1
|
Asghari N, Saei AK, Cordani M, Nayeri Z, Moosavi MA. Drug repositioning identifies potential autophagy inhibitors for the LIR motif p62/SQSTM1 protein. Comput Biol Chem 2024; 113:108235. [PMID: 39369612 DOI: 10.1016/j.compbiolchem.2024.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Autophagy is a critical cellular process for degrading damaged organelles and proteins under stressful conditions and has casually been shown to contribute to tumor survival and drug resistance. Sequestosome-1 (SQSTM1/p62) is an autophagy receptor that interacts with its binding partners via the LC3-interacting region (LIR). The p62 protein has been a highly researched target for its critical role in selective autophagy. In this study, we aimed to identify FDA-approved drugs that bind to the LIR motif of p62 and inhibit its LIR function, which could be useful targets for modulating autophagy. To this, the homology model of the p62 protein was predicted using biological data, and docking analysis was performed using Molegro Virtual Docker and PyRx softwares. We further assessed the toxicity profile of the drugs using the ProTox-II server and performed dynamics simulations on the effective candidate drugs identified. The results revealed that the kanamycin, velpatasvir, verteporfin, and temoporfin significantly decreased the binding of LIR to the p62 protein. Finally, we experimentally confirmed that Kanamycin can inhibit autophagy-associated acidic vesicular formation in breast cancer MCF-7 and MDA-MB 231 cells. These repositioned drugs may represent novel autophagy modulators in clinical management, warranting further investigation.
Collapse
Affiliation(s)
- Narjes Asghari
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid 28040, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Zahra Nayeri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran.
| |
Collapse
|
2
|
Zhou C, Sun C, Zhou W, Tian T, Schultz DC, Wu T, Yu M, Wu L, Pi L, Li C. Development of Novel Indole-Based Covalent Inhibitors of TEAD as Potential Antiliver Cancer Agents. J Med Chem 2024; 67:16270-16295. [PMID: 39270302 DOI: 10.1021/acs.jmedchem.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Abnormal activation of the YAP transcriptional signaling pathway drives proliferation in many hepatocellular carcinoma (HCC) and hepatoblastoma (HB) cases. Current treatment options often face resistance and toxicity, highlighting the need for alternative therapies. This article reports the discovery of a hit compound C-3 from docking-based virtual screening targeting TEAD lipid binding pocket, which inhibited TEAD-mediated transcription. Optimization led to the identification of a potent and covalent inhibitor CV-4-26 that exhibited great antitumor activity in HCC and HB cell lines in vitro, xenografted human HCC, and murine HB in vivo. These outcomes signify the potential of a highly promising therapeutic candidate for addressing a subset of HCC and HB cancers. In the cases of current treatment challenges due to high upregulation of YAP-TEAD activity, these findings offer a targeted alternative for more effective interventions against liver cancer.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Chunbao Sun
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Tian Tian
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Daniel C Schultz
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Mu Yu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
- UF Institute of Genetics, University of Florida, Gainesville, Florida 32610, United States
| | - Liya Pi
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
3
|
Liu M, Zheng X, Sun C, Zhou Q, Liu B, Xu P. Tea Tree Oil Mediates Antioxidant Factors Relish and Nrf2-Autophagy Axis Regulating the Lipid Metabolism of Macrobrachium rosenbergii. Antioxidants (Basel) 2022; 11:2260. [PMID: 36421446 PMCID: PMC9686997 DOI: 10.3390/antiox11112260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 10/29/2023] Open
Abstract
Both oxidative stress and autophagy refer to regulating fat metabolism, and the former affects autophagy, but the role and mechanism of the antioxidant-autophagy axis in regulating lipid metabolism remains unclear. As an antioxidant, tea tree oil (TTO) has little research on the regulatory mechanism of lipid metabolism in crustaceans. This study investigated whether TTO could alter hepatopancreatic lipid metabolism by affecting the antioxidant-autophagy axis. Feed Macrobrachium rosenbergii with three different levels of TTO diets for 8 weeks: CT (0 mg/kg TTO), 100TTO (100 mg/kg TTO), and 1000TTO (1000 mg/kg TTO). The results showed that 100TTO treatment reduced the hemolymph lipids level and hepatopancreatic lipid deposition compared to CT. In contrast, 1000TTO treatment increased hepatopancreatic lipid deposition, damaging both morphology and function in the hepatopancreas. The 100TTO treatment promoted lipolysis and reduced liposynthesis at the transcriptional level compared to the CT group. Meanwhile, it improved the hepatopancreas antioxidant capacity and maintained mitochondrial structural and ROS homeostasis. In addition, it simultaneously activated the expression of transcription factors Keap1-Nrf2 and Imd-Relish. By contrast, the 1000TTO group significantly enhanced the ROS level, which considerably activated the Keap1-Nrf2 signaling expression but had no significant effects on the expression of Imd-Relish. The 100TTO group supplementation significantly enhanced lipid droplet breakdown and autophagy-related genes and protein expression. On the contrary, the 1000TTO group significantly inhibited the expression