1
|
Li Y, Li J, Zhou L, Wang Z, Jin L, Cao J, Xie H, Wang L. Aberrant activation of TGF-β/ROCK1 enhances stemness during prostatic stromal hyperplasia. Cell Commun Signal 2024; 22:257. [PMID: 38711089 PMCID: PMC11071275 DOI: 10.1186/s12964-024-01644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a multifactorial disease in which abnormal growth factor activation and embryonic reawakening are considered important factors. Here we demonstrated that the aberrant activation of transforming growth factor β (TGF-β)/Rho kinase 1 (ROCK1) increased the stemness of BPH tissue by recruiting mesenchymal stem cells (MSCs), indicating the important role of embryonic reawakening in BPH. When TGF-β/ROCK1 is abnormally activated, MSCs are recruited and differentiate into fibroblasts/myofibroblasts, leading to prostate stromal hyperplasia. Further research showed that inhibition of ROCK1 activation suppressed MSC migration and their potential for stromal differentiation. Collectively, our findings suggest that abnormal activation of TGF-β/ROCK1 regulates stem cell lineage specificity, and the small molecule inhibitor GSK269962A could target ROCK1 and may be a potential treatment for BPH.
Collapse
Affiliation(s)
- Youyou Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jiaren Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Liang Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhenxing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ling Jin
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hui Xie
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Mori JO, Elhussin I, Brennen WN, Graham MK, Lotan TL, Yates CC, De Marzo AM, Denmeade SR, Yegnasubramanian S, Nelson WG, Denis GV, Platz EA, Meeker AK, Heaphy CM. Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate cancer. Nat Rev Urol 2024; 21:258-273. [PMID: 37907729 PMCID: PMC11058122 DOI: 10.1038/s41585-023-00827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
The stromal component of the tumour microenvironment in primary and metastatic prostate cancer can influence and promote disease progression. Within the prostatic stroma, fibroblasts are one of the most prevalent cell types associated with precancerous and cancerous lesions; they have a vital role in the structural composition, organization and integrity of the extracellular matrix. Fibroblasts within the tumour microenvironment can undergo cellular senescence, which is a stable arrest of cell growth and a phenomenon that is emerging as a recognized hallmark of cancer. Supporting the idea that cellular senescence has a pro-tumorigenic role, a subset of senescent cells exhibits a senescence-associated secretory phenotype (SASP), which, along with increased inflammation, can promote prostate cancer cell growth and survival. These cellular characteristics make targeting senescent cells and/or modulating SASP attractive as a potential preventive or therapeutic option for prostate cancer.
Collapse
Affiliation(s)
- Joakin O Mori
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Isra Elhussin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mindy K Graham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clayton C Yates
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G Nelson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald V Denis
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elizabeth A Platz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Heaphy
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Pacheco-Torres J, Sharma RK, Mironchik Y, Wildes F, Brennen WN, Artemov D, Krishnamachary B, Bhujwalla ZM. Prostate fibroblasts and prostate cancer associated fibroblasts exhibit different metabolic, matrix degradation and PD-L1 expression responses to hypoxia. Front Mol Biosci 2024; 11:1354076. [PMID: 38584702 PMCID: PMC10995317 DOI: 10.3389/fmolb.2024.1354076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/06/2024] [Indexed: 04/09/2024] Open
Abstract
Fibroblasts are versatile cells that play a major role in wound healing by synthesizing and remodeling the extracellular matrix (ECM). In cancers, fibroblasts play an expanded role in tumor progression and dissemination, immunosuppression, and metabolic support of cancer cells. In prostate cancer (PCa), fibroblasts have been shown to induce growth and increase metastatic potential. To further understand differences in the functions of human PCa associated fibroblasts (PCAFs) compared to normal prostate fibroblasts (PFs), we investigated the metabolic profile and ECM degradation characteristics of PFs and PCAFs using a magnetic resonance imaging and spectroscopy compatible intact cell perfusion assay. To further understand how PFs and PCAFs respond to hypoxic tumor microenvironments that are often observed in PCa, we characterized the effects of hypoxia on PF and PCAF metabolism, invasion and PD-L1 expression. We found that under normoxia, PCAFs displayed decreased ECM degradation compared to PFs. Under hypoxia, ECM degradation by PFs increased, whereas PCAFs exhibited decreased ECM degradation. Under both normoxia and hypoxia, PCAFs and PFs showed significantly different metabolic profiles. PD-L1 expression was intrinsically higher in PCAFs compared to PFs. Under hypoxia, PD-L1 expression increased in PCAFs but not in PFs. Our data suggest that PCAFs may not directly induce ECM degradation to assist in tumor dissemination, but may instead create an immune suppressive tumor microenvironment that further increases under hypoxic conditions. Our data identify the intrinsic metabolic, ECM degradation and PD-L1 expression differences between PCAFs and PFs under normoxia and hypoxia that may provide novel targets in PCa treatment.
