1
|
Hou Y, Zhao Z, Li P, Cao Y, Zhang Y, Guo C, Nie X, Hou J. Combination therapies with Wnt signaling inhibition: A better choice for prostate cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189186. [PMID: 39332651 DOI: 10.1016/j.bbcan.2024.189186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
The intractability and high mortality rate of castration-resistant prostate cancer (CRPC) remain the most challenging problems in the field of prostate cancer (PCa). Emerging evidence has shown that the dysregulation of Wnt signaling pathways, which are highly conserved cascades that regulate embryonic development and maintain tissue homeostasis, is involved in various stages of PCa occurrence and progression. In this review, we systemically discuss the mechanisms by which the androgen receptor (AR) signaling pathway and Wnt signaling pathways participate in the occurrence of PCa and its progression to CRPC. Specifically, we elaborate on how Wnt signaling pathways induce the malignant transformation of prostate cells, promote the malignant progression of PCa and establish an immunosuppressive prostate tumor microenvironment through interaction with the AR pathway or in an AR-independent manner. We also discuss how Wnt signaling pathways enhances the stemness characteristics of prostate cancer stem cells (PCSCs) to induce the occurrence and metastasis of CPPC. Additionally, we discuss the latest progress in the use of different types of drugs that inhibit the Wnt signaling pathways in the treatment of PCa. We believe that the combination of Wnt signaling-based drugs with endocrine and other therapies is necessary and may enhance the clinical efficacy in the treatment of all types of PCa.
Collapse
Affiliation(s)
- Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng 475003, China
| | - Zhenhua Zhao
- Ma'anshan 86 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Ma'anshan 243100, China
| | - Pan Li
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yujia Cao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yi Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Changsheng Guo
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng 475003, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng 475003, China.
| |
Collapse
|
2
|
Buco F, Matassini C, Vanni C, Clemente F, Paoli P, Carozzini C, Beni A, Cardona F, Goti A, Moya SE, Ortore MG, Andreozzi P, Morrone A, Marradi M. Gold nanoparticles decorated with monosaccharides and sulfated ligands as potential modulators of the lysosomal enzyme N-acetylgalactosamine-6-sulfatase (GALNS). Org Biomol Chem 2023; 21:9362-9371. [PMID: 37975191 DOI: 10.1039/d3ob01466e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
N-Acetylgalactosamine-6-sulfatase (GALNS) is an enzyme whose deficiency is related to the lysosomal storage disease Morquio A. For the development of effective therapeutic approaches against this disease, the design of suitable enzyme enhancers (i.e. pharmacological chaperones) is fundamental. The natural substrates of GALNS are the glycosaminoglycans keratan sulfate and chondroitin 6-sulfate, which mainly display repeating units of sulfated carbohydrates. With a biomimetic approach, gold nanoparticles (AuNPs) decorated with simple monosaccharides, sulfated ligands (homoligand AuNPs), or both monosaccharides and sulfated ligands (mixed-ligand AuNPs) were designed here as multivalent inhibitors of GALNS. Among the homoligand AuNPs, the most effective inhibitors of GALNS activity are the β-D-galactoside-coated AuNPs. In the case of mixed-ligand AuNPs, β-D-galactosides/sulfated ligands do not show better inhibition than the β-D-galactoside-coated AuNPs. However, a synergistic effect is observed for α-D-mannosides in a mixed-ligand coating with sulfated ligands that reduced IC50 by one order of magnitude with respect to the homoligand α-D-mannoside-coated AuNPs. SAXS experiments corroborated the association of GALNS with β-D-galactoside AuNPs. These AuNPs are able to restore the enzyme activity by almost 2-fold after thermal denaturation, indicating a potential chaperoning activity towards GALNS. This information could be exploited for future development of nanomedicines for Morquio A. The recent implications of GALNS in cancer and neuropathic pain make these kinds of multivalent bionanomaterials of great interest towards multiple therapies.
Collapse
Affiliation(s)
- Francesca Buco
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Camilla Matassini
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Costanza Vanni
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Francesca Clemente
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Cosimo Carozzini
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Alice Beni
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Francesca Cardona
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Andrea Goti
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Sergio Enrique Moya
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia-San Sebastián 20014, Spain
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona, I-60130, Italy
| | - Patrizia Andreozzi
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Meyer Children's Hospital, IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, 50139 Firenze, Italy
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
3
|
Wu X, Du YZ. Nanodrug Delivery Strategies to Signaling Pathways in Alopecia. Mol Pharm 2023; 20:5396-5415. [PMID: 37817669 DOI: 10.1021/acs.molpharmaceut.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Over 50% of the global population suffers from hair loss. The mixed results in the treatment of hair loss reveal the limitations of conventional commercial topical drugs. One the one hand, the definite pathogenesis of hair loss is still an enigma. On the other hand, targeted drug carriers ensure the drug therapeutic effect and low side effects. This review highlights the organization and overview of nine crucial signaling pathways associated with hair loss, as well as the development of nanobased topical delivery systems loading the clinical drugs, which will fuel emerging hair loss treatment strategies.
