature and therapy guidance for hepatocellular carcinoma based on STEAP family. BMC Med Genomics 2024; 17:16. [PMID: 38191397 PMCID: PMC10775544 DOI: 10.1186/s12920-023-01789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The six-transmembrane epithelial antigen of prostate (STEAP) family members are known to be involved in various tumor-related biological processes and showed its huge potential role in tumor immunotherapy. METHODS Biological differences were investigated through Gene set enrichment analysis (GSEA) and tumor microenvironment analysis by CIBERSORT. Tumor mutation burden (TMB), immunotherapy response and chemotherapeutic drugs sensitivity were estimated in R. RESULTS We established a prognostic signature with the formula: risk score = STEAP1 × 0.3994 + STEAP4 × (- 0.7596), which had a favorable concordance with the prediction. The high-risk group were enriched in cell cycle and RNA and protein synthesis related pathways, while the low-risk group were enriched in complement and metabolic related pathways. And the risk score was significantly correlated with immune cell infiltration. Most notably, the patients in the low-risk group were characterized with increased TMB and decreased tumor immune dysfunction and exclusion (TIDE) score, indicating that these patients showed better immune checkpoint blockade response. Meanwhile, we found the patients with high-risk were more sensitive to some drugs related to cell cycle and apoptosis. CONCLUSIONS The novel signature based on STEAPs may be effective indicators for predicting prognosis, and provides corresponding clinical treatment recommendations for HCC patients based on this classification.
Collapse
Affiliation(s)
- Dongxue Fu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xian Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.1 South Baixiang Street, Ouhai District, Wenzhou, Zhejiang, 325000, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.1 South Baixiang Street, Ouhai District, Wenzhou, Zhejiang, 325000, China
| | - Shanshan Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.1 South Baixiang Street, Ouhai District, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
5
|
Ellis AA, Geary SM, Salem AK. Heterologous prime-boost vaccine using antigen-loaded microparticles and adenovirus (encoding antigen) enhances cellular immune responses and antitumor activity. Int J Pharm 2023; 638:122932. [PMID: 37031810 DOI: 10.1016/j.ijpharm.2023.122932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/11/2023]
Abstract
Heterologous prime-boost vaccines have the potential to promote higher immune responses than homologous prime-boost vaccines and were used in this murine study to investigate the effect on the magnitude of the cellular (and humoral) antigen-specific immune responses and antitumor efficacy when a microparticle formulation (prime) is combined with an adenoviral vaccine (boost). Specifically, the prime comprised chick egg ovalbumin (OVA; 25 µg/dose), used here as a model tumor antigen (TA), encapsulated in microparticles (∼700 nm diameter) made from the biodegradable polymer, 50:50 poly(lactic-co-glycolic acid) (PLGA); while attenuated adenovirus (type 5) encoding OVA (Ad5OVA; 108 PFU/dose) was employed as the boost. The ability of OVA-loaded microparticles to enhance OVA-specific antibody responses, OVA-specific CD3 + CD8 + T cell responses and antitumor activity (i.e., protection against OVA-expressing tumor-challenge) to the heterologous prime-boost vaccine was investigated; and it was found that this prime-boost combination could significantly enhance OVA-specific cellular responses compared to all other vaccination groups and was the only group to confer a significant survival advantage over the unvaccinated group (naïve) in a prophylactic animal tumor model. This finding illustrates the potential for combining TA-loaded PLGA-based microparticles with other vaccine formats to improve tumor-specific cellular immune responses.
Collapse
Affiliation(s)
- Alexis A Ellis
- 180 S Grand Avenue, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sean M Geary
- 180 S Grand Avenue, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.
