1
|
Guo B, Zheng Y, Fan Y, Yang Y, Wang Y, Qin L, An Y, Xu X, Zhang X, Sun G, Dou H, Shao C, Gong Y, Jiang B, Hu H. Enhanced Apc Min/+ adenoma formation after epithelial CUL4B deletion by recruitment of myeloid-derived suppressor cells. Neoplasia 2024; 53:101005. [PMID: 38761506 PMCID: PMC11127156 DOI: 10.1016/j.neo.2024.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Colorectal cancer (CRC) stands as a prevalent malignancy globally. A pivotal event in CRC pathogenesis involves the loss-of-function mutation in the APC gene, leading to the formation of benign polyps. Despite the well-established role of APC, the contribution of CUL4B to CRC initiation in the pre-tumorous stage remains poorly understood. In this investigation, we generated a murine model by crossing ApcMin/+ mice with Cul4bΔIEC mice to achieve specific deletion of Cul4b in the gut epithelium against an ApcMin/+ background. By employing histological methods, RNA-sequencing (RNA-seq), and flow cytometry, we assessed alterations and characterized the immune microenvironment. Our results unveiled that CUL4B deficiency in gut epithelium expedited ApcMin/+ adenoma formation. Notably, CUL4B in adenomas restrained the accumulation of tumor-infiltrating myeloid-derived suppressor cells (MDSCs). In vivo inhibition of MDSCs significantly delayed the growth of CUL4B deleted ApcMin/+ adenomas. Furthermore, the addition of MDSCs to in vitro cultured ApcMin/+; Cul4bΔIEC adenoma organoids mitigated their alterations. Mechanistically, CUL4B directly interacted with the promoter of Csf3, the gene encoding granulocyte-colony stimulating factor (G-CSF) by coordinating with PRC2. Inhibiting CUL4B epigenetically activated the expression of G-CSF, promoting the recruitment of MDSCs. These findings offer novel insights into the tumor suppressor-like roles of CUL4B in regulating ApcMin/+ adenomas, suggesting a potential therapeutic strategy for CRC initiation and progression in the context of activated Wnt signaling.
Collapse
Affiliation(s)
- Beibei Guo
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yawen Zheng
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China; Department of Obstetrics & Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yujia Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yang Yang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yuxing Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Liping Qin
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yachun An
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaoran Xu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiyu Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Histoembryology, Shandong University Cheeloo Medical College, Shandong University School of Medicine, Jinan, China
| | - Hao Dou
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Guo B, Huo X, Xie X, Zhang X, Lian J, Zhang X, Gong Y, Dou H, Fan Y, Mao Y, Wang J, Hu H. Dynamic role of CUL4B in radiation-induced intestinal injury-regeneration. Sci Rep 2024; 14:9906. [PMID: 38689033 PMCID: PMC11061312 DOI: 10.1038/s41598-024-60704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
CUL4B, a crucial scaffolding protein in the largest E3 ubiquitin ligase complex CRL4B, is involved in a broad range of physiological and pathological processes. While previous research has shown that CUL4B participates in maintaining intestinal homeostasis and function, its involvement in facilitating intestinal recovery following ionizing radiation (IR) damage has not been fully elucidated. Here, we utilized in vivo and in vitro models to decipher the role of CUL4B in intestinal repair after IR-injury. Our findings demonstrated that prior to radiation exposure, CUL4B inhibited the ubiquitination modification of PSME3, which led to the accumulation of PSME3 and subsequent negative regulation of p53-mediated apoptosis. In contrast, after radiation, CUL4B dissociated from PSME3 and translocated into the nucleus at phosphorylated histones H2A (γH2AX) foci, thereby impeding DNA damage repair and augmenting p53-mediated apoptosis through inhibition of BRCA1 phosphorylation and RAD51. Our study elucidated the dynamic role of CUL4B in the repair of radiation-induced intestinal damage and uncovered novel molecular mechanisms underlying the repair process, suggesting a potential therapeutic strategy of intestinal damage after radiation therapy for cancers.
Collapse
Affiliation(s)
- Beibei Guo
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Xiaohan Huo
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Xueyong Xie
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Xiaohui Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Jiabei Lian
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Xiyu Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Hao Dou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, 250012, China
| | - Yujia Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Yunuo Mao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Systems Biomedicine and Research, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Jin S, Song Y, Zhou L, Jiang W, Qin L, Wang Y, Yu R, Liu Y, Diao Y, Zhang F, Liu K, Li P, Hu H, Jiang B, Tang W, Yi F, Gong Y, Liu G, Sun G. Depletion of CUL4B in macrophages ameliorates diabetic kidney disease via miR-194-5p/ITGA9 axis. Cell Rep 2023; 42:112550. [PMID: 37224018 DOI: 10.1016/j.celrep.2023.112550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/26/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most prevalent chronic kidney disease. Macrophage infiltration in the kidney is critical for the progression of DKD. However, the underlying mechanism is far from clear. Cullin 4B (CUL4B) is the scaffold protein in CUL4B-RING E3 ligase complexes. Previous studies have shown that depletion of CUL4B in macrophages aggravates lipopolysaccharide-induced peritonitis and septic shock. In this study, using two mouse models for DKD, we demonstrate that myeloid deficiency of CUL4B alleviates diabetes-induced renal injury and fibrosis. In vivo and in vitro analyses reveal that loss of CUL4B suppresses migration, adhesion, and renal infiltration of macrophages. Mechanistically, we show that high glucose upregulates CUL4B in macrophages. CUL4B represses expression of miR-194-5p, which leads to elevated integrin α9 (ITGA9), promoting migration and adhesion. Our study suggests the CUL4B/miR-194-5p/ITGA9 axis as an important regulator for macrophage infiltration in diabetic kidneys.