Collapse
Affiliation(s)
- Xiaochuan Wu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong-Zhong Du
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
Zhou Y, Li T, Jia M, Dai R, Wang R. The Molecular Biology of Prostate Cancer Stem Cells: From the Past to the Future. Int J Mol Sci 2023; 24:ijms24087482. [PMID: 37108647 PMCID: PMC10140972 DOI: 10.3390/ijms24087482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Prostate cancer (PCa) continues to rank as the second leading cause of cancer-related mortality in western countries, despite the golden treatment using androgen deprivation therapy (ADT) or anti-androgen therapy. With decades of research, scientists have gradually realized that the existence of prostate cancer stem cells (PCSCs) successfully explains tumor recurrence, metastasis and therapeutic failure of PCa. Theoretically, eradication of this small population may improve the efficacy of current therapeutic approaches and prolong PCa survival. However, several characteristics of PCSCs make their diminishment extremely challenging: inherent resistance to anti-androgen and chemotherapy treatment, over-activation of the survival pathway, adaptation to tumor micro-environments, escape from immune attack and being easier to metastasize. For this end, a better understanding of PCSC biology at the molecular level will definitely inspire us to develop PCSC targeted approaches. In this review, we comprehensively summarize signaling pathways responsible for homeostatic regulation of PCSCs and discuss how to eliminate these fractional cells in clinical practice. Overall, this study deeply pinpoints PCSC biology at the molecular level and provides us some research perspectives.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
5
|
Zhu S, Yang Z, Zhang Z, Zhang H, Li S, Wu T, Chen X, Guo J, Wang A, Tian H, Yu J, Zhang C, Su L, Shang Z, Quan C, Niu Y. HOXB3 drives WNT-activation associated progression in castration-resistant prostate cancer. Cell Death Dis 2023; 14:215. [PMID: 36973255 PMCID: PMC10042887 DOI: 10.1038/s41419-023-05742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Enabled resistance or innate insensitiveness to antiandrogen are lethal for castration-resistant prostate cancer (CRPC). Unfortunately, there seems to be little can be done to overcome the antiandrogen resistance because of the largely unknown mechanisms. In prospective cohort study, we found that HOXB3 protein level was an independent risk factor of PSA progression and death in patients with metastatic CRPC. In vivo, upregulated HOXB3 contributed to CRPC xenografts progression and abiraterone resistance. To uncover the mechanism of HOXB3 driving tumor progression, we performed RNA-sequencing in HOXB3 negative (HOXB3-) and HOXB3 high (HOXB3 + ) staining CRPC tumors and determined that HOXB3 activation was associated with the expression of WNT3A and enriched WNT pathway genes. Furthermore, extra WNT3A and APC deficiency led HOXB3 to be isolated from destruction-complex, translocated to nuclei, and then transcriptionally regulated multiple WNT pathway genes. What's more, we also observed that the suppression of HOXB3 could reduce cell proliferation in APC-downregulated CRPC cells and sensitize APC-deficient CRPC xenografts to abiraterone again. Together, our data indicated that HOXB3 served as a downstream transcription factor of WNT pathway and defined a subgroup of CRPC resistant to antiandrogen which would benefit from HOXB3-targeted therapy.
Collapse
Affiliation(s)
- Shimiao Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Zhao Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Zheng Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Hongli Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Songyang Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Tao Wu
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xuanrong Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Jianing Guo
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Aixiang Wang
- Institute of Urology, Peking University; National Urological Cancer Center, Beijing, China
| | - Hao Tian
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Jianpeng Yu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Lei Su
- Department of Urology, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China.
| | - Changyi Quan
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China.
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China.
| |
Collapse
|
6
|
Bhattacharyya S, Feferman L, Han X, Xia K, Zhang F, Linhardt RJ, Tobacman JK. Increased CHST15 follows decline in arylsulfatase B (ARSB) and disinhibition of non-canonical WNT signaling: potential impact on epithelial and mesenchymal identity. Oncotarget 2020; 11:2327-2344. [PMID: 32595831 PMCID: PMC7299535 DOI: 10.18632/oncotarget.27634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Expression of CHST15 (carbohydrate sulfotransferase 15; chondroitin 4-sulfate-6-sulfotransferase; BRAG), the sulfotransferase enzyme that adds 6-sulfate to chondroitin 4-sulfate (C4S) to make chondroitin 4,6-disulfate (chondroitin sulfate E, CSE), was increased in malignant prostate epithelium obtained by laser capture microdissection and following arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) silencing in human prostate epithelial cells. Experiments in normal and malignant human prostate epithelial and stromal cells and tissues, in HepG2 cells, and in the ARSB-null mouse were performed to determine the pathway by which CHST15 expression is up-regulated when ARSB expression is reduced. Effects of Wnt-containing prostate stromal cell spent media and selective inhibitors of WNT, JNK, p38, SHP2, β-catenin, Rho, and Rac-1 signaling pathways were determined. Activation of WNT signaling followed declines in ARSB and Dickkopf WNT Signaling Pathway Inhibitor (DKK)3 and was required for increased CHST15 expression. The increase in expression of CHST15 followed activation of non-canonical WNT signaling and involved Wnt3A, Rac-1 GTPase, phospho-p38 MAPK, and nuclear DNA-bound GATA-3. Inhibition of JNK, Sp1, β-catenin nuclear translocation, or Rho kinase had no effect. Consistent with higher expression of CHST15 in prostate epithelium, disaccharide analysis showed higher levels of CSE and chondroitin 6-sulfate (C6S) disaccharides in prostate epithelial cells. In contrast, chondroitin 4-sulfate (C4S) disaccharides were greater in prostate stromal cells. CSE may contribute to increased C4S in malignant epithelium when GALNS (N-aceytylgalactosamine-6-sulfate sulfatase) is increased and ARSB is reduced. These effects increase chondroitin 4-sulfates and reduce chondroitin 6-sulfates, consistent with enhanced stromal characteristics and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| | - Leo Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| |
Collapse
|