of genes and proteins related to autophagy. Pearson analysis revealed that Nrf2 has a positive correlation to lipid anabolism-related genes (Fasn, Srebp1, Pparγ) and autophagy regulators (mtor, akt, p62), and were negatively correlated with lipolysis-related genes (Cpt1, Hsl, Ampkα) and autophagy markers (Ulk1, Lc3). Relish was positively correlated with Atgl, Cpt1, Ampkα, Ulk1, and Lc3, and negatively correlated with Pparγ and p62. Moreover, Keap1 and Imd were negatively correlated with p62 and mtor, respectively. In sum, 100 mg/kg TTO enhanced antioxidant activity and increased autophagy intensity through the Relish-Imd pathway to enhance lipid droplet breakdown, while 1000 mg/kg TTO overexpressed Nrf2, thus inhibiting autophagy and ultimately causing excessive lipid deposition and peroxidation. Our study gives a fresh perspective for deciphering the bidirectional regulation mechanism of lipid metabolism by different doses of TTO based on the antioxidant-autophagy axis.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Cunxin Sun
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Qunlan Zhou
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Bo Liu
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| |
Collapse
|
4
|
Shu B, Zhou Y, Liang Q, He C, Li F. HSPB8 promoted intrahepatic cholangiocarcinoma progression by enhancing epithelial-mesenchymal transition and autophagy. Exp Mol Pathol 2021; 123:104691. [PMID: 34606781 DOI: 10.1016/j.yexmp.2021.104691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Heat shock protein B8 (HSPB8) has been recently discovered to be participated in the regulation of tumor progression. However, the function of HSPB8 in intrahepatic cholangiocarcinoma (ICC) has not yet been elucidated. This study studied the function of HSPB8 in ICC progression. METHODS ICC patients (n = 150) were enrolled. The relationship between clinicopathological characteristics and HSPB8 expression was analyzed. RBE cells were transfected and treated by 3-MA. The RBE cells morphology was observed under a transmission electron microscope. Cell counting kit-8 assay, wound healing assay and Transwell experiment was conducted to detect RBE cells proliferation, migration and invasion. Quantitative reverse transcription-polymerase chain reaction, immunohistochemistry, Western blot and immunofluorescence were used for genes detection in clinical tissues and RBE cells. RESULTS HSPB8 was up-regulated in ICC tissues than that in adjacent normal tissues. High HSPB8 expression in ICC indicated poor prognosis of patients. HSPB8 expression was mainly expressed in cell cytoplasm and aberrantly increased in RBE cells (P < 0.01). HSPB8 up-regulation promoted RBE cells proliferation, migration and invasion (P < 0.05). HSPB8 down-regulation reduced RBE cells proliferation, migration and invasion (P < 0.01). HSPB8 overexpression facilitated Vimentin expression, LC3-II/LC3-I ratio and inhibited E-cadherin, p62 expression in RBE cells (P < 0.05). Treatment of 3-MA partially reversed HSPB8 promotion on RBE cells proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) (P < 0.05 or P < 0.01). CONCLUSION HSPB8 promoted ICC progression by enhancing EMT and autophagy. HSPB8 might be an effective target for ICC treatment.
Collapse
Affiliation(s)
- Bo Shu
- Attending Physician of General Surgery, Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan Province, China
| | - Yingxia Zhou
- Nurse of Operation, Department of Xiangya Second Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan Province, China
| | - Qingchun Liang
- Department of Pathology, Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Changsha, Hunan Province, China
| | - Chao He
- Department of General Surgery, Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Changsha, Hunan Province, China
| | - Fazhao Li
- Chief Physician, Department of Liver Surgery, Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Changsha, Hunan Province, China.
| |
Collapse
|
5
|
Tang J, Li Y, Xia S, Li J, Yang Q, Ding K, Zhang H. Sequestosome 1/p62: A multitasker in the regulation of malignant tumor aggression (Review). Int J Oncol 2021; 59:77. [PMID: 34414460 PMCID: PMC8425587 DOI: 10.3892/ijo.2021.5257] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Sequestosome 1 (SQSTM1)/p62 is an adapter protein mainly involved in the transportation, degradation and destruction of various proteins that cooperates with components of autophagy and the ubiquitin‑proteasome degradation pathway. Numerous studies have shown that SQSTM1/p62 functions at multiple levels, including involvement in genetic stability or modification, post‑transcriptional regulation and protein function. As a result, SQSTM1/p62 is a versatile protein that is a critical core regulator of tumor cell genetic stability, autophagy, apoptosis and other forms of cell death, malignant growth, proliferation, migration, invasion, metastasis and chemoradiotherapeutic response, and an indicator of patient prognosis. SQSTM1/p62 regulates these processes via its distinct molecular structure, through which it participates in a variety of activating or inactivating tumor‑related and tumor microenvironment‑related signaling pathways, particularly positive feedback loops and epithelial‑mesenchymal transition‑related pathways. Therefore, functioning as a proto‑oncogene or tumor suppressor gene in various types of cancer and tumor‑associated microenvironments, SQSTM1/p62 is capable of promoting or retarding malignant tumor aggression, giving rise to immeasurable effects on tumor occurrence and development, and on patient treatment and prognosis.