| | - Aliasger K Salem
- 180 S Grand Avenue, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
6
|
Horvath D, Basler M. PLGA Particles in Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15020615. [PMID: 36839937 PMCID: PMC9965784 DOI: 10.3390/pharmaceutics15020615] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are a widely used and extensively studied drug delivery system. The favorable properties of PLGA such as good bioavailability, controlled release, and an excellent safety profile due to the biodegradable polymer backbone qualified PLGA particles for approval by the authorities for the application as a drug delivery platform in humas. In recent years, immunotherapy has been established as a potent treatment option for a variety of diseases. However, immunomodulating drugs rely on targeted delivery to specific immune cell subsets and are often rapidly eliminated from the system. Loading of PLGA particles with drugs for immunotherapy can protect the therapeutic compounds from premature degradation, direct the drug delivery to specific tissues or cells, and ensure sustained and controlled drug release. These properties present PLGA particles as an ideal platform for immunotherapy. Here, we review recent advances of particulate PLGA delivery systems in the application for immunotherapy in the fields of allergy, autoimmunity, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
- Correspondence:
| |
Collapse
|
7
|
Jin Y, Lorvik KB, Jin Y, Beck C, Sike A, Persiconi I, Kvaløy E, Saatcioglu F, Dunn C, Kyte JA. Development of STEAP1 targeting chimeric antigen receptor for adoptive cell therapy against cancer. Mol Ther Oncolytics 2022; 26:189-206. [PMID: 35860008 PMCID: PMC9278049 DOI: 10.1016/j.omto.2022.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/17/2022] [Indexed: 10/29/2022] Open
Abstract
Chimeric antigen receptors (CARs) that retarget T cells against CD19 show clinical efficacy against B cell malignancies. Here, we describe the development of a CAR against the six-transmembrane epithelial antigen of prostate-1 (STEAP1), which is expressed in ∼90% of prostate cancers, and subgroups of other malignancies. STEAP1 is an attractive target, as it is associated with tumor invasiveness and progression and only expressed at low levels in normal tissues, apart from the non-vital prostate gland. We identified the antibody coding sequences from a hybridoma and designed a CAR that is efficiently expressed in primary T cells. The T cells acquired the desired anti-STEAP1 specificity, with a polyfunctional response including production of multiple cytokines, proliferation, and the killing of cancer cells. The response was observed for both CD4+ and CD8+ T cells, and against all STEAP1+ target cell lines tested. We evaluated the in vivo CAR T activity in both subcutaneous and metastatic xenograft mouse models of prostate cancer. Here, the CAR T cells infiltrated tumors and significantly inhibited tumor growth and extended survival in a STEAP1-dependent manner. We conclude that the STEAP1 CAR exhibits potent in vitro and in vivo functionality and can be further developed toward potential clinical use.
Collapse
Affiliation(s)
- Yixin Jin
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Kristina Berg Lorvik
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Carole Beck
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Adam Sike
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Irene Persiconi
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Emilie Kvaløy
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Fahri Saatcioglu
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Claire Dunn
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| | - Jon Amund Kyte
- Department of Cancer Immunology, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway.,Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Zhang N, Lin J, Chin JS, Wiraja C, Xu C, McGrouther DA, Chew SY. Delivery of Wnt inhibitor WIF1 via engineered polymeric microspheres promotes nerve regeneration after sciatic nerve crush. J Tissue Eng 2022; 13:20417314221087417. [PMID: 35422984 PMCID: PMC9003641 DOI: 10.1177/20417314221087417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/27/2022] [Indexed: 01/09/2023] Open
Abstract
Injuries within the peripheral nervous system (PNS) lead to sensory and motor deficits, as well as neuropathic pain, which strongly impair the life quality of patients. Although most current PNS injury treatment approaches focus on using growth factors/small molecules to stimulate the regrowth of the injured nerves, these methods neglect another important factor that strongly hinders axon regeneration-the presence of axonal inhibitory molecules. Therefore, this work sought to explore the potential of pathway inhibition in promoting sciatic nerve regeneration. Additionally, the therapeutic window for using pathway inhibitors was uncovered so as to achieve the desired regeneration outcomes. Specifically, we explored the role of Wnt signaling inhibition on PNS regeneration by delivering Wnt inhibitors, sFRP2 and WIF1, after sciatic nerve transection and sciatic nerve crush injuries. Our results demonstrate that WIF1 promoted nerve regeneration (p < 0.05) after sciatic nerve crush injury. More importantly, we revealed the therapeutic window for the treatment of Wnt inhibitors, which is 1 week post sciatic nerve crush when the non-canonical receptor tyrosine kinase (Ryk) is significantly upregulated.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Junquan Lin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Duncan Angus McGrouther