Collapse
Affiliation(s)
- Jesus Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC, Madrid, Spain
| | - Raj Kumar Sharma
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - W. Nathaniel Brennen
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Pruitt HC, Guan Y, Liu H, Carey AE, Brennen WN, Lu J, Joshu C, Weeraratna A, Lotan TL, Karin Eisinger-Mathason TS, Gerecht S. Collagen VI deposition mediates stromal T cell trapping through inhibition of T cell motility in the prostate tumor microenvironment. Matrix Biol 2023; 121:90-104. [PMID: 37331435 DOI: 10.1016/j.matbio.2023.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/11/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The tumor extracellular matrix (ECM) is a barrier to anti-tumor immunity in solid tumors by disrupting T cell-tumor cell interaction underlying the need for elucidating mechanisms by which specific ECM proteins impact T cell motility and activity within the desmoplastic stroma of solid tumors. Here, we show that Collagen VI (Col VI) deposition correlates with stromal T cell density in human prostate cancer specimens. Furthermore, motility of CD4+ T cells is completely ablated on purified Col VI surfaces when compared with Fibronectin and Collagen I. Importantly, T cells adhered to Col VI surfaces displayed reduced cell spreading and fibrillar actin, indicating a reduction in traction force generation accompanied by a decrease in integrin β1 clustering. We found that CD4+ T cells largely lack expression of integrin α1 in the prostate tumor microenvironment and that blockade of α1β1 integrin heterodimers inhibited CD8+ T cell motility on prostate fibroblast-derived matrix, while re-expression of ITGA1 improved motility. Taken together, we show that the Col VI-rich microenvironment in prostate cancer reduces the motility of CD4+ T cells lacking integrin α1, leading to their accumulation in the stroma, thus putatively inhibiting anti-tumor T cell responses.
Collapse
Affiliation(s)
- Hawley C Pruitt
- Institute for NanoBioTechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ya Guan
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Hudson Liu
- Institute for NanoBioTechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - W Nathaniel Brennen
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Corrine Joshu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ashani Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T S Karin Eisinger-Mathason
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon Gerecht
- Institute for NanoBioTechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Early Cell Cultures from Prostate Cancer Tissue Express Tissue Specific Epithelial and Cancer Markers. Int J Mol Sci 2023; 24:ijms24032830. [PMID: 36769153 PMCID: PMC9917781 DOI: 10.3390/ijms24032830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is a widespread oncological disease that proceeds in the indolent form in most patients. However, in some cases, the indolent form can transform into aggressive metastatic incurable cancer. The most important task of PCa diagnostics is to search for early markers that can be used for predicting the transition of indolent cancer into its aggressive form. Currently, there are two effective preclinical models to study PCa pathogenesis: patients derived xenografts (PDXs) and patients derived organoids (PDOs). Both models have limitations that restrict their use in research. In this work, we investigated the ability of the primary 2D prostate cell cultures (PCCs) from PCa patients to express epithelial and cancer markers. Early PCCs were formed by epithelial cells that were progressively replaced with the fibroblast-like cells. Early PCCs contained tissue-specific stem cells that could grow in a 3D culture and form PDOs similar to those produced from the prostate tissue. Early PCCs and PDOs derived from the tissues of PCa patients expressed prostate basal and luminal epithelial markers, as well as cancer markers AMACR, TMPRSS2-ERG, and EZH2, the latter being a promising candidate to mark the transition from the indolent to aggressive PCa. We also identified various TMPRSS2-ERG fusion transcripts in PCCs and PDOs, including new chimeric variants resulting from the intra- and interchromosomal translocations. The results suggest that early PCCs derived from cancerous and normal prostate tissues sustain the phenotype of prostate cells and can be used as a preclinical model to study the pathogenesis of PCa.
Collapse
|
6
|
Cun Y, Jin Y, Wu D, Zhou L, Zhang C, Zhang S, Yang X, Zuhong Wang, Zhang P. Exosome in Crosstalk between Inflammation and Angiogenesis: A Potential Therapeutic Strategy for Stroke. Mediators Inflamm 2022; 2022:7006281. [PMID: 36052309 PMCID: PMC9427301 DOI: 10.1155/2022/7006281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The endothelial dysfunction, associated with inflammation and vascular permeability, remains the key event in the pathogenesis of cerebral ischemic stroke. Angiogenesis is essential for neuroprotection and neural repair following stroke. The neuroinflammatory reaction plays a vital role in stroke, and inhibition of inflammation contributes to establishing an appropriate external environment for angiogenesis. Exosomes are the heterogeneous population of extracellular vesicles which play critical roles in intercellular communication through transmitting various proteins and nucleic acids to nearby and distant recipient cells by body fluids and circulation. Recent reports have shown that exosomal therapy is a valuable and potential treatment strategy for stroke. In this review, we discussed the exosomes in complex interaction mechanisms of angiogenesis and inflammation following stroke as well as the challenges of exosomal studies such as secretion, uptake, modification, and application.