Collapse
Affiliation(s)
- Shiqi Jin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yu Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Li Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liping Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ruiqi Yu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuting Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yujie Diao
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kaixuan Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peishan Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guangyi Liu
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Huang G, Jiang Z, Zhu W, Wu Z. Exosomal circKDM4A Induces CUL4B to Promote Prostate Cancer Cell Malignancy in a miR-338-3p-Dependent Manner. Biochem Genet 2023; 61:390-409. [PMID: 35930171 DOI: 10.1007/s10528-022-10251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/22/2022] [Indexed: 01/24/2023]
Abstract
Circular RNA lysine demethylase 4A (circKDM4A) is also named circ_0012098 and its abnormal expression has been confirmed in serum exosomes of prostate cancer (PC) patients. However, whether PC progression involves the exosomal circ_0012098 remains unknown. RNA expression of circKDM4A, microRNA-338-3p (miR-338-3p) and cullin 4B (CUL4B) was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot. The positive expression rate of nuclear proliferation marker (ki-67) was analyzed by immunohistochemistry assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were used to identify the interaction between miR-338-3p and circKDM4A or CUL4B. Mouse model assay was performed to determine the effect of exosomal circKDM4A on tumorigenesis in vivo. CircKDM4A expression was significantly upregulated in the serum exosomes from PC patients compared with the exosomes from healthy volunteers. Exosomes treatment promoted the proliferation, migration and invasion of PC cells but inhibited apoptosis; however, these effects were attenuated after circKDM4A knockdown. Meanwhile, circKDM4A depletion restored exosome-increased circKDM4A expression. Additionally, circKDM4A acted as a miR-338-3p sponge, and miR-338-3p bound to CUL4B in PC cells. CircKDM4A regulated the effect of exosome-induced PC cell malignancy by interacting with miR-338-3p and CUL4B. Moreover, circKDM4A silencing relieved exosome-induced tumor growth in vivo. Exosomal circKDM4A promoted PC malignant progression by the miR-338-3p/CUL4B axis, providing a therapeutic target for PC.
Collapse
Affiliation(s)
- Guangyi Huang
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China.
| | - Zeping Jiang
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| | - Wuan Zhu
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| | - Zhiyue Wu
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| |
Collapse
|
6
|
Yu W, Ma L, Li X. DANCR promotes glioma cell autophagy and proliferation via the miR‑33b/DLX6/ATG7 axis. Oncol Rep 2023; 49:39. [PMID: 36601767 PMCID: PMC9846190 DOI: 10.3892/or.2023.8476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) are common in the human body. Misregulated lncRNA expression can cause a variety of diseases in the human body. The present study aimed to investigate the effect of lncRNA differentiation antagonizing non‑protein‑coding RNA (DANCR) on glioma proliferation and autophagy through the microRNA (miR)‑33b/distal‑less homeobox 6 (DLX6)/autophagy‑related 7 (ATG7) axis. Reverse transcription‑quantitative PCR was used to detect DANCR and miR‑33b expression. Cell Counting Kit‑8 assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. Transmission electron microscopy was used to determine the autophagy level by observing intracellular autophagosomes. A western blot assay was used to detect protein expression levels and determine the level of autophagy in different cells. The binding sites of miR‑33b and DANCR or DLX6 were detected using a dual‑luciferase reporter assay. A chromatin immunoprecipitation assay confirmed DLX6 as a transcript of ATG7. In vivo tumorigenesis of glioma cells was validated in nude mice. DANCR and DLX6 were highly expressed in glioma cells, while miR‑33b showed low expression in glioma cells. DANCR reduced the targeted binding of miR‑33b to DLX6 by sponging miR‑33b. The result verified that DANCR could promote ATG7 protein expression through miR‑33b/DLX6, promote intracellular autophagy and proliferation and reduce apoptosis. The present study identified the role of the DANCR/miR‑33b/DLX6/ATG7 axis in regulating autophagy, proliferation, and apoptosis in glioma cells, providing new ideas for glioma treatment.
Collapse
Affiliation(s)
- Wei Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China,Liaoning Clinical Medical Research in Nervous Disease, Shenyang, Liaoning 110004, P.R. China,Key Laboratory of Neuro-Oncology in Liaoning, Shenyang, Liaoning 110004, P.R. China
| | - Li Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China,Liaoning Clinical Medical Research in Nervous Disease, Shenyang, Liaoning 110004, P.R. China,Key Laboratory of Neuro-Oncology in Liaoning, Shenyang, Liaoning 110004, P.R. China
| | - Xinxing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China,Liaoning Clinical Medical Research in Nervous Disease, Shenyang, Liaoning 110004, P.R. China,Key Laboratory of Neuro-Oncology in Liaoning, Shenyang, Liaoning 110004, P.R. China,Correspondence to: Professor Xinxing Li, Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110004, P.R. China, E-mail:
| |
Collapse
|
7
|
Su P, Zhang M, Kang X. Targeting c-Met in the treatment of urologic neoplasms: Current status and challenges. Front Oncol 2023; 13:1071030. [PMID: 36959792 PMCID: PMC10028134 DOI: 10.3389/fonc.2023.1071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
At present, studies have found that c-Met is mainly involved in epithelial-mesenchymal transition (EMT) of tumor tissues in urologic neoplasms. Hepatocyte growth factor (HGF) combined with c-Met promotes the mitosis of tumor cells, and then induces motility, angiogenesis, migration, invasion and drug resistance. Therefore, c-Met targeting therapy may have great potential in urologic neoplasms. Many strategies targeting c-Met have been widely used in the study of urologic neoplasms. Although the use of targeting c-Met therapy has a strong biological basis for the treatment of urologic neoplasms, the results of current clinical trials have not yielded significant results. To promote the application of c-Met targeting drugs in the clinical treatment of urologic neoplasms, it is very important to study the detailed mechanism of c-Met in urologic neoplasms and innovate c-Met targeted drugs. This paper firstly discussed the value of c-Met targeted therapy in urologic neoplasms, then summarized the related research progress, and finally explored the potential targets related to the HGF/c-Met signaling pathway. It may provide a new concept for the treatment of middle and late urologic neoplasms.