Collapse
Affiliation(s)
- Jinlong Tang
- Department of Pathology and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yuan Li
- Department of Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310000, P.R. China
| | - Shuli Xia
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang 310058, P.R. China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang 310058, P.R. China
| | - Jinfan Li
- Department of Pathology and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Qi Yang
- Department of Pathology and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Honghe Zhang
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang 310058, P.R. China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
6
|
Xu C, Wu J, Wu Y, Ren Z, Yao Y, Chen G, Fang EF, Noh JH, Liu YU, Wei L, Chen X, Sima J. TNF-α-dependent neuronal necroptosis regulated in Alzheimer's disease by coordination of RIPK1-p62 complex with autophagic UVRAG. Theranostics 2021; 11:9452-9469. [PMID: 34646380 PMCID: PMC8490500 DOI: 10.7150/thno.62376] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/05/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Neuronal death is a major hallmark of Alzheimer's disease (AD). Necroptosis, as a programmed necrotic process, is activated in AD. However, what signals and factors initiate necroptosis in AD is largely unknown. Methods: We examined the expression levels of critical molecules in necroptotic signaling pathway by immunohistochemistry (IHC) staining and immunoblotting using brain tissues from AD patients and AD mouse models of APP/PS1 and 5×FAD. We performed brain stereotaxic injection with recombinant TNF-α, anti-TNFR1 neutralizing antibody or AAV-mediated gene expression and knockdown in APP/PS1 mice. For in vitro studies, we used TNF-α combined with zVAD-fmk and Smac mimetic to establish neuronal necroptosis models and utilized pharmacological or molecular biological approaches to study the signaling pathways. Results: We find that activated neuronal necroptosis is dependent on upstream TNF-α/TNFR1 signaling in both neuronal cell cultures and AD mouse models. Upon TNF-α stimulation, accumulated p62 recruits RIPK1 and induces its self-oligomerization, and activates downstream RIPK1/RIPK3/MLKL cascade, leading to neuronal necroptosis. Ectopic accumulation of p62 is caused by impaired autophagy flux, which is mediated by UVRAG downregulation during the TNF-α-promoted necroptosis. Notably, UVRAG overexpression inhibits neuronal necroptosis in cell and mouse models of AD. Conclusions: We identify a finely controlled regulation of neuronal necroptosis in AD by coordinated TNF-α signaling, RIPK1/3 activity and autophagy machinery. Strategies that could fine-tune necroptosis and autophagy may bring in promising therapeutics for AD.
Collapse
Affiliation(s)
- Chong Xu
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialin Wu
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yiqun Wu
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhichu Ren
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuyuan Yao
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guobing Chen
- Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Ji Heon Noh
- Department of Biochemistry, Chungnam National University, Daehak-ro 99, Yuseong-gu, Daejeon
| | - Yong U. Liu
- Laboratory for Neuroscience in Health and Disease, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Libin Wei
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Sima
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
7
|
Shao R, Zhang L, Yang H, Wang Y, Zhang Z, Yue J, Chen Y, Pan H, Zhou H, Quan R. Autophagy activation promotes the effect of iPSCs-derived NSCs on bladder function restoration after spinal cord injury. Tissue Cell 2021; 72:101596. [PMID: 34333229 DOI: 10.1016/j.tice.2021.101596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 02/01/2023]
Abstract
The role of autophagy in the transplantation of induced pluripotent stem cells (iPSCs)-derived neural stem cells (NSCs) to treat spinal cord injury (SCI) and neurogenic bladder was investigated in this study. NSCs derived from human iPSCs were identified by and immunofluorescence assay. To clarify the role of autophagy, iPSCs were treated with either an autophagy inducer (rapamycin), or an autophagy inhibitor (chloroquine). Cell Counting kit-8 (CCK-8), western blot and flow cytometry were used to detect the effect of autophagy on the viability and differentiation of iPSCs. Sixty Wistar rats were selected to establish the SCI model and treated with iPSCs-derived NSCs transplantation. The effect of autophagy on the bladder function of rats with different treatments was evaluated by Basso, Beattie, and Bresnahan (BBB) score, bladder function score, bladder weight measurement, Hematoxylin & Eosin (H&E) staining, and Masson staining. The results of in vitro experiment showed that rapamycin enhanced the cell activity of iPSCs, increased the number of nestin positive cells, up-regulated Beclin-1 and LC3BI/II expressions, and down-regulated p62 expression. And the results of in vivo experiment showed that rapamycin improved exercise ability and bladder function, partially restored bladder weight, and significantly reduced bladder tissue damage in SCI rats. However, chloroquine showed the opposite results. The differentiation of iPSCs into NSCs could be promoted by induced autophagy, while neurogenic bladder of SCI was restored by autophagy activation.