Collapse
Affiliation(s)
- Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Xicheng Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Zuhong Wang
- Acupuncture Department, Kunming Traditional Chinese Medicine Hospital, Kunming 650500, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| |
Collapse
|
7
|
Szydlak R. Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells. World J Stem Cells 2021; 13:619-631. [PMID: 34249231 PMCID: PMC8246245 DOI: 10.4252/wjsc.v13.i6.619] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a population of primary and non-specialized cells, which can be isolated from various tissues. Currently, MSCs are key players in cellular therapy and regenerative medicine. However, the possibility of using MSCs in the treatment of many diseases needs to be preceded, though, by in-depth analysis of their properties, especially by determining the mechanism of tissue homing as well as the mechanism, due to which cells contribute to tissue regeneration. This review is intended to present information on recent findings regarding the mechanism of recruitment and tissue homing by MSCs and discuss current hypotheses for how MSCs can reach target tissues.
Collapse
Affiliation(s)
- Renata Szydlak
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-034, Poland
| |
Collapse
|
8
|
Expansion and characterization of bone marrow derived human mesenchymal stromal cells in serum-free conditions. Sci Rep 2021; 11:3403. [PMID: 33564114 PMCID: PMC7873235 DOI: 10.1038/s41598-021-83088-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are gaining increasing importance in the field of regenerative medicine. Although therapeutic value of MSCs is now being established through many clinical trials, issues have been raised regarding their expansion as per regulatory guidelines. Fetal bovine serum usage in cell therapy poses difficulties due to its less-defined, highly variable composition and safety issues. Hence, there is a need for transition from serum-based to serum-free media (SFM). Since SFM are cell type-specific, a precise analysis of the properties of MSCs cultured in SFM is required to determine the most suitable one. Six different commercially available low serum/SFM with two different seeding densities were evaluated to explore their ability to support the growth and expansion of BM-MSCs and assess the characteristics of BM-MSCs cultured in these media. Except for one of the SFM, all other media tested supported the growth of BM-MSCs at a low seeding density. No significant differences were observed in the expression of MSC specific markers among the various media tested. In contrary, the population doubling time, cell yield, potency, colony-forming ability, differentiation potential, and immunosuppressive properties of MSCs varied with one another. We show that SFM tested supports the growth and expansion of BM-MSCs even at low seeding density and may serve as possible replacement for animal-derived serum.
Collapse
|
9
|
Brennen WN, J Thorek DL, Jiang W, Krueger TE, Antony L, Denmeade SR, Isaacs JT. Overcoming stromal barriers to immuno-oncological responses via fibroblast activation protein-targeted therapy. Immunotherapy 2020; 13:155-175. [PMID: 33148078 DOI: 10.2217/imt-2020-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tumor microenvironment contributes to disease progression through multiple mechanisms, including immune suppression mediated in part by fibroblast activation protein (FAP)-expressing cells. Herein, a review of FAP biology is presented, supplemented with primary data. This includes FAP expression in prostate cancer and activation of latent reservoirs of TGF-β and VEGF to produce a positive feedback loop. This collectively suggests a normal wound repair process subverted during cancer pathophysiology. There has been immense interest in targeting FAP for diagnostic, monitoring and therapeutic purposes. Until recently, this development has outpaced an understanding of the biology; impeding optimal translation into the clinic. A summary of these applications is provided with an emphasis on eliminating tumor-infiltrating FAP-positive cells to overcome stromal barriers to immuno-oncological responses.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel L J Thorek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63310, USA.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63310, USA
| | - Wen Jiang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Timothy E Krueger
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lizamma Antony
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Brennen WN, Isaacs JT. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat Rev Urol 2019; 15:703-715. [PMID: 30214054 DOI: 10.1038/s41585-018-0087-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The prostate is the only organ in a man that continues to grow with age. John McNeal proposed, 40 years ago, that this BPH is characterized by an age-related reinitiation of benign neoplastic growth selectively in developmentally abortive distal ducts within the prostate transition-periurethral zone (TPZ), owing to a reawakening of inductive stroma selectively within these zones. An innovative variant of this hypothesis is that, owing to its location, the TPZ is continuously exposed to urinary components and/or autoantigens, which produces an inflammatory TPZ microenvironment that promotes recruitment of bone marrow-derived mesenchymal stem cells (MSCs) and generates a paracrine-inductive stroma that reinitiates benign neoplastic nodular growth. In support of this hypothesis, MSCs infiltrate human BPH tissue and have the ability to stimulate epithelial stem cell growth. These results provide a framework for defining both the aetiology of BPH in ageing men and insights into new therapeutic approaches.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA.