Collapse
|
8
|
Mi J, Wang S, Liu P, Liu C, Zhuang D, Leng X, Zhang Q, Bai F, Feng Q, Wu X. CUL4B Upregulates RUNX2 to Promote the Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Epigenetically Repressing the Expression of miR-320c and miR-372/373-3p. Front Cell Dev Biol 2022; 10:921663. [PMID: 35784474 PMCID: PMC9243338 DOI: 10.3389/fcell.2022.921663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells (MSCs) within the periodontal ligament (PDL), termed periodontal ligament stem cells (PDLSCs), have a self-renewing capability and a multidirectional differentiation potential. The molecular mechanisms that regulate multidirectional differentiation, such as the osteogenic differentiation of PDLSCs, remain to be elucidated. Cullin 4B (CUL4B), which assembles the CUL4B-RING ubiquitin ligase (CRL4B) complex, is involved in regulating a variety of developmental and physiological processes including the skeletal development and stemness of cancer stem cells. However, nothing is known about the possible role of CUL4B in the osteogenic differentiation of PDLSCs. Here, we found that knockdown of CUL4B decreased the proliferation, migration, stemness and osteogenic differentiation ability of PDLSCs. Mechanistically, we demonstrate that CUL4B cooperates with the PRC2 complex to repress the expression of miR-320c and miR-372/373-3p, which results in the upregulation of RUNX2, a master transcription factor (TF) that regulates osteogenic differentiation. In brief, the present study reveals the role of CUL4B as a new regulator of osteogenic differentiation in PDLSCs.
Collapse
Affiliation(s)
- Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Shenzhen Research Institute of Shandong University, Shenzhen, China
- *Correspondence: Jun Mi, ; Xunwei Wu,
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Panpan Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Pediatrics Dentistry, Department of Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dexuan Zhuang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xue Leng
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fuxiang Bai
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Jun Mi, ; Xunwei Wu,
| |
Collapse
|
9
|
lncRNA-DANCR Promotes Taxol Resistance of Prostate Cancer Cells through Modulating the miR-33b-5p-LDHA Axis. DISEASE MARKERS 2022; 2022:9516774. [PMID: 35571619 PMCID: PMC9096572 DOI: 10.1155/2022/9516774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is one of the most common malignancies in men with high death rate worldwide. Paclitaxel (Taxol) is a widely used anticancer agent. Despite recent improvements in clinical application and research, development of drug resistance limits the efficacy of the Taxol-based chemotherapy. Previous studies revealed that the long noncoding RNA DANCR positively regulated progression of prostate cancer. However, the precise roles of DANCR in the Taxol sensitivity of PCa and the underlying molecular mechanisms remain largely unknown. Here, we report that the expressions of DANCR were significantly upregulated and miR-33b-5p were downregulated in prostate tumor specimens and cells as well as the Taxol-resistant prostate cancer cell line (PC3-TXR). Silencing DANCR or overexpressing miR-33b-5p effectively enhanced the Taxol sensitivity of PCa cells. Bioinformatics analysis, RNA pull-down assay, and luciferase assay consistently illustrated that DANCR was associated with miR-33b-5p, leading to downregulation of miR-33b-5p in PCa. Interestingly, glucose metabolism of PC3-TXR cells was remarkedly elevated. The glucose uptake, extracellular acidification rate (ECAR), and glycolysis speed-limiting enzyme expressions were significantly promoted in PC3-TXR cells. We further identified the glucose metabolism enzyme; LDHA was a direct target of miR-33b-5p in PCa cells. LDHA restoration attenuated miR-33b-5p-mediated PTX sensitization. Finally, the rescue of miR-33b-5p in DANCR-overexpressing PC3-TXR cells successfully overrode the DANCR-promoted Taxol resistance. In summary, this study uncovered biological roles and molecular mechanisms of the DANCR-promoted chemoresistance, contributing to the development of noncoding RNA-based therapeutic strategies against drug-resistant prostate cancer.
Collapse
|
10
|
Liu L, Hui R, Zeng T, Yang X, Wu Q, Yang T. CUL4B is a Potential Novel Prognostic Biomarker and is Correlated with Immune Infiltrates in Malignant Pleural Mesothelioma. Int J Gen Med 2022; 15:4613-4623. [PMID: 35535145 PMCID: PMC9078356 DOI: 10.2147/ijgm.s355889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Lu Liu
- Intensive Care Unit of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ruting Hui
- Department of Rehabilitation Medicine, Chengdu First People’s Hospital, Chengdu, 61007, People’s Republic of China
| | - Tianyang Zeng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xuetao Yang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Qingchen Wu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Tao Yang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Department of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Correspondence: Tao Yang, Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China, Email
| |
Collapse
|
11
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
12
|
Mei Y, Li K, Zhang Z, Li M, Yang H, Wang H, Huang X, Li X, Shi S, Yang H. miR-33b-3p Acts as a Tumor Suppressor by Targeting DOCK4 in Prostate Cancer. Front Oncol 2021; 11:740452. [PMID: 34804930 PMCID: PMC8595470 DOI: 10.3389/fonc.2021.740452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Despite that androgen-deprivation therapy results in long-lasting responses, the disease inevitably progresses to metastatic castration-resistant prostate cancer. In this study, we identified miR-33b-3p as a tumor suppressor in prostate cancer. miR-33b-3p was significantly reduced in prostate cancer tissues, and the low expression of miR-33b-3p was correlated with poor overall survival of prostate cancer patients. Overexpression of miR-33b-3p inhibited both migration and invasion of highly metastatic prostate cancer cells whereas inhibition of miR-33b-3p promoted those processes in lowly metastatic cells. The in vivo results demonstrate that miR-33b-3p suppresses metastasis of tail vein inoculated prostate cancer cells to lung and lymph nodes in mice. DOCK4 was validated as the direct target of miR-33b-3p. miR-33b-3p decreased the expression of DOCK4 and restoration of DOCK4 could rescue miR-33b-3p inhibition on cell migration and invasion. Moreover, downregulation of miR-33b-3p was induced by bortezomib, the clinically used proteasome inhibitor, and overexpression of miR-33b-3p enhanced the insufficient inhibition of bortezomib on migration and invasion as well as metastasis of prostate cancer cells. In summary, our findings demonstrate that miR-33b-3p suppresses metastasis by targeting DOCK4 in prostate cancer. Our results suggest that enhancing miR-33b-3p expression may provide a promising therapeutic strategy for overcoming that proteasome inhibitor’s poor efficacy against metastatic prostate cancer.