Collapse
Affiliation(s)
- Rongxue Shao
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, China.
| | - Liang Zhang
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, China
| | - Hejie Yang
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, China
| | - Yanbin Wang
- Department of Urology, The Third People's Hospital of Hangzhou, China
| | - Zhijing Zhang
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, China
| | - Jun Yue
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, China
| | - Yipeng Chen
- Research Institute of Orthopedics, Zhejiang Chinese Medical University, China
| | - Hao Pan
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, China
| | - Hui Zhou
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, China
| | - Renfu Quan
- Department of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, China
| |
Collapse
|
8
|
Cui F, Wang S, Tan J, Tang H, Fan Y, Hu J. Calcium-binding and coiled-coil domain 2 promotes the proliferation and suppresses apoptosis of prostate cancer cells. Exp Ther Med 2021; 21:405. [PMID: 33692836 DOI: 10.3892/etm.2021.9836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/11/2020] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is considered to be one of the most common tumors in men. Calcium-binding and coiled-coil domain 2 (CALCOCO2) is a known important xenophagy receptor, which mediates intracellular bacterial degradation. To the best of the authors' knowledge, the present study is the first to demonstrate that CALCOCO2 functions as an oncogene in PCa. The results of the current study indicated that CALCOCO2 knockdown suppressed cell proliferation and colony formation, whereas it promoted apoptosis of PCa cells. In addition, knockdown of CALCOCO2 in PCa cells reduced cyclin-E1 and increased p53 protein expression. Bioinformatics analysis revealed that CALCOCO2 was associated with 'autophagosome assembly', 'nucleophagy' and 'nucleic acid metabolic process' biological processes and interacted with sequestosome-1, microtubule-associated proteins 1A/1B light chain 3 (MAP1LC3)B, γ-aminobutyric acid receptor-associated protein, IκB kinase subunit γ and MAP1LC3C. Moreover, CALCOCO2 protein levels were indicated to be significantly increased in PCa samples compared with normal prostate tissues. These results suggested that CALCOCO2 may be of value as a diagnostic and therapeutic target in PCa.
Collapse
Affiliation(s)
- Feilun Cui
- Department of Urology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212012, P.R. China
| | - Sijia Wang
- Department of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Tan
- Department of Urology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212012, P.R. China
| | - Huaming Tang
- Department of Urology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212012, P.R. China
| | - Yu Fan
- Department of Oncology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212012, P.R. China
| | - Jianpeng Hu
- Department of Urology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212012, P.R. China
| |
Collapse
|
9
|
Wei C, Li X. The Role of Photoactivated and Non-Photoactivated Verteporfin on Tumor. Front Pharmacol 2020; 11:557429. [PMID: 33178014 PMCID: PMC7593515 DOI: 10.3389/fphar.2020.557429] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Verteporfin (VP) has long been clinically used to treat age-related macular degeneration (AMD) through photodynamic therapy (PDT). Recent studies have reported a significant anti-tumor effect of VP as well. Yes-associated protein (YAP) is a pro-tumorigenic factor that is aberrantly expressed in various cancers and is a central effector of the Hippo signaling pathway that regulates organ size and tumorigenesis. VP can inhibit YAP without photoactivation, along with suppressing autophagy, and downregulating germinal center kinase-like kinase (GLK) and STE20/SPS1-related proline/alanine-rich kinase (SPAK). In addition, VP can induce mitochondrial damage and increase the production of reactive oxygen species (ROS) upon photoactivation, and is an effective photosensitizer (PS) in anti-tumor PDT. We have reviewed the direct and adjuvant therapeutic action of VP as a PS, and its YAP/TEA domain (TEAD)-dependent and independent pharmacological effects in the absence of light activation against cancer cells and solid tumors. Based on the present evidence, VP may be repositioned as a promising anti-cancer chemotherapeutic and adjuvant drug.