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA. .,Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Hughes RM, Simons BW, Khan H, Miller R, Kugler V, Torquato S, Theodros D, Haffner MC, Lotan T, Huang J, Davicioni E, An SS, Riddle RC, Thorek DLJ, Garraway IP, Fertig EJ, Isaacs JT, Brennen WN, Park BH, Hurley PJ. Asporin Restricts Mesenchymal Stromal Cell Differentiation, Alters the Tumor Microenvironment, and Drives Metastatic Progression. Cancer Res 2019; 79:3636-3650. [PMID: 31123087 PMCID: PMC6734938 DOI: 10.1158/0008-5472.can-18-2931] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
Tumor progression to metastasis is not cancer cell autonomous, but rather involves the interplay of multiple cell types within the tumor microenvironment. Here we identify asporin (ASPN) as a novel, secreted mesenchymal stromal cell (MSC) factor in the tumor microenvironment that regulates metastatic development. MSCs expressed high levels of ASPN, which decreased following lineage differentiation. ASPN loss impaired MSC self-renewal and promoted terminal cell differentiation. Mechanistically, secreted ASPN bound to BMP-4 and restricted BMP-4-induced MSC differentiation prior to lineage commitment. ASPN expression was distinctly conserved between MSC and cancer-associated fibroblasts (CAF). ASPN expression in the tumor microenvironment broadly impacted multiple cell types. Prostate tumor allografts in ASPN-null mice had a reduced number of tumor-associated MSCs, fewer cancer stem cells, decreased tumor vasculature, and an increased percentage of infiltrating CD8+ T cells. ASPN-null mice also demonstrated a significant reduction in lung metastases compared with wild-type mice. These data establish a role for ASPN as a critical MSC factor that extensively affects the tumor microenvironment and induces metastatic progression. SIGNIFICANCE: These findings show that asporin regulates key properties of mesenchymal stromal cells, including self-renewal and multipotency, and asporin expression by reactive stromal cells alters the tumor microenvironment and promotes metastatic progression.
Collapse
Affiliation(s)
- Robert M Hughes
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Brian W Simons
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hamda Khan
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rebecca Miller
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Valentina Kugler
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Samantha Torquato
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Debebe Theodros
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michael C Haffner
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Tamara Lotan
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jessie Huang
- The Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elai Davicioni
- Genome Dx Biosciences, Inc., Vancouver, British Columbia, Canada
| | - Steven S An
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- The Whiting School of Engineering, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ryan C Riddle
- The Department of Orthopedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel L J Thorek
- The Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Isla P Garraway
- The Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Elana J Fertig
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - John T Isaacs
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - W Nathaniel Brennen
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ben H Park
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Whiting School of Engineering, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Paula J Hurley
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Functional Heterogeneity of Mouse Prostate Stromal Cells Revealed by Single-Cell RNA-Seq. iScience 2019; 13:328-338. [PMID: 30878879 PMCID: PMC6423355 DOI: 10.1016/j.isci.2019.02.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/23/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
We perform a single-cell RNA sequencing analysis to investigate the phenotypic and functional heterogeneity of the adult mouse prostate stromal cells. Our analysis identifies three major cell populations representing the smooth muscle cells and two types of fibroblast cells enriched by Sca-1 and CD90. The Sca-1+CD90+ fibroblast cells are in direct contact with the epithelial cells and express growth factors and genes associated with cell motility, developmental process, and androgen biosynthesis. This suggests that they may regulate epithelial cell survival and growth. The Sca-1+CD90-/low myofibroblast-like cells highly express genes associated with the extracellular matrix and cytokine-mediated signaling pathways, indicating a role in tissue repair and immune responses. The Sca-1+CD90-/low cells significantly suppress the capacity of the basal cells for bipotent differentiation in the prostate organoid assay. Collectively, we identify the surface markers enabling physical separation of stromal subpopulations and generate the gene expression profiles implying their cellular functions. scRNA-seq reveals three distinct mouse prostate stromal cell populations Sca-1+CD90+ cells produce growth factors mediating developmental process Sca-1+CD90-/low cells express genes mediating immune response and tissue repair Sca-1+CD90-/low cells robustly suppress bipotent differentiation of basal cells
Collapse
|
13
|