Collapse
Affiliation(s)
- Yu Mei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhicheng Zhang
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengmeng Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hong Yang
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xuemei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xinyuan Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shuhua Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
13
|
Liu J, Wang W, Chen L, Li Y, Zhao S, Liang Y. MicroRNA-33b replacement effect on growth and migration inhibition in ovarian cancer cells. Chem Biol Drug Des 2021; 101:1019-1026. [PMID: 34590776 DOI: 10.1111/cbdd.13964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Ovarian cancer is a devastating gynecological disease which is considered the major cause of cancer fatality around the world. The down-regulation of microRNA-33b (miR-33b) was reported in some malignancies. Hence, we transfected the miR-33b mimic into SKOV3 cells and evaluated the impacts of this interference on the growth and migration repression of these tumor cells as well as on targeted genes expression. METHODS In our study, transfecting the miR-33b mimic and inhibitor, negative control (NC), and NC inhibitor were established using Lipofectamine 2000. The cytotoxic effects of miR-33b were evaluated by MTT. To assess the miR-33b effects on cell migration, a scratching test was applied. The expression levels of miR-33b, ADAMTS, C-Myc, MMP9, K-Ras, and CXCR4 were evaluated using qRT-PCR. RESULTS These findings indicate that transfection of miR-143 mimic had no marked effects on the SKOV3 cell line. As expected, miR-33b relative expression levels were as follows: miR-33b mimic >NC and NC inhibitor >miR-33b inhibitor (p < 0.01). Moreover, transfected miR-33b mimic could suppress SKOV3 cells' proliferation, whereas transfected miR-33b inhibitor could promote cell proliferation (p < 0.01). MiR-33b overexpression significantly down-regulated the MMP9, CXCR-4, c-Myc, ADAMTS, and K-Ras mRNA levels (p < 0.05). CONCLUSION As expected, these results confirm the tumor-suppressive effect of miR-33b in the SKOV3 ovarian cancer cell line by reducing cell survival, proliferation, and migration.
Collapse
Affiliation(s)
- Jin Liu
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Weiming Wang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Limin Chen
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yachai Li
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shuimiao Zhao
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yijuan Liang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
14
|
The Role of Non-Coding RNAs in the Regulation of the Proto-Oncogene MYC in Different Types of Cancer. Biomedicines 2021; 9:biomedicines9080921. [PMID: 34440124 PMCID: PMC8389562 DOI: 10.3390/biomedicines9080921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
Alterations in the expression level of the MYC gene are often found in the cells of various malignant tumors. Overexpressed MYC has been shown to stimulate the main processes of oncogenesis: uncontrolled growth, unlimited cell divisions, avoidance of apoptosis and immune response, changes in cellular metabolism, genomic instability, metastasis, and angiogenesis. Thus, controlling the expression of MYC is considered as an approach for targeted cancer treatment. Since c-Myc is also a crucial regulator of many cellular processes in healthy cells, it is necessary to find ways for selective regulation of MYC expression in tumor cells. Many recent studies have demonstrated that non-coding RNAs play an important role in the regulation of the transcription and translation of this gene and some RNAs directly interact with the c-Myc protein, affecting its stability. In this review, we summarize current data on the regulation of MYC by various non-coding RNAs that can potentially be targeted in specific tumor types.
Collapse
|
15
|
Wang H, Zhang Z, Zhang Y, Liu S, Li L. Long Non-Coding RNA TP53TG1 Upregulates SHCBP1 to Promote Retinoblastoma Progression by Sponging miR-33b. Cell Transplant 2021; 30:9636897211025223. [PMID: 34247545 PMCID: PMC8278459 DOI: 10.1177/09636897211025223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNA (lncRNA) TP53 target 1 (TP53TG1) is known to be strongly associated with tumor and cancer progression. However, its expression profile, unique role, and regulatory pathways in retinoblastoma (RB) are not known. Here, we revealed a large expression of TP53TG1 in RB tissues and cell lines. Conversely, we showed marked suppression of cell proliferation, migration, and invasion in TP53TG1 knocked down RB cells. Mechanistically, we established that TP53TG1 directly interacted with microRNA (miR)-33b in RB cells. Furthermore, TP53TG1 transcripts were found to be inversely correlated with miR-33b in RB tissues. We also showed that miR-33b suppression partly reversed the TP53TG1 knockdown mediated effects on tumor biology. Finally, TP53TG1 was shown to modulate the levels of SHC Binding and Spindle Associated 1 (SHCBP1), a direct target of miR-33b in RB cells. Based on the above data, we propose that TP53TG1 regulates RB progression via its modulation of the miR-33b/SHCBP1 pathway.