Collapse
Affiliation(s)
- Changran Wei
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangqi Li
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
10
|
Zhang CP, Ding XX, Tian T, Li BJ, Wang CY, Jiang SS, Shao JQ, Yuan YL, Tian Y, Zhang M, Long SY. Impaired lipophagy in endothelial cells with prolonged exposure to oxidized low‑density lipoprotein. Mol Med Rep 2020; 22:2665-2672. [PMID: 32945384 PMCID: PMC7453646 DOI: 10.3892/mmr.2020.11345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress induces the formation of oxidized low-density lipoprotein (ox-LDL), which accelerates the development of atherosclerosis and the rupture of atherosclerotic plaques by promoting lipid accumulation and inhibiting autophagy in vascular cells. Lipophagy is known to be involved in maintaining the balance of neutral lipid metabolism; however, the phenomenon of lipophagy deficiency in ox-LDL-treated endothelial cells (ECs) remains to be elucidated. It has been demonstrated that lipid accumulation caused by ox-LDL inhibits autophagy, which promotes apoptosis in ECs. The aim of the present study was to investigate the association between decreased autophagy and lipid accumulation in ECs treated with ox-LDL. Electron microscopy demonstrated that the formation of autolipophagosomes was decreased in ox-LDL-treated human umbilical vein ECs compared with that in the LDL-treated group and was accompanied by a decrease in the autophagy-associated proteins via western blotting analysis. Using laser focal colocalization detection, decreased lipid processing was observed in the lysosomes of ox-LDL-treated ECs, which indicated that lipophagy may be attenuated and subsequently result in lipid accumulation in ox-LDL-treated ECs.
Collapse
Affiliation(s)
- Cai-Ping Zhang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xin-Xin Ding
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tian Tian
- Department of Clinical Laboratory, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Bo-Jie Li
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chu-Yao Wang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Su-Su Jiang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jin-Qi Shao
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yu-Lin Yuan
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ying Tian
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Min Zhang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shi-Yin Long
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
11
|
Jiang G, Liang X, Huang Y, Lan Z, Zhang Z, Su Z, Fang Z, Lai Y, Yao W, Liu T, Hu L, Wang F, Huang H, Liu L, Jiang X. p62 promotes proliferation, apoptosis‑resistance and invasion of prostate cancer cells through the Keap1/Nrf2/ARE axis. Oncol Rep 2020; 43:1547-1557. [PMID: 32323805 PMCID: PMC7107779 DOI: 10.3892/or.2020.7527] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer poses a public health threat to hundreds of people around the world. p62 has been identified as a tumor suppressor, however, the mechanism by which p62 promotes prostate cancer remains poorly understood. The present study aimed to investigate whether p62 promotes proliferation, apoptosis resistance and invasion of prostate cancer cells via the Kelch-like ECH-associated protein 1/nuclear factor erytheroid-derived 2-like 2/antioxidant response element (Keap1/Nrf2/ARE) axis. Immunohistochemical staining and immunoblotting were performed to determine the protein levels. Rates of proliferation, invasion and apoptosis of prostate cancer cells were assessed using an RTCA system and flow cytometric assays. Levels of reactive oxygen species (ROS) were assessed using Cell ROX Orange reagent and mRNA levels of Nrf2 target genes were detected by qRT-PCR. It was revealed that p62 increased the levels and activities of Nrf2 by suppressing Keap1-mediated proteasomal degradation in prostate cancer cells and tissues, and high levels of p62 promoted growth of prostate cancer through the Keap1/Nrf2/ARE system. Silencing of Nrf2 in DU145 cells overexpressing p62 led to decreases in the rate of cell proliferation and invasion and an increase in the rate of cell apoptosis. p62 activated the Nrf2 pathway, promoted the transcription of Nrf2-mediated target genes and suppressed ROS in prostate cancer. Therefore, p62 promoted the development of prostate cancer by activating the Keap1/Nrf2/ARE pathway and decreasing p62 may provide a new strategy to ameliorate tumor aggressiveness and suppress tumorigenesis to improve clinical outcomes.