Krueger TE, Thorek DLJ, Meeker AK, Isaacs JT, Brennen WN. Tumor-infiltrating mesenchymal stem cells: Drivers of the immunosuppressive tumor microenvironment in prostate cancer? Prostate 2019; 79:320-330. [PMID: 30488530 PMCID: PMC6549513 DOI: 10.1002/pros.23738] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prostate cancer is characterized by T-cell exclusion, which is consistent with their poor responses to immunotherapy. In addition, T-cells restricted to the adjacent stroma and benign areas are characterized by anergic and immunosuppressive phenotypes. In order for immunotherapies to produce robust anti-tumor responses in prostate cancer, this exclusion barrier and immunosuppressive microenvironment must first be overcome. We have previously identified mesenchymal stem cells (MSCs) in primary and metastatic human prostate cancer tissue. METHODS An Opal Multiplex immunofluorescence assay based on CD73, CD90, and CD105 staining was used to identify triple-labeled MSCs in human prostate cancer tissue. T-cell suppression assays and flow cytometry were used to demonstrate the immunosuppressive potential of primary MSCs expanded from human bone marrow and prostate cancer tissue from independent donors. RESULTS Endogenous MSCs were confirmed to be present at sites of human prostate cancer. These prostate cancer-infiltrating MSCs suppress T-cell proliferation in a dose-dependent manner similar to their bone marrow-derived counterparts. Also similar to bone marrow-derived MSCs, prostate cancer-infiltrating MSCs upregulate expression of PD-L1 and PD-L2 on their cell surface in the presence of IFNγ and TNFα. CONCLUSION Prostate cancer-infiltrating MSCs suppress T-cell proliferation similar to canonical bone marrow-derived MSCs, which have well-documented immunosuppressive properties with numerous effects on both innate and adaptive immune system function. Thus, we hypothesize that selective depletion of MSCs infiltrating sites of prostate cancer should restore immunologic recognition and elimination of malignant cells via broad re-activation of cytotoxic pro-inflammatory pathways.
Collapse
Affiliation(s)
- Timothy E. Krueger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel L. J. Thorek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, Missouri
| | - Alan K. Meeker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland
| | - John T. Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - W. Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
14
|
Krueger TEG, Thorek DLJ, Denmeade SR, Isaacs JT, Brennen WN. Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise. Stem Cells Transl Med 2018; 7:651-663. [PMID: 30070053 PMCID: PMC6127224 DOI: 10.1002/sctm.18-0024] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
The development of mesenchymal stem cells (MSCs) as cell‐based drug delivery vectors for numerous clinical indications, including cancer, has significant promise. However, a considerable challenge for effective translation of these approaches is the limited tumor tropism and broad biodistribution observed using conventional MSCs, which raises concerns for toxicity to nontarget peripheral tissues (i.e., the bad). Consequently, there are a variety of synthetic engineering platforms in active development to improve tumor‐selective targeting via increased homing efficiency and/or specificity of drug activation, some of which are already being evaluated clinically (i.e., the good). Unfortunately, the lack of robust quantification and widespread adoption of standardized methodologies with high sensitivity and resolution has made accurate comparisons across studies difficult, which has significantly impeded progress (i.e., the ugly). Herein, we provide a concise review of active and passive MSC homing mechanisms and biodistribution postinfusion; in addition to in vivo cell tracking methodologies and strategies to enhance tumor targeting with a focus on MSC‐based drug delivery strategies for cancer therapy. Stem Cells Translational Medicine2018;1–13
Collapse
Affiliation(s)
- Timothy E G Krueger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel L J Thorek
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA
| | - Samuel R Denmeade
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John T Isaacs
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - W Nathaniel Brennen
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Ojalill M, Rappu P, Siljamäki E, Taimen P, Boström P, Heino J. The composition of prostate core matrisome in vivo and in vitro unveiled by mass spectrometric analysis. Prostate 2018. [PMID: 29520855 DOI: 10.1002/pros.23503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The composition and organization of extracellular matrix (ECM) are important regulators of cell behavior. In particular in the prostate, this central role of the ECM is further stressed by the fact that several potential markers of prostate stem cells are matrix receptors. METHODS We established 12 fibroblastic cell lines from cancerous and non-cancerous areas of six prostates and allowed the cells to produce ECM under cell culture conditions. We also performed a proteome wide analysis of the ECM components by mass spectrometry. To study the in vitro activation of fibroblastic cells we compared the differences between the ECM produced in cell culture by six non-cancerous-tissue-derived fibroblasts and the in vivo matrisome from the corresponding non-cancerous tissue of prostate. RESULTS Our results suggest that at tissue level the ECM is mainly produced by fibroblastic cells and that it contains standard collagen I fibrils and fibril-associated proteins. Beaded-filament forming collagen VI is also abundant and basement membranes potentially contain five laminin subtypes and collagens XV and XVIII. As the main finding, we also detected differences when in vivo and in vitro matrisomes were compared. Only 65 out of 206 proteins were found to be common for both in vivo and in vitro samples. Majority of the 55 proteins, which were solely detected in in vivo samples, were considered to be plasma derived. Eighty-six proteins were solely found from in vitro fibroblast-derived ECM, and most of them were related to matrix remodeling or growth factor action, proposing that the activation of fibroblasts in cell culture may remarkably modify their gene expression profile. Finally, in comparison to traditional 2D in vitro cell culture, the ECM composition of 3D spheroid culture was analyzed. The matrisome in spheroid culture did not resemble the in vivo ECM more closely than in monolayer culture. CONCLUSIONS Artificial activation of ECM remodeling seems to be a distinctive feature in in vitro models. In conclusion the constitution of ECM produced by prostate derived fibroblasts in vitro is similar, but not identical to the prostate ECM in vivo as shown here by mass spectrometric analysis.