Collapse
Affiliation(s)
- Hongyi Wang
- Department of Thoracic Surgery, 162798The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710000, China
| | - Zhen Zhang
- Department of Ophthalmology, 162798The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710000, China
| | - Yue Zhang
- Department of Ophthalmology, 162798The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710000, China
| | - Shihai Liu
- Center laboratory, 74657The first Hospital of Qingdao University, Qingdao 266000, China
| | - Li Li
- Department of Ophthalmology, 162798The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710000, China
| |
Collapse
|
16
|
Wang Y, Pan X, Li Y, Wang R, Yang Y, Jiang B, Sun G, Shao C, Wang M, Gong Y. CUL4B renders breast cancer cells tamoxifen-resistant via miR-32-5p/ER-α36 axis. J Pathol 2021; 254:185-198. [PMID: 33638154 DOI: 10.1002/path.5657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022]
Abstract
Tamoxifen (TAM) resistance is a significant clinical challenge in endocrine therapies for estrogen receptor (ER)-positive breast cancer patients. Cullin 4B (CUL4B), which acts as a scaffold protein in CUL4B-RING ubiquitin ligase complexes (CRL4B), is frequently overexpressed in cancer and represses tumor suppressors through diverse epigenetic mechanisms. However, the role and the underlying mechanisms of CUL4B in regulating drug resistance remain unknown. Here, we showed that CUL4B promotes TAM resistance in breast cancer cells through a miR-32-5p/ER-α36 axis. We found that upregulation of CUL4B correlated with decreased TAM sensitivity of breast cancer cells, and knockdown of CUL4B or expression of a dominant-negative CUL4B mutant restored the response to TAM in TAM-resistant MCF7-TAMR and T47D-TAMR cells. Mechanistically, we demonstrated that CUL4B renders breast cancer cells TAM-resistant by upregulating ER-α36 expression, which was mediated by downregulation of miR-32-5p. We further showed that CRL4B epigenetically represses the transcription of miR-32-5p by catalyzing monoubiquitination at H2AK119 and coordinating with PRC2 and HDAC complexes to promote trimethylation at H3K27 at the promoter of miR-32-5p. Pharmacologic or genetic inhibition of CRL4B/PRC2/HDAC complexes significantly increased TAM sensitivity in breast cancer cells in vitro and in vivo. Taken together, our findings thus establish a critical role for the CUL4B-miR-32-5p-ER-α36 axis in the regulation of TAM resistance and have important therapeutic implications for combined application of TAM and the inhibitors of CRL4B/PRC2/HDAC complex in breast cancer treatment. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Yanjun Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuanyuan Yang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Gongping Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
17
|
Du J, Zhong H, Ma B. Targeting a novel LncRNA SNHG15/miR-451/c-Myc signaling cascade is effective to hamper the pathogenesis of breast cancer (BC) in vitro and in vivo. Cancer Cell Int 2021; 21:186. [PMID: 33952250 PMCID: PMC8097789 DOI: 10.1186/s12935-021-01885-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/16/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To our knowledge, LncRNA SNHG15 exerted its tumor-promoting effects to facilitate the development of breast cancer (BC), but there still needed more data to elucidate the potential underlying mechanisms. METHODS We examined genes expression status by performing Real-Time qPCR and Western Blot analysis, and cellular functions, including cell proliferation, viability, apoptosis, mobility, were measured by using the CCK-8 assay, colony formation assay, trypan blue staining assay, flow cytometer (FCM), transwell assay and wound scratch assay, respectively. The predicted targeting sites in LncRNA SNHG15, miR-451 and c-Myc 3'UTR were validated by dual-luciferase reporter gene system assay. Finally, we established the tumor-bearing mice models, and the expression status, including its enrichment and cellular localization were examined by immunohistochemistry (IHC) assay. RESULTS Our data indicated LncRNA SNHG15 upregulated c-Myc to facilitate BC progression by sponging miR-451 in a competing endogenous RNA (ceRNA)-dependent manner in vitro and in vivo. Specifically, LncRNA SNHG15 and c-Myc were upregulated, while miR-451 was downregulated in BC cells and clinical tissues, compared to their normal counterparts. In addition, miR-451 negatively correlated with LncRNA SNHG15 and c-Myc, and LncRNA SNHG15 was positively relevant to c-Myc in BC tissues. Next, we validated that LncRNA SNHG15 sponged miR-451 to upregulate c-Myc in BC cells. Further gain- and loss-of-function experiments evidenced that LncRNA SNHG15 promoted, while miR-451 inhibited malignant phenotypes, including cell proliferation, viability, migration, invasion and epithelial-mesenchymal transition (EMT) in BC cells. Interestingly, the inhibiting effects of LncRNA SNHG15 ablation on BC progression were abrogated by both silencing miR-451 and overexpressing c-Myc. CONCLUSIONS We concluded that targeting the LncRNA SNHG15/miR-451/c-Myc signaling cascade was novel to hamper BC progression, which broadened our knowledge in this field, and provided potential biomarkers for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Jiang Du
- Department of Breast and Thyroid Surgery, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Suzhou East Street No. 789, Xinshi District, Urumqi, 830011 Xinjiang China
| | - Hong Zhong
- Department of Breast and Thyroid Surgery, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Suzhou East Street No. 789, Xinshi District, Urumqi, 830011 Xinjiang China
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Suzhou East Street No. 789, Xinshi District, Urumqi, 830011 Xinjiang China
| |
Collapse
|
18
|
