1
|
Raitoharju E, Rajić S, Marttila S. Non-coding 886 ( nc886/ vtRNA2-1), the epigenetic odd duck - implications for future studies. Epigenetics 2024; 19:2332819. [PMID: 38525792 DOI: 10.1080/15592294.2024.2332819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Non-coding 886 (nc886, vtRNA2-1) is the only human polymorphically imprinted gene, in which the methylation status is not determined by genetics. Existing literature regarding the establishment, stability and consequences of the methylation pattern, as well as the nature and function of the nc886 RNAs transcribed from the locus, are contradictory. For example, the methylation status of the locus has been reported to be stable through life and across somatic tissues, but also susceptible to environmental effects. The nature of the produced nc886 RNA(s) has been redefined multiple times, and in carcinogenesis, these RNAs have been reported to have conflicting roles. In addition, due to the bimodal methylation pattern of the nc886 locus, traditional genome-wide methylation analyses can lead to false-positive results, especially in smaller datasets. Herein, we aim to summarize the existing literature regarding nc886, discuss how the characteristics of nc886 give rise to contradictory results, as well as to reinterpret, reanalyse and, where possible, replicate the results presented in the current literature. We also introduce novel findings on how the distribution of the nc886 methylation pattern is associated with the geographical origins of the population and describe the methylation changes in a large variety of human tumours. Through the example of this one peculiar genetic locus and RNA, we aim to highlight issues in the analysis of DNA methylation and non-coding RNAs in general and offer our suggestions for what should be taken into consideration in future analyses.
Collapse
Affiliation(s)
- Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Sonja Rajić
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Taube M, Lisiak N, Totoń E, Rubiś B. Human Vault RNAs: Exploring Their Potential Role in Cellular Metabolism. Int J Mol Sci 2024; 25:4072. [PMID: 38612882 PMCID: PMC11012908 DOI: 10.3390/ijms25074072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Non-coding RNAs have been described as crucial regulators of gene expression and guards of cellular homeostasis. Some recent papers focused on vault RNAs, one of the classes of non-coding RNA, and their role in cell proliferation, tumorigenesis, apoptosis, cancer response to therapy, and autophagy, which makes them potential therapy targets in oncology. In the human genome, four vault RNA paralogues can be distinguished. They are associated with vault complexes, considered the largest ribonucleoprotein complexes. The protein part of these complexes consists of a major vault protein (MVP) and two minor vault proteins (vPARP and TEP1). The name of the complex, as well as vault RNA, comes from the hollow barrel-shaped structure that resembles a vault. Their sequence and structure are highly evolutionarily conserved and show many similarities in comparison with different species, but vault RNAs have various roles. Vaults were discovered in 1986, and their functions remained unclear for many years. Although not much is known about their contribution to cell metabolism, it has become clear that vault RNAs are involved in various processes and pathways associated with cancer progression and modulating cell functioning in normal and pathological stages. In this review, we discuss known functions of human vault RNAs in the context of cellular metabolism, emphasizing processes related to cancer and cancer therapy efficacy.
Collapse
Affiliation(s)
| | | | | | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.T.); (N.L.); (E.T.)
| |
Collapse
|
3
|
Ramu A, Chinnappan J. Bioinformatics-Assisted Extraction of All PCa miRNAs and their Target Genes. Microrna 2024; 13:33-55. [PMID: 38284737 DOI: 10.2174/0122115366253242231020053221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 01/30/2024]
Abstract
INTRODUCTION To retrieve, and classify PCa miRNAs and identify the functional relationship between miRNAs and their targets through literature collection with computational analysis. BACKGROUND MicroRNAs play a role in gene regulation, which can either repress or activate the gene. Hence, the functions of miRNAs are dependent on the target gene. This study will be the first of its kind to combine computational analysis with corpus PCa data. Effectively, our study reported the huge number of miRNAs associated with PCa along with functional information. OBJECTIVE The identification and classification of previously known full PCa miRNAs and their targets were made possible by mining the literature data. Systems Biology and curated data mining assisted in identifying optimum miRNAs and their target genes for PCa therapy. METHODS PubMed database was used to collect the PCa literature up to December 2021. Pubmed. mineR package was used to extract the microRNAs associated articles and manual curation was performed to classify the microRNAs based on the function in PCa. PPI was constructed using the STRING database. Pathway analysis was performed using PANTHER and ToppGene Suite Software. Functional analysis was performed using ShinyGO software. Cluster analysis was performed using MCODE 2.0, and Hub gene analysis was performed using cytoHubba. The genemiRNA network was reconstructed using Cytoscape. RESULTS Unique PCa miRNAs were retrieved and classified from mined PCa literature. Six hundred and five unique miRNAs from 250 articles were considered as oncomiRs to trigger PCa. One hundred and twenty unique miRNAs from 118 articles were considered Tumor Suppressor miRNAs to suppress the PCa. Twenty-four unique miRNAs from 22 articles were utilized as treatment miRNAs to treat PCa. miRNAs target genes and their significant pathways, functions and hub genes were identified. CONCLUSION miR-27a, miR-34b, miR-495, miR-23b, miR-100, miR-218, Let-7a family, miR-27a- 5p, miR-34c, miR-34a, miR-143/-145, miR-125b, miR-124 and miR-205 with their target genes AKT1, SRC, CTNNB1, HRAS, MYC and TP53 are significant PCa targets.
Collapse
Affiliation(s)
- Akilandeswari Ramu
- Anthropology and Health Informatics Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jayaprakash Chinnappan
- Anthropology and Health Informatics Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
Camargo JA, Viana NI, Pimenta R, Guimarães VR, dos Santos GA, Candido P, Ghazarian V, Romão P, Silva IA, Birbrair A, Srougi M, Nahas WC, Leite KR, Trarbach EB, Reis ST. The Effect of Gene Editing by CRISPR-Cas9 of miR-21 and the Indirect Target MMP9 in Metastatic Prostate Cancer. Int J Mol Sci 2023; 24:14847. [PMID: 37834295 PMCID: PMC10573678 DOI: 10.3390/ijms241914847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 10/15/2023] Open
Abstract
Prostate cancer (PCa) has a high prevalence and represents an important health problem, with an increased risk of metastasis. With the advance of CRISPR-Cas9 genome editing, new possibilities have been created for investigating PCa. The technique is effective in knockout oncogenes, reducing tumor resistance. MMP9 and miR-21 target genes are associated with PCa progression; therefore, we evaluated the MMP-9 and miR-21 targets in PCa using the CRISPR-Cas9 system. Single guide RNAs (sgRNAs) of MMP9 and miR-21 sequences were inserted into a PX-330 plasmid, and transfected in DU145 and PC-3 PCa cell lines. MMP9 and RECK expression was assessed by qPCR, WB, and IF. The miR-21 targets, integrins, BAX and mTOR, were evaluated by qPCR. Flow cytometry was performed with Annexin5, 7-AAD and Ki67 markers. Invasion assays were performed with Matrigel. The miR-21 CRISPR-Cas9-edited cells upregulated RECK, MARCKS, BTG2, and PDCD4. CDH1, ITGB3 and ITGB1 were increased in MMP9 and miR-21 CRISPR-Cas9-edited cells. Increased BAX and decreased mTOR were observed in MMP9 and miR-21 CRISPR-Cas9-edited cells. Reduced cell proliferation, increased apoptosis and low invasion in MMP9 and miR-21 edited cells was observed, compared to Scramble. CRISPR-Cas9-edited cells of miR-21 and MMP9 attenuate cell proliferation, invasion and stimulate apoptosis, impeding PCa evolution.