Collapse
Affiliation(s)
- Ganggang Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xue Liang
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Yiqiao Huang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Ziquan Lan
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Zhiming Zhang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Zhengming Su
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Zhiyuan Fang
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Yuxiong Lai
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Wenxia Yao
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Ting Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - La Hu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Fen Wang
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Hai Huang
- Department of Urology, The Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou 510120, P.R. China
| | - Leyuan Liu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xianhan Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
12
|
Thomas-Jardin SE, Dahl H, Kanchwala MS, Ha F, Jacob J, Soundharrajan R, Bautista M, Nawas AF, Robichaux D, Mistry R, Anunobi V, Xing C, Delk NA. RELA is sufficient to mediate interleukin-1 repression of androgen receptor expression and activity in an LNCaP disease progression model. Prostate 2020; 80:133-145. [PMID: 31730277 PMCID: PMC7000272 DOI: 10.1002/pros.23925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The androgen receptor (AR) nuclear transcription factor is a therapeutic target for prostate cancer (PCa). Unfortunately, patients can develop resistance to AR-targeted therapies and progress to lethal disease, underscoring the importance of understanding the molecular mechanisms that underlie treatment resistance. Inflammation is implicated in PCa initiation and progression and we have previously reported that the inflammatory cytokine, interleukin-1 (IL-1), represses AR messenger RNA (mRNA) levels and activity in AR-positive (AR+ ) PCa cell lines concomitant with the upregulation of prosurvival biomolecules. Thus, we contend that IL-1 can select for AR-independent, treatment-resistant PCa cells. METHODS To begin to explore how IL-1 signaling leads to the repression of AR mRNA levels, we performed comprehensive pathway analysis on our RNA sequencing data from IL-1-treated LNCaP PCa cells. Our pathway analysis predicted nuclear factor kappa B (NF-κB) p65 subunit (RELA), a canonical IL-1 signal transducer, to be significantly active and potentially regulate many genes, including AR. We used small interfering RNA (siRNA) to silence the NF-κB family of transcription factor subunits, RELA, RELB, c-REL, NFKB1, or NFKB2, in IL-1-treated LNCaP, C4-2, and C4-2B PCa cell lines. C4-2 and C4-2B cell lines are castration-resistant LNCaP sublines and represent progression toward metastatic PCa disease, and we have previously shown that IL-1 represses AR mRNA levels in C4-2 and C4-2B cells. RESULTS siRNA revealed that RELA alone is sufficient to mediate IL-1 repression of AR mRNA and AR activity. Intriguingly, while LNCaP cells are more sensitive to IL-1-mediated repression of AR than C4-2 and C4-2B cells, RELA siRNA led to a more striking derepression of AR mRNA levels and AR activity in C4-2 and C4-2B cells than in LNCaP cells. CONCLUSIONS These data indicate that there are RELA-independent mechanisms that regulate IL-1-mediated AR repression in LNCaP cells and suggest that the switch to RELA-dependent IL-1 repression of AR in C4-2 and C4-2B cells reflects changes in epigenetic and transcriptional programs that evolve during PCa disease progression.
Collapse
MESH Headings
- Cell Line, Tumor
- Disease Progression
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Interleukin-1/metabolism
- Interleukin-1alpha/pharmacology
- Male
- NF-kappa B/metabolism
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Androgen/biosynthesis
- Receptors, Androgen/genetics
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
| | - Haley Dahl
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Mohammed S. Kanchwala
- McDermott Center of Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Freedom Ha
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Joan Jacob
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Reshma Soundharrajan
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Monica Bautista
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Afshan F. Nawas
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Dexter Robichaux
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Ragini Mistry
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Vanessa Anunobi
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| | - Chao Xing
- McDermott Center of Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nikki A. Delk
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
13
|
Nawas AF, Kanchwala M, Thomas-Jardin SE, Dahl H, Daescu K, Bautista M, Anunobi V, Wong A, Meade R, Mistry R, Ghatwai N, Bayerl F, Xing C, Delk NA. IL-1-conferred gene expression pattern in ERα + BCa and AR + PCa cells is intrinsic to ERα - BCa and AR - PCa cells and promotes cell survival. BMC Cancer 2020; 20:46. [PMID: 31959131 PMCID: PMC6971947 DOI: 10.1186/s12885-020-6529-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background Breast (BCa) and prostate (PCa) cancers are hormone receptor (HR)-driven cancers. Thus, BCa and PCa patients are given therapies that reduce hormone levels or directly block HR activity; but most patients eventually develop treatment resistance. We have previously reported that interleukin-1 (IL-1) inflammatory cytokine downregulates ERα and AR mRNA in HR-positive (HR+) BCa and PCa cell lines, yet the cells can remain viable. Additionally, we identified pro-survival proteins and processes upregulated by IL-1 in HR+ BCa and PCa cells, that are basally high in HR− BCa and PCa cells. Therefore, we hypothesize that IL-1 confers a conserved gene expression pattern in HR+ BCa and PCa cells that mimics conserved basal gene expression patterns in HR− BCa and PCa cells to promote HR-independent survival and tumorigenicity. Methods We performed RNA sequencing (RNA-seq) for HR+ BCa and PCa cell lines exposed to IL-1 and for untreated HR− BCa and PCa cell lines. We confirmed expression patterns of select genes by RT-qPCR and used siRNA and/or drug inhibition to silence select genes in the BCa and PCa cell lines. Finally, we performed Ingenuity Pathway Analysis (IPA) and used the gene ontology web-based tool, GOrilla, to identify signaling pathways encoded by our RNA-seq data set. Results We identified 350 genes in common between BCa and PCa cells that are induced or repressed by IL-1 in HR+ cells that are, respectively, basally high or low in HR− cells. Among these genes, we identified Sequestome-1 (SQSTM1/p62) and SRY (Sex-Determining Region Y)-Box 9 (SOX9) to be essential for survival of HR− BCa and PCa cell lines. Analysis of publicly available data indicates that p62 and SOX9 expression are elevated in HR-independent BCa and PCa sublines generated in vitro, suggesting that p62 and SOX9 have a role in acquired hormone receptor independence and treatment resistance. We also assessed HR− cell line viability in response to the p62-targeting drug, verteporfin, and found that verteporfin is cytotoxic for HR− cell lines. Conclusions Our 350 gene set can be used to identify novel therapeutic targets and/or biomarkers conserved among acquired (e.g. due to inflammation) or intrinsic HR-independent BCa and PCa.