Collapse
Affiliation(s)
| | - Pekka Rappu
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Elina Siljamäki
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Peter Boström
- Department of Urology, Turku University Hospital, Turku, Finland
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Kumar B, Rosenberg AZ, Choi SM, Fox-Talbot K, De Marzo AM, Nonn L, Brennen WN, Marchionni L, Halushka MK, Lupold SE. Cell-type specific expression of oncogenic and tumor suppressive microRNAs in the human prostate and prostate cancer. Sci Rep 2018; 8:7189. [PMID: 29739972 PMCID: PMC5940660 DOI: 10.1038/s41598-018-25320-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
MiR-1 and miR-143 are frequently reduced in human prostate cancer (PCa), while miR-141 and miR-21 are frequently elevated. Consequently, these miRNAs have been studied as cell-autonomous tumor suppressors and oncogenes. However, the cell-type specificity of these miRNAs is not well defined in prostate tissue. Through two different microdissection techniques, and droplet digital RT-PCR, we quantified these miRNAs in the stroma and epithelium of radical prostatectomy specimens. In contrast to their purported roles as cell-autonomous tumor suppressors, we found miR-1 and miR-143 expression to be predominantly stromal. Conversely, miR-141 was predominantly epithelial. miR-21 was detected in both stroma and epithelium. Strikingly, the levels of miR-1 and miR-143 were significantly reduced in tumor-associated stroma, but not tumor epithelium. Gene expression analyses in human cell lines, tissues, and prostate-derived stromal cultures support the cell-type selective expression of miR-1, miR-141, and miR-143. Analyses of the PCa Genome Atlas (TCGA-PRAD) showed a strong positive correlation between stromal markers and miR-1 and miR-143, and a strong negative correlation between stromal markers and miR-141. In these tumors, loss of miR-1 and gain of miR-21 was highly associated with biochemical recurrence. These data shed new light on stromal and epithelial miRNA expression in the PCa tumor microenvironment.
Collapse
Affiliation(s)
- Binod Kumar
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Avi Z Rosenberg
- The Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Su Mi Choi
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Karen Fox-Talbot
- The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Angelo M De Marzo
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Larisa Nonn
- The Department of Pathology, University of Illinois, Chicago, IL, USA
| | - W Nathaniel Brennen
- The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Luigi Marchionni
- The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Marc K Halushka
- The Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Shawn E Lupold
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
17
|
Brennen WN, Zhang B, Kulac I, Kisteman LN, Antony L, Wang H, Meeker AK, De Marzo AM, Garraway IP, Denmeade SR, Isaacs JT. Mesenchymal stem cell infiltration during neoplastic transformation of the human prostate. Oncotarget 2018; 8:46710-46727. [PMID: 28493842 PMCID: PMC5564518 DOI: 10.18632/oncotarget.17362] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/01/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) have been identified in prostate cancer, raising the critical question of their physical and temporal source. Therefore, MSCs were quantified and characterized in benign and malignant prostate tissue representing different disease states and a wide range of age groups from fetal development through adult death using analytical and functional methodologies. In contrast to lineage-restricted Mesenchymal Progenitor Cells (MPCs) found in normal prostate tissue, MSCs with tri-lineage differentiation potential (adipogenesis, osteogenesis, and chondrogenesis) are identified in prostate tissue from a subset of men with prostate cancer, consistent with an influx of more stem-like progenitors (i.e. MSCs) from the bone marrow. Additionally, prostate tissue from a subset of these patients is highly enriched in MSCs, suggesting their enumeration may have prognostic value for identifying men with aggressive disease. This influx is an ongoing process continuing throughout disease progression as documented by the presence of MSCs in metastatic lesions from multiple organ sites harvested at the time of death in metastatic castration-resistant prostate cancer (mCRPC) patients. This infiltration of MSCs from systemic circulation provides the rationale for their use as a cell-based vector to deliver therapeutic agents.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Baohui Zhang