Collapse
Affiliation(s)
- Juliana A. Camargo
- Laboratory of Medical Investigation (LIM 55), Urology Department, Medicine School, University of Sao Paulo (FMUSP), São Paulo 01246-903, SP, Brazil; (N.I.V.); (R.P.); (V.R.G.); (G.A.d.S.); (P.C.); (V.G.); (P.R.); (I.A.S.); (M.S.); (K.R.L.); (S.T.R.)
| | - Nayara I. Viana
- Laboratory of Medical Investigation (LIM 55), Urology Department, Medicine School, University of Sao Paulo (FMUSP), São Paulo 01246-903, SP, Brazil; (N.I.V.); (R.P.); (V.R.G.); (G.A.d.S.); (P.C.); (V.G.); (P.R.); (I.A.S.); (M.S.); (K.R.L.); (S.T.R.)
- Department of Bioscience, Minas Gerais State University (UEMG), Passos 37900-106, MG, Brazil
| | - Ruan Pimenta
- Laboratory of Medical Investigation (LIM 55), Urology Department, Medicine School, University of Sao Paulo (FMUSP), São Paulo 01246-903, SP, Brazil; (N.I.V.); (R.P.); (V.R.G.); (G.A.d.S.); (P.C.); (V.G.); (P.R.); (I.A.S.); (M.S.); (K.R.L.); (S.T.R.)
- D’Or Institute for Research and Education (ID’Or), São Paulo 04501-000, SP, Brazil
| | - Vanessa R. Guimarães
- Laboratory of Medical Investigation (LIM 55), Urology Department, Medicine School, University of Sao Paulo (FMUSP), São Paulo 01246-903, SP, Brazil; (N.I.V.); (R.P.); (V.R.G.); (G.A.d.S.); (P.C.); (V.G.); (P.R.); (I.A.S.); (M.S.); (K.R.L.); (S.T.R.)
| | - Gabriel A. dos Santos
- Laboratory of Medical Investigation (LIM 55), Urology Department, Medicine School, University of Sao Paulo (FMUSP), São Paulo 01246-903, SP, Brazil; (N.I.V.); (R.P.); (V.R.G.); (G.A.d.S.); (P.C.); (V.G.); (P.R.); (I.A.S.); (M.S.); (K.R.L.); (S.T.R.)
| | - Patrícia Candido
- Laboratory of Medical Investigation (LIM 55), Urology Department, Medicine School, University of Sao Paulo (FMUSP), São Paulo 01246-903, SP, Brazil; (N.I.V.); (R.P.); (V.R.G.); (G.A.d.S.); (P.C.); (V.G.); (P.R.); (I.A.S.); (M.S.); (K.R.L.); (S.T.R.)
| | - Vitória Ghazarian
- Laboratory of Medical Investigation (LIM 55), Urology Department, Medicine School, University of Sao Paulo (FMUSP), São Paulo 01246-903, SP, Brazil; (N.I.V.); (R.P.); (V.R.G.); (G.A.d.S.); (P.C.); (V.G.); (P.R.); (I.A.S.); (M.S.); (K.R.L.); (S.T.R.)
| | - Poliana Romão
- Laboratory of Medical Investigation (LIM 55), Urology Department, Medicine School, University of Sao Paulo (FMUSP), São Paulo 01246-903, SP, Brazil; (N.I.V.); (R.P.); (V.R.G.); (G.A.d.S.); (P.C.); (V.G.); (P.R.); (I.A.S.); (M.S.); (K.R.L.); (S.T.R.)
| | - Iran A. Silva
- Laboratory of Medical Investigation (LIM 55), Urology Department, Medicine School, University of Sao Paulo (FMUSP), São Paulo 01246-903, SP, Brazil; (N.I.V.); (R.P.); (V.R.G.); (G.A.d.S.); (P.C.); (V.G.); (P.R.); (I.A.S.); (M.S.); (K.R.L.); (S.T.R.)
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte 30190-002, MG, Brazil;
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Miguel Srougi
- Laboratory of Medical Investigation (LIM 55), Urology Department, Medicine School, University of Sao Paulo (FMUSP), São Paulo 01246-903, SP, Brazil; (N.I.V.); (R.P.); (V.R.G.); (G.A.d.S.); (P.C.); (V.G.); (P.R.); (I.A.S.); (M.S.); (K.R.L.); (S.T.R.)
- D’Or Institute for Research and Education (ID’Or), São Paulo 04501-000, SP, Brazil
| | - William C. Nahas
- Uro-Oncology Group, Urology Department, University of São Paulo Medical School and Institute of Cancer Estate of São Paulo (ICESP), São Paulo 01246-000, SP, Brazil;
| | - Kátia R. Leite
- Laboratory of Medical Investigation (LIM 55), Urology Department, Medicine School, University of Sao Paulo (FMUSP), São Paulo 01246-903, SP, Brazil; (N.I.V.); (R.P.); (V.R.G.); (G.A.d.S.); (P.C.); (V.G.); (P.R.); (I.A.S.); (M.S.); (K.R.L.); (S.T.R.)
| | - Ericka B. Trarbach
- Laboratory of Cellular and Molecular Endocrinology (LIM25), Endocrinology Departament, Medicine School, University of São Paulo (FMUSP), São Paulo 01246-903, SP, Brazil;
| | - Sabrina T. Reis
- Laboratory of Medical Investigation (LIM 55), Urology Department, Medicine School, University of Sao Paulo (FMUSP), São Paulo 01246-903, SP, Brazil; (N.I.V.); (R.P.); (V.R.G.); (G.A.d.S.); (P.C.); (V.G.); (P.R.); (I.A.S.); (M.S.); (K.R.L.); (S.T.R.)