Liu R, Liu J, Wu P, Yi H, Zhang B, Huang W. Flotillin-2 promotes cell proliferation via activating the c-Myc/BCAT1 axis by suppressing miR-33b-5p in nasopharyngeal carcinoma. Aging (Albany NY) 2021; 13:8078-8094. [PMID: 33744853 PMCID: PMC8034900 DOI: 10.18632/aging.202726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/09/2021] [Indexed: 04/13/2023]
Abstract
Previously, we elucidated the function of flotilin-2 (FLOT2) and branched-chain amino acid transaminase 1(BCAT1) in nasopharyngeal carcinoma (NPC). However, the relationship between FLOT2 and BCAT1 in promoting NPC progression remains unknown. Here, we observed that FLOT2 upregulated BCAT1 expression in NPC cells. Ectopic expression of BCAT1 significantly antagonized the inhibitory effects on NPC cell proliferation induced by FLOT2 depletion. Consequently, BCAT1 knockdown markedly inhibited the pro-proliferative effects of FLOT2 overexpression in NPC cells. FLOT2 expression was positively correlated with BCAT1 expression in NPC tissues and was inversely correlated with the prognosis of NPC patients. Mechanistically, FLOT2 maintains the expression level of c-Myc, a positive transcription factor of BCAT1, and subsequently promote BCAT1 transcription. FLOT2 inhibited miR-33b-5p in NPC cells and attenuated its inhibitory effects on c-Myc. Further, experimental validation of the function of the FLOT2/miR-33b-5p/c-Myc/BCAT1 axis in regulating NPC cell proliferation was performed. Our results revealed that FLOT2 promotes NPC cell proliferation by suppressing miR-33b-5p, to maintain proper levels of c-Myc, and upregulate BCAT1trancription. Therefore, the FLOT2/miR-33b-5p/c-Myc/BCAT1 axis is a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Rong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Jie Liu
- Department of Pathology, Changsha Central Hospital, Changsha 410004, China
| | - Ping Wu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hong Yi
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bin Zhang
- Department of Histology and Embryology, School of Basic Medicine, Central South University, Changsha 410013, China
| | - Wei Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
19
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Chen S, Wang Y, Chen L, Xia Y, Cui J, Wang W, Jiang X, Wang J, Zhu Y, Sun S, Zou Y, Gong Y, Shi B. CUL4B promotes aggressive phenotypes of renal cell carcinoma via upregulating c-Met expression. Int J Biochem Cell Biol 2020; 130:105887. [PMID: 33227394 DOI: 10.1016/j.biocel.2020.105887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Cullin 4B (CUL4B), encoding a scaffold protein in Cullin RING ubiquitin-ligase complexes (CRL4B), is overexpressed and serves as an oncogene in various solid tumors. However, the roles and the underlying mechanisms of CUL4B in renal cell carcinoma (RCC) are still unknown. In this study, we demonstrated that CUL4B was significantly upregulated in RCC cells and clinical specimens, and its overexpression was correlated with poor survival of RCC patients. Knockdown of CUL4B resulted in the inhibition of proliferation, migration and invasion of RCC cells. Furthermore, we found that the expression of CUL4B is positively correlated with c-Met expression in RCC cells and tissues. Konckdown of c-Met or treatment with c-Met inhibitor, SU11274, could block the increase in cell proliferation, migration and invasion induced by CUL4B-overexpression. We also showed that CUL4B overexpression significantly accelerated xenograft tumor growth, and administration of SU11274 could also abrogate the accelerated tumor growth induced by CUL4B overexpression in vivo. These findings shed light on the contribution of CUL4B to tumorigenesis in RCC via activating c-Met signaling and its therapeutic implications in RCC patients.
Collapse
Affiliation(s)
- Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, 250012, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, 250012, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenfu Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jian Wang
- Department of Urology, The People's Hospital of Laoling City, Dezhou, Shandong, 253600, China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
21
|
ERN1 dependent regulation of TMED10, MYL9, SPOCK1, CUL4A and CUL4B genes expression at glucose and glutamine deprivations in U87 glioma cells. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.05.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
22
|
Yang HF, Wang ZL, Mao TT, Liu JC. Cullin 4B regulates cell survival and apoptosis in clear cell renal cell carcinoma as a target of microRNA-217. Kaohsiung J Med Sci 2020; 37:121-127. [PMID: 33022894 DOI: 10.1002/kjm2.12307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022] Open
Abstract
Cullin 4B (CUL4B) was reported to be closely related to the progression of some tumors, but its function in clear cell renal cell carcinoma (ccRCC) has not been reported. Our present study found CUL4B was upregulated in ccRCC, and CUL4B knockdown markedly inhibited ccRCC cell growth and induced apoptosis. In addition, CUL4B knockdown markedly inhibited antiapoptotic proteins' expression in ccRCC cells, including Mcl-1 and Bcl-2, and silenced CUL4B also induced the cleavages of PARP, an important index of apoptosis. We also confirmed microRNA-217 (miR-217) was downregulated in ccRCC tumor tissues, and negatively correlated with CUL4B expression. Further investigations revealed miR-217 targeted CUL4B and markedly inhibited its expression in ccRCC cells. In addition, overexpression of miR-217 by mimics significantly suppressed ccRCC cell growth. In contrast, enforced expression of CUL4B significantly abolished miR-217-induced cell survival inhibition in ccRCC cells. In conclusion, our present results suggested targeting miR-217-CUL4B axis would be a promising strategy for ccRCC treatment.