- Department of Hand and Reconstructive Microsurgery, Singapore General Hospital, Singapore, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Koerner J, Horvath D, Herrmann VL, MacKerracher A, Gander B, Yagita H, Rohayem J, Groettrup M. PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy. Nat Commun 2021; 12:2935. [PMID: 34006895 PMCID: PMC8131648 DOI: 10.1038/s41467-021-23244-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
With emerging supremacy, cancer immunotherapy has evolved as a promising therapeutic modality compared to conventional antitumor therapies. Cancer immunotherapy composed of biodegradable poly(lactic-co-glycolic acid) (PLGA) particles containing antigens and toll-like receptor ligands induces vigorous antitumor immune responses in vivo. Here, we demonstrate the supreme adjuvant effect of the recently developed and pharmaceutically defined double-stranded (ds)RNA adjuvant Riboxxim especially when incorporated into PLGA particles. Encapsulation of Riboxxim together with antigens potently activates murine and human dendritic cells, and elevated tumor-specific CD8+ T cell responses are superior to those obtained using classical dsRNA analogues. This PLGA particle vaccine affords primary tumor growth retardation, prevention of metastases, and prolonged survival in preclinical tumor models. Its advantageous therapeutic potency was further enhanced by immune checkpoint blockade that resulted in reinvigoration of cytotoxic T lymphocyte responses and tumor ablation. Thus, combining immune checkpoint blockade with immunotherapy based on Riboxxim-bearing PLGA particles strongly increases its efficacy.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cells, Cultured
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- Drug Synergism
- Female
- Humans
- Immune Checkpoint Inhibitors/administration & dosage
- Immune Checkpoint Inhibitors/immunology
- Immunotherapy/methods
- Ligands
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron, Scanning
- Nanoparticles/chemistry
- Nanoparticles/ultrastructure
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/therapy
- Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
- Polylactic Acid-Polyglycolic Acid Copolymer/immunology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- THP-1 Cells
- Toll-Like Receptor 3/immunology
- Toll-Like Receptor 3/metabolism
- Treatment Outcome
- Mice
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Valerie L Herrmann
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Boehringer Ingelheim Pharma, Cancer Immunology + Immune Modulation, Biberach/ Riß, Germany
| | - Anna MacKerracher
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Bruno Gander
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Jacques Rohayem
- Riboxx GmbH, BioInnovationszentrum, Dresden, Germany
- Institute of Virology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
- Biotechnology Institute Thurgau at the University of Konstanz (BITg), Kreuzlingen, Switzerland.
| |
Collapse
|
10
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
11
|
Oosterheert W, Gros P. Cryo-electron microscopy structure and potential enzymatic function of human six-transmembrane epithelial antigen of the prostate 1 (STEAP1). J Biol Chem 2020; 295:9502-9512. [PMID: 32409586 PMCID: PMC7363144 DOI: 10.1074/jbc.ra120.013690] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Indexed: 11/28/2022] Open
Abstract
Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) is an integral membrane protein that is highly up-regulated on the cell surface of several human cancers, making it a promising therapeutic target to manage these diseases. It shares sequence homology with three enzymes (STEAP2–STEAP4) that catalyze the NADPH-dependent reduction of iron(III). However, STEAP1 lacks an intracellular NADPH-binding domain and does not exhibit cellular ferric reductase activity. Thus, both the molecular function of STEAP1 and its role in cancer progression remain elusive. Here, we present a ∼3.0-Å cryo-EM structure of trimeric human STEAP1 bound to three antigen-binding fragments (Fabs) of the clinically used antibody mAb120.545. The structure revealed that STEAP1 adopts a reductase-like conformation and interacts with the Fabs through its extracellular helices. Enzymatic assays in human cells revealed that STEAP1 promotes iron(III) reduction when fused to the intracellular NADPH-binding domain of its family member STEAP4, suggesting that STEAP1 functions as a ferric reductase in STEAP heterotrimers. Our work provides a foundation for deciphering the molecular mechanisms of STEAP1 and may be useful in the design of new therapeutic strategies to target STEAP1 in cancer.
Collapse
Affiliation(s)
- Wout Oosterheert
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Huang Y, Zeng J. Recent development and applications of nanomaterials for cancer
immunotherapy. NANOTECHNOLOGY REVIEWS 2020; 9:367-384. [DOI: 10.1515/ntrev-2020-0027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Immunotherapy, which utilizes the patient’s own immune system to fight against
cancer, further results in durable antitumor responses and reduces metastasis and
recurrence, has become one of the most effective and important cancer therapies along
with surgery, radiotherapy, and chemotherapy. Nanomaterials with the advantages of
large specific surface, delivery function, and controllable surface chemistry are
used to deliver antigens or adjuvants, or both, help to boost immune responses with
the imaging function or just act as adjuvants themselves and modulate tumor
microenvironment (TME). In this review, recent development and applications of
nanomaterials for cancer immunotherapy including delivery systems based on
nanomaterials, uniting imaging, self-adjuvants, targeting functions, artificial
antigen presenting cells, and TME modulation are focused and discussed.