| |
Collapse
|
5
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Lee YS, Lee YS. nc886, an RNA Polymerase III-Transcribed Noncoding RNA Whose Expression Is Dynamic and Regulated by Intriguing Mechanisms. Int J Mol Sci 2023; 24:ijms24108533. [PMID: 37239877 DOI: 10.3390/ijms24108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
nc886 is a medium-sized non-coding RNA that is transcribed by RNA polymerase III (Pol III) and plays diverse roles in tumorigenesis, innate immunity, and other cellular processes. Although Pol III-transcribed ncRNAs were previously thought to be expressed constitutively, this concept is evolving, and nc886 is the most notable example. The transcription of nc886 in a cell, as well as in human individuals, is controlled by multiple mechanisms, including its promoter CpG DNA methylation and transcription factor activity. Additionally, the RNA instability of nc886 contributes to its highly variable steady-state expression levels in a given situation. This comprehensive review discusses nc886's variable expression in physiological and pathological conditions and critically examines the regulatory factors that determine its expression levels.
Collapse
Affiliation(s)
- Yeon-Su Lee
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
7
|
Khadka VS, Nasu M, Deng Y, Jijiwa M. Circulating microRNA Biomarker for Detecting Breast Cancer in High-Risk Benign Breast Tumors. Int J Mol Sci 2023; 24:7553. [PMID: 37108716 PMCID: PMC10142546 DOI: 10.3390/ijms24087553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
High-risk benign breast tumors are known to develop breast cancer at high rates. However, it is still controversial whether they should be removed during diagnosis or followed up until cancer development becomes evident. Therefore, this study sought to identify circulating microRNAs (miRNAs) that could serve as detection markers of cancers arising from high-risk benign tumors. Small RNA-seq was performed using plasma samples collected from patients with early-stage breast cancer (CA) and high-risk (HB), moderate-risk (MB), and no-risk (Be) benign breast tumors. Proteomic profiling of CA and HB plasma was performed to investigate the underlying functions of the identified miRNAs. Our findings revealed that four miRNAs, hsa-mir-128-3p, hsa-mir-421, hsa-mir-130b-5p, and hsa-mir-28-5p, were differentially expressed in CA vs. HB and had diagnostic power to discriminate CA from HB with AUC scores greater than 0.7. Enriched pathways based on the target genes of these miRNAs indicated their association with IGF-1. Furthermore, the Ingenuity Pathway Analysis performed on the proteomic data revealed that the IGF-1 signaling pathway was significantly enriched in CA vs. HB. In conclusion, these findings suggest that these miRNAs could potentially serve as biomarkers for detecting early-stage breast cancer from high-risk benign tumors by monitoring IGF signaling-induced malignant transformation.
Collapse
Affiliation(s)
| | | | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.N.)
| |
Collapse
|
8
|
Hosseini SF, Javanshir-Giv S, Soleimani H, Mollaei H, Sadri F, Rezaei Z. The importance of hsa-miR-28 in human malignancies. Biomed Pharmacother 2023; 161:114453. [PMID: 36868012 DOI: 10.1016/j.biopha.2023.114453] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
MicroRNA production in tumorigenesis is dysregulated by a variety of processes, such as proliferation and removal of microRNA genes, aberrant transcriptional regulation of microRNAs, disrupted epigenetic alterations, and failures in the miRNA biogenesis machinery. Under some circumstances, miRNAs may act as tumorigenic and maybe anti-oncogenes. Tumor aspects such as maintaining proliferating signals, bypassing development suppressors, delaying apoptosis, stimulating metastasis and invasion, and promoting angiogenesis have been linked to dysfunctional and dysregulated miRNAs. MiRNAs have been found as possible biomarkers for human cancer in a great deal of research, which requires additional evaluation and confirmation. It is known that hsa-miR-28 can function as an oncogene or tumor suppressor in many malignancies, and it does this by modulating the expression of several genes and the downstream signaling network. MiR-28-5p and miR-28-3p, which originate from the same RNA hairpin precursor miR-28, have essential roles in a variety of cancers. This review outlines the function and mechanisms of miR-28-3p and miR-28-5p in human cancers and illustrates the miR-28 family's potential utility as a diagnostic biomarker for prognosis and early detection of cancers.
Collapse
Affiliation(s)
- Seyede Fatemeh Hosseini
- Faculty Member, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Setareh Javanshir-Giv
- Faculty of Medicine, Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hanieh Soleimani
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
9
|
de Nóbrega M, Dos Reis MB, Pereira ÉR, de Souza MF, de Syllos Cólus IM. The potential of cell-free and exosomal microRNAs as biomarkers in liquid biopsy in patients with prostate cancer. J Cancer Res Clin Oncol 2022; 148:2893-2910. [PMID: 35922694 DOI: 10.1007/s00432-022-04213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Prostate cancer (PCa) is the 4th most diagnosed cancer and the 8th leading cause of cancer-related death worldwide. Currently, clinical risk stratification models including factors like PSA levels, Gleason score, and digital rectal examination are used for this purpose. There is a need for novel biomarkers that can distinguish between indolent and aggressive pathology and reduce the risk of overdiagnosis/overtreatment. Liquid biopsy has a non-invasive character, can lead to less morbidity and provide new biomarkers, such as miRNAs, that regulate diverse important cellular processes. Here, we report an extended revision about the role of cell-free and exosomal miRNAs (exomiRNAs) as biomarkers for screening, diagnosis, prognosis, or treatment of PCa. METHODS A comprehensive review of the published literature was conducted focusing on the usefulness, advantages, and clinical applications of cell-free and exomiRNAs in serum and plasma. Using PubMed database 53 articles published between 2012 and 2021 were selected and discussed from the perspective of their use as diagnostic, prognostic and therapeutic biomarkers for PCa. RESULTS We identify 119 miRNAs associated with PCa development and the cell-free and exosomal miR-21, miR-141, miR-200c, and miR-375 were consistently associated with progression in multiple cohorts/studies. However, standardized experimental procedures, and well-defined and clinically relevant cohort studies are urgently needed to confirm the biomarker potential of cell-free and exomiRNAs in serum or plasma. CONCLUSION Cell-free and exomiRNAs in serum or plasma are promising tools for be used as non-invasive biomarkers for diagnostic, prognosis, therapy improvement and clinical outcome prediction in PCa patients.