Collapse
Affiliation(s)
- Hai-Feng Yang
- Department of Urology, Sunshine Union Hospital, Weifang, Shandong, China
| | - Zheng-Liang Wang
- Department of Nephrology, Jimo District Qingdao Hospital of Traditional Chinese Medicine, Qingdao, Shandong, China
| | - Ting-Ting Mao
- Department of Urology, Binzhou People's Hospital, Binzhou, Shandong, China
| | - Jian-Chang Liu
- Department of Urology Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| |
Collapse
|
23
|
Pattanayak B, Garrido-Cano I, Adam-Artigues A, Tormo E, Pineda B, Cabello P, Alonso E, Bermejo B, Hernando C, Martínez MT, Rovira A, Albanell J, Rojo F, Burgués O, Cejalvo JM, Lluch A, Eroles P. MicroRNA-33b Suppresses Epithelial-Mesenchymal Transition Repressing the MYC-EZH2 Pathway in HER2+ Breast Carcinoma. Front Oncol 2020; 10:1661. [PMID: 33014831 PMCID: PMC7511588 DOI: 10.3389/fonc.2020.01661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Downregulation of miR-33b has been documented in many types of cancers and is being involved in proliferation, migration, and epithelial–mesenchymal transition (EMT). Furthermore, the enhancer of zeste homolog 2-gene (EZH2) is a master regulator of controlling the stem cell differentiation and the cell proliferation processes. We aim to evaluate the implication of miR-33b in the EMT pathway in HER2+ breast cancer (BC) and to analyze the role of EZH2 in this process as well as the interaction between them. miR-33b is downregulated in HER2+ BC cells vs healthy controls, where EZH2 has an opposite expression in vitro and in patients’ samples. The upregulation of miR-33b suppressed proliferation, induced apoptosis, reduced invasion, migration and regulated EMT by an increase of E-cadherin and a decrease of ß-catenin and vimentin. The silencing of EZH2 mimicked the impact of miR-33b overexpression. Furthermore, the inhibition of miR-33b induces cell proliferation, invasion, migration, EMT, and EZH2 expression in non-tumorigenic cells. Importantly, the Kaplan–Meier analysis showed a significant association between high miR-33b expression and better overall survival. These results suggest miR-33b as a suppressive miRNA that could inhibit tumor metastasis and invasion in HER2+ BC partly by impeding EMT through the repression of the MYC–EZH2 loop.
Collapse
Affiliation(s)
| | | | | | - Eduardo Tormo
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain
| | - Begoña Pineda
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Physiology, University of Valencia, Valencia, Spain
| | - Paula Cabello
- Biomedical Research Institute, INCLIVA, Valencia, Spain
| | - Elisa Alonso
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Pathology, Hospital Clinico de Valencia, Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - María Teresa Martínez
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Ana Rovira
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Department of Medical Oncology, Hospital del Mar, Centro de Investigación Biomédica en Red de Cáncer, Barcelona, Spain
| | - Joan Albanell
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Department of Medical Oncology, Hospital del Mar, Centro de Investigación Biomédica en Red de Cáncer, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Federico Rojo
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Pathology, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Octavio Burgués
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Pathology, Hospital Clinico de Valencia, Valencia, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Ana Lluch
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Physiology, University of Valencia, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Pilar Eroles
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,COST action CA15204, Brussels, Belgium
| |
Collapse
|
24
|
Ma T, Chen H, Wang P, Yang N, Bao J. Downregulation of lncRNA ZEB1-AS1 Represses Cell Proliferation, Migration, and Invasion Through Mediating PI3K/AKT/mTOR Signaling by miR-342-3p/CUL4B Axis in Prostate Cancer. Cancer Biother Radiopharm 2020; 35:661-672. [PMID: 32275162 DOI: 10.1089/cbr.2019.3123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Prostate cancer (PCa) is the second most common cancer among men, threatening men's health and life. Long noncoding RNA Zinc-finger E-box binding homeobox 1 antisense gene 1 (ZEB1-AS1) and Cullin 4B (CUL4B) were reported to be connected with the tumorigenesis of PCa. However, it is unclear whether ZEB1-AS1 regulates the expression of CUL4B in PCa. Materials and Methods: The levels of ZEB1-AS1 and CUL4B in PCa tissues and cells were evaluated by quantitative real-time polymerase chain reaction. Protein levels of CUL4B, p21, CyclinD1, matrix metalloprotease 9 (MMP9), E-cadherin, phosphorylated-phosphatidylinositol 3 kinase (p-PI3K), PI3K phosphorylated protein kinase B (p-AKT), AKT, p-mTOR and mammalian target of rapamycin (mTOR) in PCa tissues or cells were assessed by Western blot analysis. The proliferation, migration, and invasion abilities of PCa cells were determined with 3-(4, 5-dimethylthiazol-2-YI)-2,5-diphenyltetrazolium bromide (MTT) or transwell assay. The interaction between ZEB1-AS1 or CUL4B and microRNA-342-3p (miR-342-3p) was predicted using starBase v2.0 database and confirmed by the dual-luciferase reporter assay. Results: ZEB1-AS1 and CUL4B were upregulated and miR-342-3p was downregulated in PCa tissues and cells. Both ZEB1-AS1 and CUL4B inhibition constrained proliferation, migration, and invasion of PCa cells. Moreover, the elevation of CUL4B reversed the effects of ZEB1-AS1 silencing on the proliferation, migration, and invasion of PCa cells. Importantly, ZEB1-AS1 modulated CUL4B expression by sponging miR-342-3p in PCa cells. Besides, ZEB1-AS1 mediated PI3K/AKT/mTOR signal pathway by miR-342-3p/CUL4B axis in PCa cells. Conclusion: ZEB1-AS1 modulated PCa progression through mediating PI3K/AKT/mTOR signaling by miR-342-3p/CUL4B axis, providing a possible strategy for the treatment of PCa.
Collapse
Affiliation(s)
- Teng Ma
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| | - Hua Chen
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| | - Peilong Wang
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| | - Ningqiang Yang
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| | - Junsheng Bao
- Department of Urology, Urological Institute, Gansu Key Laboratory of Urinary System, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
25
|
The CUL4B-miR-372/373-PIK3CA-AKT axis regulates metastasis in bladder cancer. Oncogene 2020; 39:3588-3603. [PMID: 32127645 DOI: 10.1038/s41388-020-1236-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022]
Abstract
CUL4B, which acts as a scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complexes, participates in a variety of biological processes. Previous studies have shown that CUL4B is often overexpressed and exhibits oncogenic activities in a variety of solid tumors. However, the roles and the underlying mechanisms of CUL4B in bladder cancer (BC) were poorly understood. Here, we showed that CUL4B levels were overexpressed and positively correlated with the malignancy of BC, and CUL4B could confer BC cells increased motility, invasiveness, stemness, and chemoresistance. The PIK3CA/AKT pathway was identified as a critical downstream mediator of CUL4B-driven oncogenicity in BC cells. Furthermore, we demonstrated that CRL4B epigenetically repressed the transcription of miR-372/373, via catalyzing monoubiquitination of H2AK119 at the gene cluster encoding miR-372/373, leading to upregulation of PIK3CA and activation of AKT. Our findings thus establish a critical role for the CUL4B-miR-372/373-PIK3CA/AKT axis in the pathogenesis of BC and have important prognostic and therapeutic implications in BC.