Collapse
Affiliation(s)
- Yao Huang
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005 , China
| | - Jinhua Zeng
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005 , China
| |
Collapse
|
13
|
Chen Q, Bao Y, Burner D, Kaushal S, Zhang Y, Mendoza T, Bouvet M, Ozkan C, Minev B, Ma W. Tumor growth inhibition by mSTEAP peptide nanovaccine inducing augmented CD8 + T cell immune responses. Drug Deliv Transl Res 2020; 9:1095-1105. [PMID: 31228097 DOI: 10.1007/s13346-019-00652-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Poly(lactic-co-glycolic) acid (PLGA) has been successfully used in drug delivery and biomaterial applications, but very little attention has been directed towards the potential in vivo effects of peptide-loaded PLGA nanoparticles (NPs), specifically the potency of intravenous (IV) STEAP peptide-loaded PLGA-NP (nanovaccine) dosing and whether STEAP-specific CD8+ T cells directly play a key role in tumor inhibition. To address these concerns, syngeneic prostate cancer mouse models were established and treated with either mSTEAP peptide emulsified in incomplete Freund's adjuvant (IFA) via subcutaneous (SC) injection or mSTEAP peptide nanovaccine containing the same amount of peptide via IV or SC injection. Meanwhile, mice were treated with either CD8b mAb followed by nanovaccine treatment, free mSTEAP peptide, or empty PLGA-NPs. Immune responses in these mice were examined using cytotoxicity assays at 14 days after treatment. Tumor size and survival in various treatment groups were measured and monitored. The results demonstrated that mSTEAP peptide nanovaccine resulted in tumor inhibition by eliciting a significantly stronger CD8+ T cell immune response when compared with the controls. Moreover, the survival periods of mice treated with mSTEAP nanovaccine were significantly longer than those of mice treated with mSTEAP peptide emulsified in IFA or the treatment controls. Additionally, it was observed that the peptide nanovaccine was mainly distributed in the mouse liver and lungs after IV injection. These findings suggest that the peptide nanovaccine is a promising immunotherapeutic approach and offers a new opportunity for prostate cancer therapies.
Collapse
Affiliation(s)
- Qiuqiang Chen
- Key Laboratory for Translational Medicine, The First Affiliated Hospital of Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
- Department of Clinical Medicine, Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
| | - Ying Bao
- Key Laboratory for Translational Medicine, The First Affiliated Hospital of Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
| | - Danielle Burner
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sharmeela Kaushal
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yu Zhang
- Materials Science and Engineering Program, Department of Mechanical Engineering, University of California Riverside, Riverside, CA, 92521, USA
- Mechanical and Automotive Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Theresa Mendoza
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael Bouvet
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cengiz Ozkan
- Materials Science and Engineering Program, Department of Mechanical Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Boris Minev
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Calidi Biotherapeutics, San Diego, CA, 92121, USA.
| | - Wenxue Ma
- Department of Clinical Medicine, Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China.
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
14
|
|
15
|
Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide- co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol 2019; 10:707. [PMID: 31024545 PMCID: PMC6460768 DOI: 10.3389/fimmu.2019.00707] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
With emerging success in fighting off cancer, chronic infections, and autoimmune diseases, immunotherapy has become a promising therapeutic approach compared to conventional therapies such as surgery, chemotherapy, radiation therapy, or immunosuppressive medication. Despite the advancement of monoclonal antibody therapy against immune checkpoints, the development of safe and efficient cancer vaccine formulations still remains a pressing medical need. Anti-tumor immunotherapy requires the induction of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses which recognize and specifically destroy tumor cells. Due to the crucial role of dendritic cells (DCs) in initiating anti-tumor immunity, targeting tumor antigens to DCs has become auspicious in modern vaccine research. Over the last two decades, micron- or nanometer-sized particulate delivery systems encapsulating tumor antigens and immunostimulatory molecules into biodegradable polymers have shown great promise for the induction of potent, specific and long-lasting anti-tumor responses in vivo. Enhanced vaccine efficiency of the polymeric micro/nanoparticles has been attributed to controlled and continuous release of encapsulated antigens, efficient targeting of antigen presenting cells (APCs) such as DCs and subsequent induction of CTL immunity. Poly (D, L-lactide-co-glycolide) (PLGA), as one of these polymers, has been extensively studied for the design and development of particulate antigen delivery systems in cancer therapy. This review provides an overview of the current state of research on the application of PLGA microspheres (PLGA MS) as anti-tumor cancer vaccines in activating and potentiating immune responses attempting to highlight their potential in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
16
|
Li J, Basler M, Alvarez G, Brunner T, Kirk CJ, Groettrup M. Immunoproteasome inhibition prevents chronic antibody-mediated allograft rejection in renal transplantation. Kidney Int 2018; 93:670-680. [DOI: 10.1016/j.kint.2017.09.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/13/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
|