Collapse
Affiliation(s)
- Monyse de Nóbrega
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Mariana Bisarro Dos Reis
- Barretos Cancer Hospital (Molecular Oncology Research Center), Barretos, SP, CEP 14784-400, Brazil
| | - Érica Romão Pereira
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Marilesia Ferreira de Souza
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil.
| |
Collapse
|
10
|
The role of MicroRNA networks in tissue-specific direct and indirect effects of metformin and its application. Biomed Pharmacother 2022; 151:113130. [PMID: 35598373 DOI: 10.1016/j.biopha.2022.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Metformin is a first-line oral antidiabetic agent that results in clear benefits in relation to glucose metabolism and diabetes-related complications. The specific regulatory details and mechanisms underlying these benefits are still unclear and require further investigation. There is recent mounting evidence that metformin has pleiotropic effects on the target tissue development in metabolic organs, including adipose tissue, the gastrointestinal tract and the liver. The mechanism of actions of metformin are divided into direct effects on target tissues and indirect effects via non-targeted tissues. MicroRNAs (miRNAs) are a class of endogenous, noncoding, negative gene regulators that have emerged as important regulators of a number of diseases, including type 2 diabetes mellitus (T2DM). Metformin is involved in many aspects of miRNA regulation, and metformin treatment in T2DM should be associated with other miRNA targets. A large number of miRNAs regulation by metformin in target tissues with either direct or indirect effects has gradually been revealed in the context of numerous diseases and has gradually received increasing attention. This paper thoroughly reviews the current knowledge about the role of miRNA networks in the tissue-specific direct and indirect effects of metformin. Furthermore, this knowledge provides a novel theoretical basis and suggests therapeutic targets for the clinical treatment of metformin and miRNA regulators in the prevention and treatment of cancer, cardiovascular disorders, diabetes and its complications.
Collapse
|
11
|
Ahmed EA, Rajendran P, Scherthan H. The microRNA-202 as a Diagnostic Biomarker and a Potential Tumor Suppressor. Int J Mol Sci 2022; 23:ijms23115870. [PMID: 35682549 PMCID: PMC9180238 DOI: 10.3390/ijms23115870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNA-202 (miR-202) is a member of the highly conserved let-7 family that was discovered in Caenorhabditis elegans and recently reported to be involved in cell differentiation and tumor biology. In humans, miR-202 was initially identified in the testis where it was suggested to play a role in spermatogenesis. Subsequent research showed that miR-202 is one of the micro-RNAs that are dysregulated in different types of cancer. During the last decade, a large number of investigations has fortified a role for miR-202 in cancer. However, its functions can be double-edged, depending on context they may be tumor suppressive or oncogenic. In this review, we highlight miR-202 as a potential diagnostic biomarker and as a suppressor of tumorigenesis and metastasis in several types of tumors. We link miR-202 expression levels in tumor types to its involved upstream and downstream signaling molecules and highlight its potential roles in carcinogenesis. Three well-known upstream long non-coding-RNAs (lncRNAs); MALAT1, NORAD, and NEAT1 target miR-202 and inhibit its tumor suppressive function thus fueling cancer progression. Studies on the downstream targets of miR-202 revealed PTEN, AKT, and various oncogenes such as metadherin (MTDH), MYCN, Forkhead box protein R2 (FOXR2) and Kirsten rat sarcoma virus (KRAS). Interestingly, an upregulated level of miR-202 was shown by most of the studies that estimated its expression level in blood or serum of cancer patients, especially in breast cancer. Reduced expression levels of miR-202 in tumor tissues were found to be associated with progression of different types of cancer. It seems likely that miR-202 is embedded in a complex regulatory network related to the nature and the sensitivity of the tumor type and therapeutic (pre)treatments. Its variable roles in tumorigenesis are mediated in part thought its oncogene effectors. However, the currently available data suggest that the involved signaling pathways determine the anti- or pro-tumorigenic outcomes of miR-202’s dysregulation and its value as a diagnostic biomarker.
Collapse
Affiliation(s)
- Emad A. Ahmed
- Biological Sciences Department, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia;
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
- Correspondence: ; Tel.: +96-6568331887
| | - Peramaiyan Rajendran
- Biological Sciences Department, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia;
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Harry Scherthan
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, 80937 Munich, Germany;
| |
Collapse
|
12
|
Samami E, Pourali G, Arabpour M, Fanipakdel A, Shahidsales S, Javadinia SA, Hassanian SM, Mohammadparast S, Avan A. The Potential Diagnostic and Prognostic Value of Circulating MicroRNAs in the Assessment of Patients With Prostate Cancer: Rational and Progress. Front Oncol 2022; 11:716831. [PMID: 35186706 PMCID: PMC8855122 DOI: 10.3389/fonc.2021.716831] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/31/2021] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (P.C.) is one of the most frequent diagnosed cancers among men and the first leading cause of death with an annual incidence of 1.4 million worldwide. Prostate-specific antigen is being used for screening/diagnosis of prostate disease, although it is associated with several limitations. Thus, identification of novel biomarkers is warranted for diagnosis of patients at earlier stages. MicroRNAs (miRNAs) are recently being emerged as potential biomarkers. It has been shown that these small molecules can be circulated in body fluids and prognosticate the risk of developing P.C. Several miRNAs, including MiR-20a, MiR-21, miR-375, miR-378, and miR-141, have been proposed to be expressed in prostate cancer. This review summarizes the current knowledge about possible molecular mechanisms and potential application of tissue specific and circulating microRNAs as diagnosis, prognosis, and therapeutic targets in prostate cancer.