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ibrahim Kulac
- Department of Pathology at the SKCCC at Johns Hopkins, Baltimore, MD, USA
| | - L Nelleke Kisteman
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Lizamma Antony
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Hao Wang
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Department of Pathology at the SKCCC at Johns Hopkins, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Department of Pathology at the SKCCC at Johns Hopkins, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isla P Garraway
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Samuel R Denmeade
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John T Isaacs
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Assessing angiogenic responses induced by primary human prostate stromal cells in a three-dimensional fibrin matrix assay. Oncotarget 2018; 7:71298-71308. [PMID: 27542256 PMCID: PMC5342079 DOI: 10.18632/oncotarget.11347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023] Open
Abstract
Accurate modeling of angiogenesis in vitro is essential for guiding the preclinical development of novel anti-angiogenic agents and treatment strategies. The formation of new blood vessels is a multifactorial and multi-stage process dependent upon paracrine factors produced by stromal cells in the local microenvironment. Mesenchymal stem cells (MSCs) are multipotent cells in adults that can be recruited to sites of inflammation and tissue damage where they aid in wound healing through regenerative, trophic, and immunomodulatory properties. Primary stromal cultures derived from human bone marrow, normal prostate, or prostate cancer tissue are highly enriched in MSCs and stromal progenitors. Using conditioned media from these primary cultures, a robust pro-angiogenic response was observed in a physiologically-relevant three-dimensional fibrin matrix assay. To evaluate the utility of this assay, the allosteric HDAC4 inhibitor tasquinimod and the anti-VEGF monoclonal antibody bevacizumab were used as model compounds with distinct mechanisms of action. While both agents had a profound inhibitory effect on endothelial sprouting, only bevacizumab induced significant regression of established vessels. Additionally, the pro-angiogenic properties of MSCs derived from prostate cancer patients provides further evidence that selective targeting of this population may be of therapeutic benefit.
Collapse
|
19
|
Zajic LB, Webb TL, Webb P, Coy JW, Dow SW, Quimby JM. Comparison of proliferative and immunomodulatory potential of adipose-derived mesenchymal stem cells from young and geriatric cats. J Feline Med Surg 2017; 19:1096-1102. [PMID: 27913779 PMCID: PMC11110994 DOI: 10.1177/1098612x16680703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Objectives The objective of this study was to compare the ability of adipose-derived mesenchymal stem cells (aMSCs) generated from young vs geriatric cats to proliferate in culture, suppress lymphocyte proliferation and undergo senescence. Methods Adipose tissues from five young (<5 years) and six geriatric (>10 years) cats were harvested and cryopreserved for subsequent aMSC isolation and culture. aMSC proliferation in culture was compared via determination of time until passage two and by 3-(4,5-demethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The immunomodulatory capacity of aMSCs was assessed using lymphocyte proliferation assays, and senescence was evaluated using senescence-associated B-galactosidase (SABG) expression. All assays were performed on aMSCs between passage two and passage three. Results aMSCs from geriatric cats took significantly longer ( P = 0.008) to reach passage two (median 11 days, range 9-22 days) compared with aMSCs from young healthy cats (median 7 days, range 6-8 days). No significant difference was detected between young and geriatric cats in terms of their ability to suppress lymphocyte proliferation. SABG expression was not significantly different between young and geriatric aMSCs. Conclusions and relevance Compared with young feline aMSCs, geriatric aMSCs are significantly impaired in their ability to rapidly proliferate to passage two following initial culture, presenting a concern for autologous therapy. Nonetheless, once the cells are expanded, young and geriatric cat aMSCs appear to be equivalent in terms of their ability to functionally suppress T-cell activation and proliferation.