Collapse
|
26
|
Rong Z, Rong Y, Li Y, Zhang L, Peng J, Zou B, Zhou N, Pan Z. Development of a Novel Six-miRNA-Based Model to Predict Overall Survival Among Colon Adenocarcinoma Patients. Front Oncol 2020; 10:26. [PMID: 32154160 PMCID: PMC7047168 DOI: 10.3389/fonc.2020.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction: Colon carcinoma is a common malignant tumor worldwide. Accurately predicting prognosis of colon adenocarcinoma (CA) patients may facilitate clinical individual decision-making. Many studies have reported that microRNAs (miRNAs) were associated with prognosis for patients with colon carcinoma. This study aimed to identify the prognosis-related miRNAs for predicting the overall survival (OS) of CA patients. Methods: Firstly, we analyzed the CA datasets from the Cancer Genome Atlas (TCGA), and looked for the prognosis-related miRNAs. Then, we developed a novel prediction model based on these miRNAs and the clinical characteristics. Time-dependent receiver operating characteristics (ROC) curves and calibration plots were used to evaluate the discrimination and accuracy of the signature and model. Finally, cell function assays and bioinformatics analyses were performed to evaluate the role of these selected miRNAs in modulating biological process in CA. Results: Six prognosis-related miRNAs were included in the miRNA-based signature, and it could effectively distinguish low-risk patients and high-risk patients. Furthermore, we established a prognostic model incorporating the six-miRNA-based signature and clinical characteristics. Areas under curves (AUCs) indicated that the six-miRNA-based model has a better predictive ability than TNM stage (AUC: 0.805 vs. 0.694). The calibration plots suggested close agreement between model predictions and actual observations. GO analysis showed that the target genes of these miRNAs are mainly involved in enrichment in protein binding and regulation of transcript and cytosol. KEGG pathway enrichment analysis indicated that these genes were mainly enriched in PI3K-Akt signaling pathway. Finally, we found that the five miRNAs except miR-152 were upregulated in tumor tissues and CA cells. The functional experiments revealed that miR-1245a, miR-3682, miR-33b, and miR-5683 promoted the migratory abilities and proliferation of CA cell, whereas miR-152 showed opposite effects. However, miR-4444-2 did not influence the migratory ability and proliferation of CA cell. Conclusions: In conclusion, we developed a novel six-miRNA-based model to predict 5-year survival probabilities for CA patients. This model has the potential to facilitate individualized treatment decisions.
Collapse
Affiliation(s)
- Zhenxiang Rong
- Department of General Surgery, New Rongqi Hospital, Foshan, China
| | - Yi Rong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingru Li
- Department of Gastroenterology, Hernia and Abdominal Wall Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhang
- Biliary-Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingwen Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Nan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zihao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Jiao M, Qi M, Zhang F, Hu J, Feng T, Zhao M, Li X, Liu H, Teng W, Zhang J, Liu Z, Zhang L, Wu Z, Han B. CUL4B regulates cancer stem-like traits of prostate cancer cells by targeting BMI1 via miR200b/c. Prostate 2019; 79:1294-1303. [PMID: 31111526 DOI: 10.1002/pros.23835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/03/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cancer stem-like traits contribute to prostate cancer (PCa) progression and metastasis. Cullin 4B (CUL4B) is a member of the ubiquitin E3 ligase family and overexpressed in several solid malignancies including PCa. CUL4B has been suggested to be an oncogene through epigenetic repression of tumor suppressors. However, the link between CUL4B expression and cancer stem-like phenotype remains unclear. METHODS Western blot analysis, sphere formation, and colony formation assays were used to examine the effect of CUL4B on cancer stem-like traits in PCa cells. Mechanically, bioinformatic analysis was utilized to evaluate whether BMI1 was a target of CUL4B. Moreover, real-time polymerase chain reaction, chromatin immunoprecipitation, and luciferase reporter assays were performed to identify microRNAs regulated by CUL4B. Finally, Western blot assay was used to validate the regulation of CUL4B, miR200b, and miR200c (miR200b/c) on the stem-like characteristics of PCa cells. RESULTS CUL4B promotes PCa pluripotency-associated markers expression, sphere formation, and anchorage-independent growth ability in vitro. Mechanically, CUL4B upregulates BMI1 expression via epigenetically repressing miR200b/c expression. In addition, miR200b/c could partially reverse CUL4B-induced BMI1 and pluripotency-associated marker expression. CONCLUSIONS Our study revealed that CUL4B regulates cancer stem-like traits of prostate cancer cells by targeting BMI1 via miR200b/c, which might give novel insight into how CUL4B promotes PCa progression through regulating cancer stem-like traits.
Collapse
Affiliation(s)
- Meng Jiao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Pathology, Second Hospital of Shandong University, Jinan, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu Hospital, Jinan, China
| | - Facai Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jing Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Mingfeng Zhao
- Department of Pathology, Binzhou Medical University, Binzhou, China
| | - Xinjun Li
- Department of Pathology, Binzhou People's Hospital, Binzhou, China
| | - Hui Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Teng
- Education Quality Management Office, Institute of Continuing Education, Shandong University, Jinan, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhiyan Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Pathology, Shandong University Qilu Hospital, Jinan, China
| | - Lili Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Wu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Pathology, Shandong University Qilu Hospital, Jinan, China
| |
Collapse
|