Collapse
Affiliation(s)
- Elham Samami
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Pourali
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Arabpour
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Fanipakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Alireza Javadinia
- Vasei Clinical Research Development Unit, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Mohammadparast
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Medical Sciences Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Amir Avan,
| |
Collapse
|
13
|
Role of miRNA-145, 148, and 185 and Stem Cells in Prostate Cancer. Int J Mol Sci 2022; 23:ijms23031626. [PMID: 35163550 PMCID: PMC8835890 DOI: 10.3390/ijms23031626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a role in cancer linked to the regulation of important cellular processes and pathways involving tumorigenesis, cell proliferation, differentiation, and apoptosis. A lot of human miRNA sequences have been identified which are linked to cancer pathogenesis. MicroRNAs, in prostate cancer (PC), play a relevant role as biomarkers, show a specific profile, and have been used as therapeutic targets. Prostate cancer (PC) is the most frequently diagnosed cancer in men. Clinical diagnoses among the gold standards for PC diagnosis and monitoring are prostate-specific antigen (PSA) testing, digital rectal examination, and prostate needle biopsies. PSA screening still has a large grey area of patients, which leads to overdiagnosis. Therefore, new biomarkers are needed to improve existing diagnostic tools. The miRNA expression profiles from tumour versus normal tissues are helpful and exhibit significant differences not only between cancerous and non-cancerous tissues, but also between different cancer types and subtypes. In this review, we focus on the role of miRNAs-145, 148, and 185 and their correlation with stem cells in prostate cancer pathogenesis. MiR-145, by modulating multiple oncogenes, regulates different cellular processes in PC, which are involved in the transition from localised to metastatic disease. MiR-148 is downregulated in high-grade tumours, suggesting that the miR-148-3 family might act as tumour suppressors in PC as a potential biomarker for detecting this disease. MiR-185 regulation is still unclear in being able to regulate tumour processes in PC. Nevertheless, other authors confirm the role of this miRNA as a tumour suppressor, suggesting its potential use as a suitable biomarker in disease prognosis. These three miRNAs are all involved in the regulation of prostate cancer stem cell behaviour (PCSCs). Within this contest, PCSCs are often involved in the onset of chemo-resistance in PC, therefore strategies for targeting this subset of cells are strongly required to control the disease. Hence, the relationship between these two players is interesting and important in prostate cancer pathogenesis and in PCSC stemness regulation, in the attempt to pave the way for novel therapeutic targets in prostate cancer.
Collapse
|
14
|
Rafat M, Yadegar N, Dadashi Z, Shams K, Mohammadi M, Abyar M. The prominent role of miR-942 in carcinogenesis of tumors. Adv Biomed Res 2022; 11:63. [PMID: 36133499 PMCID: PMC9483553 DOI: 10.4103/abr.abr_226_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
As a family of short noncoding RNAs, MicroRNAs have been identified as possible biomarkers for cancer discovery and assist in therapy control due to their epigenetic involvement in gene expression and other cellular biological processes. In the present review, the evidence for reaching the clinical effect and the molecular mechanism of miR-942 in various kinds of cancer is amassed. Dysregulation of miR-942 amounts in different kinds of malignancies, as bladder cancer, esophageal squamous cell carcinoma, breast cancer, cervical cancer, gastric cancer, colorectal cancer, Kaposi's sarcoma, melanoma, Hepatocellular carcinoma, nonsmall-cell lung cancer, oral squamous cell carcinoma, osteosarcoma, ovarian cancer, pancreatic ductal adenocarcinoma, renal cell carcinoma, and prostate cancer has stated a considerable increase or decrease in its level indicating its function as oncogene or tumor suppressor. MiR-942 is included in cell proliferation, migration, and invasion through cell cycle pathways, including pathways of transforming growth factor-beta signaling pathways, Wnt pathway, JAK/STAT pathway, PI3K/AKT pathway, apoptosis pathway, hippo signaling pathway, lectin pathway, interferon-gamma signaling, signaling by G-protein coupled receptor, developmental genes, nuclear factor-kappa B pathway, Mesodermal commitment pathway, and T-cell receptor signaling in cancer. An important biomarker, MiR-942 is a potential candidate for prediction in several cancers. The present investigation introduced miR-942 as a prognostic marker for early discovery of tumor progression, metastasis, and development.
Collapse
|
15
|
Prognostic value of miR-21 for prostate cancer: a systematic review and meta-analysis. Biosci Rep 2021; 42:230521. [PMID: 34931228 PMCID: PMC8753345 DOI: 10.1042/bsr20211972] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/09/2022] Open
Abstract
Elevated levels of miR-21 expression are associated with many cancers, suggesting it may be a promising clinical biomarker. In prostate cancer (PCa), however, there is still no consensus about the usefulness of miR-21 as an indicator of disease progression. This systematic review and meta-analysis was conducted to investigate the value of miR-21 expression as a prognostic measurement in PCa patients. Medline (Ovid), EMBASE, Web of Science, Scopus and Cochrane Library databases were systematically searched for relevant publications between 2010 to 2021. Studies exploring the relationship between miR-21 expression, PCa prognosis and clinicopathological factors were selected for review. Those reporting hazard ratio (HR) and 95% confidence intervals (CIs) were subject to meta-analyses. Fixed-effect models were employed to calculated pooled HRs and 95% CIs. Risk of bias in each study was assessed using QUIPS tool. Certainty of evidence in each meta-analysis was assessed using GRADE guidelines. A total of 64 studies were included in the systematic review. Of these, 11 were eligible for inclusion in meta-analysis. Meta-analyses revealed that high miR-21 expression was associated with poor prognosis: HR = 1.58 (95% CI = 1.19–2.09) for biochemical recurrence, MODERATE certainty; HR = 1.46 (95% CI = 1.06–2.01) for death, VERY LOW certainty; and HR = 1.26 (95% CI = 0.70–2.27) for disease progression, VERY LOW certainty. Qualitative summary revealed elevated miR-21 expression was significantly positively associated with PCa stage, Gleason score and risk groups. This systematic review and meta-analysis suggests that elevated levels of miR-21 are associated with poor prognosis in PCa patients. miR-21 expression may therefore be a useful prognostic biomarker in this disease.