Collapse
Affiliation(s)
- Lara B Zajic
- Current address: The Animal Medical Center, New York, NY, USA
| | | | | | | | | | - Jessica M Quimby
- Jessica Quimby DVM, PhD, DACVIM (Internal Medicine), Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
20
|
Errarte P, Guarch R, Pulido R, Blanco L, Nunes-Xavier CE, Beitia M, Gil J, Angulo JC, López JI, Larrinaga G. The Expression of Fibroblast Activation Protein in Clear Cell Renal Cell Carcinomas Is Associated with Synchronous Lymph Node Metastases. PLoS One 2016; 11:e0169105. [PMID: 28033421 PMCID: PMC5199084 DOI: 10.1371/journal.pone.0169105] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022] Open
Abstract
Clear cell renal cell carcinoma (CCRCC) is a heterogeneous and complex disease that frequently develops distant metastases. Fibroblast activation protein (FAP) is a serine peptidase the expression of which in cancer-associated fibroblasts has been associated with higher risk of metastases and poor survival. The objective of this study was to evaluate the role of FAP in metastatic CCRCC (mCCRCC). A series of 59 mCCRCC retrospectively collected was included in the study. Metastases developed either synchronous (n = 14) or metachronous to renal disease (n = 45). Tumor specimens were obtained from both primary lesion (n = 59) and metastases (n = 54) and FAP expression was immunohistochemically analyzed. FAP expression in fibroblasts from primary tumors correlated with FAP expression in the corresponding metastatic lesions. Also, primary and metastatic FAP expression was correlated with large tumor diameter (>7cm), high grade (G3/4), high stage (pT3/4), tumor necrosis and sarcomatoid transformation. The expression of FAP in primary tumors and in their metastases was associated both with synchronous metastases and also with metastases to the lymph nodes. FAP expression in the primary tumor was correlated with worse 10-year overall survival. Immunohistochemical detection of FAP in the stromal tumor fibroblasts could be a biomarker of early lymph node metastatic status and therefore could account for the poor prognosis of FAP positive CCRCC.
Collapse
Affiliation(s)
- Peio Errarte
- Department of Physiology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Department of Nursing I, School of Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Cancer Biomarkers Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Rosa Guarch
- Department of Pathology, Complejo Hospitalario B de Navarra, Pamplona, Navarra, Spain
| | - Rafael Pulido
- Cancer Biomarkers Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Lorena Blanco
- Cancer Biomarkers Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Caroline E. Nunes-Xavier
- Cancer Biomarkers Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Maider Beitia
- Department of Physiology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Department of Nursing I, School of Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Cancer Biomarkers Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Javier Gil
- Department of Physiology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Cancer Biomarkers Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Javier C. Angulo
- Department of Urology, Hospital de Getafe, Universidad Europea de Madrid, Madrid, Spain
| | - José I. López
- Cancer Biomarkers Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia, Spain
| | - Gorka Larrinaga
- Department of Physiology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Department of Nursing I, School of Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Cancer Biomarkers Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| |
Collapse
|
21
|
Levy O, Brennen WN, Han E, Rosen DM, Musabeyezu J, Safaee H, Ranganath S, Ngai J, Heinelt M, Milton Y, Wang H, Bhagchandani SH, Joshi N, Bhowmick N, Denmeade SR, Isaacs JT, Karp JM. A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials 2016; 91:140-150. [PMID: 27019026 DOI: 10.1016/j.biomaterials.2016.03.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/21/2016] [Accepted: 03/15/2016] [Indexed: 01/10/2023]
Abstract
Despite considerable advances in prostate cancer research, there is a major need for a systemic delivery platform that efficiently targets anti-cancer drugs to sites of disseminated prostate cancer while minimizing host toxicity. In this proof-of-principle study, human mesenchymal stem cells (MSCs) were loaded with poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) that encapsulate the macromolecule G114, a thapsigargin-based prostate specific antigen (PSA)-activated prodrug. G114-particles (∼950 nm in size) were internalized by MSCs, followed by the release of G114 as an intact prodrug from loaded cells. Moreover, G114 released from G114 MP-loaded MSCs selectively induced death of the PSA-secreting PCa cell line, LNCaP. Finally, G114 MP-loaded MSCs inhibited tumor growth when used in proof-of-concept co-inoculation studies with CWR22 PCa xenografts, suggesting that cell-based delivery of G114 did not compromise the potency of this pro-drug in-vitro or in-vivo. This study demonstrates a potentially promising approach to assemble a cell-based drug delivery platform, which inhibits cancer growth in-vivo without the need of genetic engineering. We envision that upon achieving efficient homing of systemically infused MSCs to cancer sites, this MSC-based platform may be developed into an effective, systemic 'Trojan Horse' therapy for targeted delivery of therapeutic agents to sites of metastatic PCa.
Collapse
Affiliation(s)
- Oren Levy
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - W Nathaniel Brennen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States
| | - Edward Han
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - David Marc Rosen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States
| | - Juliet Musabeyezu
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Helia Safaee
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Sudhir Ranganath
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Jessica Ngai
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Martina Heinelt
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Yuka Milton
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Hao Wang
- Department of Oncology, Division of Biostatistics at the Sidney Kimmel Comprehensive Cancer Center, United States
| | - Sachin H Bhagchandani
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Nitin Joshi
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Neil Bhowmick
- The Samuel Oschin Comprehensive Cancer Institute at the Cedars-Sinai Medical Center, United States
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States.
| | - John T Isaacs
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States.
| | - Jeffrey M Karp
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States.
| |
Collapse
|