Collapse
Affiliation(s)
- Afshan F Nawas
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Mohammed Kanchwala
- McDermott Center of Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shayna E Thomas-Jardin
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Haley Dahl
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Kelly Daescu
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Monica Bautista
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Vanessa Anunobi
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Ally Wong
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Rachel Meade
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Ragini Mistry
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Nisha Ghatwai
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Felix Bayerl
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA
| | - Chao Xing
- McDermott Center of Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nikki A Delk
- Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX, 75080, USA.
| |
Collapse
|
14
|
Gozzi M, Murganic B, Drača D, Popp J, Coburger P, Maksimović‐Ivanić D, Mijatović S, Hey‐Hawkins E. Quinoline-Conjugated Ruthenacarboranes: Toward Hybrid Drugs with a Dual Mode of Action. ChemMedChem 2019; 14:2061-2074. [PMID: 31675152 PMCID: PMC6973020 DOI: 10.1002/cmdc.201900349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/19/2019] [Indexed: 12/26/2022]
Abstract
The role of autophagy in cancer is often complex, ranging from tumor-promoting to -suppressing effects. In this study, two novel hybrid molecules were designed, containing a ruthenacarborane fragment conjugated with a known modulator of autophagy, namely a quinoline derivative. The complex closo-[3-(η6 -p-cymene)-1-(quinolin-8-yl-acetate)-3,1,2-RuC2 B9 H10 ] (4) showed a dual mode of action against the LN229 (human glioblastoma) cell line, where it inhibited tumor-promoting autophagy, and strongly inhibited cell proliferation, de facto blocking cellular division. These results, together with the tendency to spontaneously form nanoparticles in aqueous solution, make complex 4 a very promising drug candidate for further studies in vivo, for the treatment of autophagy-prone glioblastomas.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Blagoje Murganic
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Dijana Drača
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - John Popp
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Peter Coburger
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Danijela Maksimović‐Ivanić
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Sanja Mijatović
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
15
|
Wang Y, Wang L, Wise JTF, Shi X, Chen Z. Verteporfin inhibits lipopolysaccharide-induced inflammation by multiple functions in RAW 264.7 cells. Toxicol Appl Pharmacol 2019; 387:114852. [PMID: 31812773 DOI: 10.1016/j.taap.2019.114852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022]
Abstract
Inflammation is a physiologic response to damage triggered by infection, injury or chemical irritation. Chronic inflammation produces repeated damage to cells and tissues, which can induce a variety of human diseases including cancer. Verteporfin, an FDA approved drug, is used for the treatment of age-related macular degeneration. The anti-tumor effects of verteporfin have been demonstrated by a number of studies. However, fewer studies focus on the anti-inflammatory functions of this drug. In this study, we investigated the anti-inflammatory effects and potential mechanisms of verteporfin. The classic lipopolysaccharide (LPS)-induced inflammation cell model was used. RAW 264.7 cells were pre-treated with verteporfin or vehicle control, followed by LPS stimulation. Verteporfin inhibited IL-6 and TNF-α at mRNA and protein expression levels. This effect was mediated through inhibition of the NF-κB and JAK/STAT pathways. Finally, verteporfin exhibited an anti-inflammation effect by crosslinking of protein such as NF-κB p65, JAK1, JAK2, STAT1, or STAT3 leading to inflammation. Taken together, these results indicate that verteporfin has the potential to be an effective therapeutic agent against inflammatory diseases.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Pulmonology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, People's Republic of China; Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - James T F Wise
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA.
| | - Zhimin Chen
- Department of Pulmonology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, People's Republic of China.