Collapse
|
16
|
Wang T, Dong L, Sun J, Shao J, Zhang J, Chen S, Wang C, Wu G, Wang X. miR-145-5p: A Potential Biomarker in Predicting Gleason Upgrading of Prostate Biopsy Samples Scored 3+3=6. Cancer Manag Res 2021; 13:9095-9106. [PMID: 34916852 PMCID: PMC8671722 DOI: 10.2147/cmar.s336671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background The Gleason grading system is a major tool used for prediction of prostate cancer (PCa) behavior. Because of heterogeneity and sampling errors, prognosis is variable even among patients with the same Gleason score (GS). Therefore, more accurate biomarkers that complement the Gleason system are needed to improve the clinical management of PCa. Methods Formalin-fixed, paraffin embedded tissue samples were obtained from radical prostatectomy (RP) (patient set 1, n=53) and needle biopsy (patient set 2, n=107; patient set 3, n=119). Cancer tissues from pure regions of each Gleason pattern (GP) were separately collected using laser-captured microdissection, followed by Real-time-PCR to determine the relative expression of miRNAs, including miR-1-5p, miR-21-5p, miR-30d-5p, miR-100-5p, miR-145-5p, miR-224-5p, and miR-708-5p. miRNA’s association with Gleason upgrading (GU) was evaluated using receiver operator characteristics (ROC) curve and multivariate logistic regression analysis. The integrated miRNA targets prediction and enrichment analyses were performed to determine the potential functions of miRNA. Results It was found that miR-145-5p in GP3 from radical prostatectomy (RP) were overexpressed in patients with GS6 PCa compared with GS7 patients, which was further confirmed in a larger biopsy cohort. ROC curve analysis revealed that miR-145-5p in biopsy was significantly associated with GU upon RP. In multivariate analyses, miR-145-5p was an independent predictor of GU. Conclusion Our study indicated that differential expression of miRNAs existed in GP3 from pure GS6 and GS7 PCa, highlighting a path toward the clinical use of miRNAs in predicting GU and assisting in treatment modality selection.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Juanjuan Sun
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jialiang Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jian Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Siteng Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Gangfeng Wu
- Department of Urology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
- Correspondence: Gangfeng Wu Department of Urology, Shaoxing People’s Hospital, No. 568 Zhongxing North Road, Shaoxing, Zhejiang, 312000, People’s Republic of China Email
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Xiang Wang Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China Email
| |
Collapse
|
17
|
Saran U, Chandrasekaran B, Kolluru V, Tyagi A, Nguyen KD, Valadon CL, Shaheen SP, Kong M, Poddar T, Ankem MK, Damodaran C. Diagnostic molecular markers predicting aggressive potential in low-grade prostate cancer. Transl Res 2021; 231:92-101. [PMID: 33279680 DOI: 10.1016/j.trsl.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
Currently, clinicians rely on clinical nomograms to stratify progression risk at the time of diagnosis in patients with prostate cancer (CaP). However, these tools may not accurately distinguish aggressive potential in low-grade CaP. The current study determined the diagnostic potential of 3 molecular markers (ROCK1, RUNX3, and miR-301a) in terms of their ability to identify which low-grade tumors are likely to progress. Real-time PCR and immunohistochemical analysis were used to assess ROCK1, RUNX3, and miR-301a expression profiles in 118 serum and needle biopsy specimens. Expressions of ROCK1 and miR-301a were found to be significantly higher in Gleason 6 and 7 CaP as compared to BPH, while an inverse trend was observed with RUNX3. Further, incorporation of all 3 molecular markers significantly improved clinical nomograms' diagnostic accuracy and correlated with disease progression. Hence, in conclusion, the inclusion of these 3 molecular markers identified aggressive phenotype and predicted disease progression in low-grade CaP tumors at the time of diagnosis.
Collapse
Affiliation(s)
- Uttara Saran
- Department of Urology, University of Louisville, Louisville, KY
| | | | | | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY
| | - Kristy D Nguyen
- Department of Urology, University of Louisville, Louisville, KY
| | | | - Saad P Shaheen
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY
| | | | | | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY
| | | |
Collapse
|
18
|
Zhang F, Yuan X, Sun H, Yin X, Gao Y, Zhang M, Jia Z, Yu M, Ying S, Xia H, Ju L, Xiao Y, Tao H, Lou J, Zhu L. A nontoxic dose of chrysotile can malignantly transform Met-5A cells, in which microRNA-28 has inhibitory effects. J Appl Toxicol 2021; 41:1879-1892. [PMID: 33890321 DOI: 10.1002/jat.4174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/11/2022]
Abstract
Chrysotile, which is classified as a class I carcinogen by the International Agency for Research on Cancer (IARC), has extensive application in the industry and can lead to lung or other cancers. However, whether chrysotile causes malignant mesothelioma and its molecular mechanism remain debatable. Thus, this study aimed to demonstrate the mesothelioma-inducing potential of chrysotile at the mesothelial cellular level and the function of microRNA-28 in malignantly transformed mesothelial MeT-5A cells. MeT-5A cells malignantly transformed by a nontoxic dose of chrysotile were named Asb-T, and miR-28 expression was downregulated in Asb-T cells. Restoration of miR-28 expression inhibited the proliferation, migration and invasion of Asb-T cells. We verified that IMPDH is a putative target of miR-28. The expression of IMPDH was significantly higher in Asb-T MeT-5A cells than in control cells, whereas the opposite trend was observed with miR-28 overexpression. Additionally, inhibition of IMPDH had similar effects as miR-28 overexpression. After miR-28 was elevated or IMPDH was inhibited, Ras activation was reduced, and its downstream pathways (the Erk and Akt signalling pathways) were inhibited. Surprisingly, the content of miR-28 in the blood of mesothelioma patients was higher than that in control subjects. Overall, nontoxic doses of chrysotile can cause malignant transformation of MeT-5A cells. Moreover, miR-28 inhibits the proliferation, migration and invasion of Asb-T MeT-5A cells, negatively regulates the expression of IMPDH through the Ras signalling pathway and may be an important therapeutic target.
Collapse
Affiliation(s)
- Fangfang Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Xiuyuan Yuan
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Hongjing Sun
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhong Yin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanan Gao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Min Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Zhenyu Jia
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Min Yu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Shibo Ying
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Hailing Xia
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Li Ju
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yun Xiao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - He Tao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Lijin Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
19
|
Alimoradi N, Firouzabadi N, Fatehi R. How metformin affects various malignancies by means of microRNAs: a brief review. Cancer Cell Int 2021; 21:207. [PMID: 33849540 PMCID: PMC8045276 DOI: 10.1186/s12935-021-01921-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin known as the first-line orally prescribed drug for lowering blood glucose in type II diabetes (T2DM) has recently found various therapeutic applications including in cancer. Metformin has been studied for its influences in prevention and treatment of cancer through multiple mechanisms such as microRNA (miR) regulation. Alteration in the expression of miRs by metformin may play an important role in the treatment of various cancers. MiRs are single-stranded RNAs that are involved in gene regulation. By binding to the 3'UTR of target mRNAs, miRs influence protein levels. Irregularities in the expression of miRs that control the expression of oncogenes and tumor suppressor genes are associated with the onset and progression of cancer. Metformin may possess an effect on tumor prevention and progression by modifying miR expression and downstream pathways. Here, we summarize the effect of metformin on different types of cancer by regulating the expression of various miRs and the associated downstream molecules.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Tölle A, Jung K, Friedersdorff F, Maxeiner A, Lein M, Fendler A, Stephan C. The discriminative ability of Prostate Health Index to detect prostate cancer is enhanced in combination with miR-222-3p. Cancer Biomark 2021; 30:381-393. [PMID: 33361585 DOI: 10.3233/cbm-201600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND There is an urgent need for better prostate cancer (PCa) biomarkers due to the low specificity of prostate specific antigen (PSA). OBJECTIVE Prostate Health Index (PHI) is an advanced PSA-based test for early detection of PCa. The present study aim was to investigate the potential improvement of diagnostic accuracy of PHI by its combination with suitable discriminative microRNAs (miRNAs). METHODS A two-phase study was performed. In a discovery phase, a panel of 177 miRNAs was measured in ten men with biopsy proven PCa and ten men with histologically no evidence of malignancy (NEM). These results were validated in a second phase including 25 patients in each group. The patients of all groups were matched regarding their PSA values and PHI were measured. RESULTS Based on data in the discovery phase, four elevated miRNAs were selected as potential miRNA candidates for further validation. A combination of miR-222-3p as the best discriminative miRNA with PHI extended the diagnostic accuracy of PHI from an AUC value of 0.690 to 0.787 and resulted in a sensitivity of 72.0% and a specificity of 84.0%. CONCLUSION Circulating microRNAs show useful diagnostic potential in combination with common used biomarkers to enhance their diagnostic power.
Collapse
Affiliation(s)
- Angelika Tölle
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| | - Frank Friedersdorff
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Maxeiner
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Lein
- Berlin Institute for Urologic Research, Berlin, Germany.,Department of Urology, Sana Medical Center Offenbach, Offenbach/Main, Germany
| | - Annika Fendler
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Cancer Research Program, Berlin, Germany.,Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Carsten Stephan
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| |
Collapse
|
21
|
Fu C, Zhang Q, Wang A, Yang S, Jiang Y, Bai L, Wei Q. EWI-2 controls nucleocytoplasmic shuttling of EGFR signaling molecules and miRNA sorting in exosomes to inhibit prostate cancer cell metastasis. Mol Oncol 2021; 15:1543-1565. [PMID: 33605506 PMCID: PMC8096798 DOI: 10.1002/1878-0261.12930] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/18/2021] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
Early and accurate diagnosis of prostate cancer (PCa) is extremely important, as metastatic PCa remains hard to treat. EWI-2, a member of the Ig protein subfamily, is known to inhibit PCa cell migration. In this study, we found that EWI-2 localized on both the cell membrane and exosomes regulates the distribution of miR-3934-5p between cells and exosomes. Interestingly, we observed that EWI-2 is localized not only on the plasma membrane but also on the nuclear envelope (nuclear membrane), where it regulates the nuclear translocation of signaling molecules and miRNA. Collectively, these functions of EWI-2 found in lipid bilayers appear to regulate PCa cell metastasis through the epidermal growth factor receptor-mitogen-activated protein kinase-extracellular-signal-regulated kinase (EGFR-MAPK-ERK) pathway. Our research provides new insights into the molecular function of EWI-2 on PCa metastasis, and highlights EWI-2 as a potential PCa biomarker.
Collapse
Affiliation(s)
- Chenying Fu
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Ani Wang
- Cadiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Songpeng Yang
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Bai
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Quan Wei
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Rehabilitation Medicine Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Rajendiran S, Maji S, Haddad A, Lotan Y, Nandy RR, Vishwanatha JK, Chaudhary P. MicroRNA-940 as a Potential Serum Biomarker for Prostate Cancer. Front Oncol 2021; 11:628094. [PMID: 33816263 PMCID: PMC8017318 DOI: 10.3389/fonc.2021.628094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer is one of the leading causes of death despite an astoundingly high survival rate for localized tumors. Though prostate specific antigen (PSA) test, performed in conjunction with digital rectal examinations, is reasonably accurate, there are major caveats requiring a thorough assessment of risks and benefits prior to conducting the test. MicroRNAs, a class of small non-coding RNAs, are stable molecules that can be detected in circulation by non-invasive methods and have gained importance in cancer prognosis and diagnosis in the recent years. Here, we investigate circulating miR-940, a miRNA known to play a role in prostate cancer progression, in both cell culture supernatants as well as patient serum and urine samples to determine the utility of miR-940 as a new molecular marker for prostate cancer detection. We found that miR-940 was significantly higher in serum from cancer patients, specifically those with clinically significant tumors (GS ≥ 7). Analysis of receiver operating characteristic curve demonstrated that miR-940 in combination with PSA had a higher area under curve value (AUC: 0.818) than the miR-940 alone (AUC: 0.75) for the diagnosis of prostate cancer. This study provides promising results suggesting the use of miR-940 for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Smrithi Rajendiran
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Sayantan Maji
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ahmed Haddad
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rajesh R Nandy
- School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Jamboor K Vishwanatha
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States.,Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Pankaj Chaudhary
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States.,Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
23
|
Zhao L, Ye J, Lu Y, Sun C, Deng X. lncRNA SNHG17 promotes pancreatic carcinoma progression via cross-talking with miR-942. Am J Transl Res 2021; 13:1037-1050. [PMID: 33841638 PMCID: PMC8014386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Long non-coding RNA (lncRNA) SNHG17 has been shown to modulate the biological behavior of multiple cancers (e.g., colorectal and lung cancers). However, its involvement in pancreatic cancer (PC) has not been explored; therefore, in the present study, we sought to examine this involvement. METHODS First, the mRNA expression levels of various genes were quantified in PC tissues and cell lines using quantitative reverse-transcription PCR (qRT-PCR). The interaction between SNHG17 and miR-942 was explored by bioinformatics prediction as well as a dual luciferase reporter assay. The proliferation and viability of pancreatic carcinoma cells were examined using cell counting kit-8 and MTT assays, respectively. Cellular migratory and invasive properties were evaluated using transwell migration and wound healing assays. Cell death was measured using flow cytometry. Protein expression was quantified by western blotting. RESULTS SNHG17 expression was markedly higher in human PC specimens and cell lines than in normal healthy tissues and pancreatic epithelial cells. MiR-942 expression displayed the opposite trend. Bioinformatics prediction and a dual luciferase reporter assay confirmed that SNHG17 serves as a sponge for miR-942. Loss-of-function assay revealed that SNHG17 silencing reduced the proliferation and viability of PC cells, impaired their migratory and invasive capacities, and led to their apoptosis. All these changes could be reversed by miR-942 inhibition. Further mechanical studies showed that SNHG17 silencing decreased the expression of several tumor modulators, including XXX, and this decrease was countered by miR-942 inhibition. CONCLUSION Our study provides experimental evidence for an interaction between SNHG17 and miR-942, which may unveil a new approach for PC pharmacotherapy.