| |
Collapse
|
16
|
Howard N, Clementino M, Kim D, Wang L, Verma A, Shi X, Zhang Z, DiPaola RS. New developments in mechanisms of prostate cancer progression. Semin Cancer Biol 2019; 57:111-116. [DOI: 10.1016/j.semcancer.2018.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
|
17
|
Kranzbühler B, Salemi S, Mortezavi A, Sulser T, Eberli D. Combined N-terminal androgen receptor and autophagy inhibition increases the antitumor effect in enzalutamide sensitive and enzalutamide resistant prostate cancer cells. Prostate 2019; 79:206-214. [PMID: 30345525 DOI: 10.1002/pros.23725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/25/2018] [Indexed: 11/12/2022]
Abstract
INTRODUCTION AND OBJECTIVES Multiple androgen receptor (AR)-dependent and -independent resistance mechanisms limit the efficacy of current castration-resistant prostate cancer (CRPC) treatment. Novel N-terminal domain (NTD) binding AR-targeting compounds, including EPI-001 (EPI), have the promising ability to block constitutively active splice variants, which represent a major resistance mechanism in CRPC. Autophagy is a conserved lysosomal degradation pathway that acts as survival mechanism in cells exposed to anticancer treatments. We hypothesized, that promising NTD-AR treatment may upregulate autophagy and that a combination of NTD-AR and autophagy inhibition might therefore increase antitumor effects. METHODS AR-expressing prostate cancer cell lines (LNCaP, LNCaP-EnzR) were treated with different concentrations of EPI (10, 25, 50 μM) and in combination with the autophagy inhibitors chloroquine (CHQ, 20 μM) or 3-methyladenine (3-MA, 5 mM). Cell proliferation was assessed by WST-1-assays after 1 and 7 days. Ethidium bromide and Annexin V were used to measure viability and apoptosis on day 7 after treatment. Autophagosome formation was detected by AUTOdot staining. In addition, autophagic activity was monitored by immunocytochemistry and Western blot (WES) for the expression of ATG5, Beclin1, LC3-I/II and p62. RESULTS Treatment with EPI resulted in a dose-dependent reduction of cell growth and increased apoptosis in both cancer cell lines on day 7. In addition, EPI treatment demonstrated an upregulated autophagosome formation in LNCaP and LNCaP-EnzR cells. Assessment of autophagic activity by immunocytochemistry and WES revealed an increase of ATG5 and LC3-II expression and a decreased p62 expression in all EPI-treated cells. A combined treatment of EPI with autophagy inhibitors led to a further significant reduction of cell viability in both cell lines. CONCLUSIONS Our results demonstrate that NTD targeting AR inhibition using EPI leads to an increased autophagic activity in LNCaP and LNCaP-EnzR prostate cancer cells. A combination of NTD AR blockage with simultaneous autophagy inhibition increases the antitumor effect of EPI in prostate cancer cells. Double treatment may offer a promising strategy to overcome resistance mechanisms in advanced prostate cancer.
Collapse
Affiliation(s)
- Benedikt Kranzbühler
- Department of Urology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Souzan Salemi
- Department of Urology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Ashkan Mortezavi
- Department of Urology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Tullio Sulser
- Department of Urology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Zhang WX, He BM, Wu Y, Qiao JF, Peng ZY. Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. Life Sci 2019; 217:8-15. [DOI: 10.1016/j.lfs.2018.11.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
|
19
|
Limpert AS, Lambert LJ, Bakas NA, Bata N, Brun SN, Shaw RJ, Cosford NDP. Autophagy in Cancer: Regulation by Small Molecules. Trends Pharmacol Sci 2018; 39:1021-1032. [PMID: 30454769 PMCID: PMC6349222 DOI: 10.1016/j.tips.2018.10.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
During times of stress, autophagy is a cellular process that enables cells to reclaim damaged components by a controlled recycling pathway. This mechanism for cellular catabolism is dysregulated in cancer, with evidence indicating that cancer cells rely on autophagy in the hypoxic and nutrient-poor microenvironment of solid tumors. Mounting evidence suggests that autophagy has a role in the resistance of tumors to standard-of-care (SOC) therapies. Therefore, there is significant interest in the discovery of small molecules that can safely modulate autophagy. In this review, we describe recent advances in the identification of new pharmacological compounds that modulate autophagy, with a focus on their mode of action, value as probe compounds, and validation as potential therapeutics.
Collapse
Affiliation(s)
- Allison S Limpert
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; These authors contributed equally
| | - Lester J Lambert
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; These authors contributed equally
| | - Nicole A Bakas
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nicole Bata
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sonja N Brun
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | - Reuben J Shaw
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | - Nicholas D P Cosford
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
20
|
Autophagy in cancer: a complex relationship. Biochem J 2018; 475:1939-1954. [DOI: 10.1042/bcj20170847] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/27/2022]
Abstract
Macroautophagy is the process by which cells package and degrade cytosolic components, and recycle the breakdown products for future use. Since its initial description by Christian de Duve in the 1960s, significant progress has been made in understanding the mechanisms that underlie this vital cellular process and its specificity. Furthermore, macroautophagy is linked to pathologic conditions such as cancer and is being studied as a therapeutic target. In this review, we will explore the connections between autophagy and cancer, which are tumor- and context-dependent and include the tumor microenvironment. We will highlight the importance of tumor compartment-specific autophagy in both cancer aggressiveness and treatment.
Collapse
|