Collapse
Affiliation(s)
- Liangchao Zhao
- Department of General Surgery, Shanghai Ruijin HospitalShanghai, China
| | - Jinhua Ye
- Department of General Surgery, Shanghai Ruijin HospitalShanghai, China
| | - Yifan Lu
- Department of General Surgery, Shanghai Ruijin HospitalShanghai, China
| | - Changjie Sun
- Department of General Surgery, Shanghai Ruijin HospitalShanghai, China
| | - Xiaxing Deng
- Pancreatic Disease Center, Shanghai Ruijin HospitalShanghai, China
| |
Collapse
|
24
|
Eniafe J, Jiang S. MicroRNA-99 family in cancer and immunity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1635. [PMID: 33230974 DOI: 10.1002/wrna.1635] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
The microRNA (miR)-99 family comprising miR-99a, miR-99b, and miR-100 is an evolutionarily conserved family with existence dating prior to the bilaterians. Members are typically oncogenic in leukemia while their functional roles in other cancers alternate between that of a tumor suppressor and a tumor promoter. Targets of the miR-99 family rank in the lists of oncogenes and tumor suppressors, thereby illustrating the dual role of this miR family as oncogenic miRs (oncomiRs) and tumor suppressing miRs (TSmiRs) in different cellular contexts. In addition to their functional roles in cancers, miR-99 family is implicated in the modulation of macrophage inflammatory responses and T-cell subsets biology, thereby exerting critical roles in the maintenance of tissue homeostasis, establishment of peripheral tolerance as well as resolution of an inflammatory reaction. Here, we review emerging knowledge of this miR family and discuss remaining concerns linked to their activities. A better dissection of the functional roles of miR-99 family members in cancer and immunity will help in the development of novel miR-99-based therapeutics for the treatment of human cancer and immune-related diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Shuai Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
25
|
Fort RS, Garat B, Sotelo-Silveira JR, Duhagon MA. vtRNA2-1/nc886 Produces a Small RNA That Contributes to Its Tumor Suppression Action through the microRNA Pathway in Prostate Cancer. Noncoding RNA 2020; 6:E7. [PMID: 32093270 PMCID: PMC7151618 DOI: 10.3390/ncrna6010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
vtRNA2-1 is a vault RNA initially classified as microRNA precursor hsa-mir-886 and recently proposed as "nc886", a new type of non-coding RNA involved in cancer progression acting as an oncogene and tumor suppressor gene in different tissues. We have shown that vtRNA2-1/nc886 is epigenetically repressed in neoplastic cells, increasing cell proliferation and invasion in prostate tissue. Here we investigate the ability of vtRNA2-1/nc886 to produce small-RNAs and their biological effect in prostate cells. The interrogation of public small-RNA transcriptomes of prostate and other tissues uncovered two small RNAs, snc886-3p and snc886-5p, derived from vtRNA2-1/nc886 (previously hsa-miR-886-3p and hsa-miR-886-5p). Re-analysis of PAR-CLIP and knockout of microRNA biogenesis enzymes data showed that these small RNAs are products of DICER, independent of DROSHA, and associate with Argonaute proteins, satisfying microRNA attributes. In addition, the overexpression of snc886-3p provokes the downregulation of mRNAs bearing sequences complementary to its "seed" in their 3'-UTRs. Microarray and in vitro functional assays in DU145, LNCaP and PC3 cell lines revealed that snc886-3p reduced cell cycle progression and increases apoptosis, like its precursor vtRNA2-1/nc886. Finally, we found a list of direct candidate targets genes of snc886-3p upregulated and associated with disease condition and progression in PRAD-TCGA data. Overall, our findings suggest that vtRNA2-1/nc886 and its processed product snc886-3p are synthesized in prostate cells, exerting a tumor suppressor action.
Collapse
Affiliation(s)
- Rafael Sebastián Fort
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - José Roberto Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - María Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
26
|
McDonald AC, Raman JD, Shen J, Liao J, Pandya B, Vira MA. Circulating microRNAs in plasma before and after radical prostatectomy. Urol Oncol 2019; 37:814.e1-814.e7. [PMID: 31421994 DOI: 10.1016/j.urolonc.2019.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 01/30/2023]
Abstract
PURPOSE MicroRNAs (miRNAs/miRs) as circulating biomarkers for prostate cancer have yet to be determined. We examined whether circulating miRNAs in plasma could be employed as biomarkers of disease among men treated for prostate cancer by radical prostatectomy (RP). METHODS The expression of 17 preselected circulating miRNAs associated with prostate cancer (miR-381, -34a, -365, -122, -375, -1255b, -34b, -450b-5p, -885-5p, -1260, -150, -378, -671-3p, -148a, and -224) or high-grade prostate cancer (miR-28 and -100) in plasma at prostate biopsy was examined in pre- and post-RP plasma of prostate cancer patients using real-time PCR and compared using Wilcoxon signed-ranked test. Wilcoxon rank sum test was used to compare the expression of miRNAs in pre-RP plasma between pathologic tumor stage (T2 vs. T3) and Gleason score (6-7 [3 + 4] vs. ≥ 7 [4 + 3]) groups. Partial correlation coefficient between the expression of miRNAs in pre-RP plasma and serum prostate-specific antigen (PSA) level at RP, adjusting for age, was calculated. RESULTS Twenty-nine men, aged 43 to 77 years, were included. Median follow-up time after RP was 55 days. There was no significant change in the expression of miRNAs in plasma from before to after RP. However, higher expression of miR-34a, -378, and 450b-5p in pre-RP plasma was observed among T3 compared to T2 patients (P values = 0.01). Overall, there were no statistically significant relationships observed between the expression of these circulating miRNAs and Gleason score and serum PSA at RP. CONCLUSIONS There was no significant change in the expression of circulating miRNAs in plasma from before to approximately 2 months after RP. This finding may be due to the lack of immediate effect RP may have on the expression of circulating miRNAs. However, higher expression of miR-34a, -378, and -450b-5p in plasma was found among patients with more advanced disease at RP. A longer follow-up time after RP is warranted to investigate RP's possible influence on circulating miRNAs among men treated for prostate cancer and to evaluate miRNAs' diagnostic potential for prostate cancer.
Collapse
Affiliation(s)
- Alicia C McDonald
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA.
| | - Jay D Raman
- Division of Urology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA
| | - Jing Shen
- Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY
| | - Jason Liao
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA
| | - Bhavyata Pandya
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA
| | - Manish A Vira
- Smith Institute for Urology, Zucker School of Medicine at Hofstra/Northwell, Northwell Cancer Institute, New Hyde Park, NY
| |
Collapse
|