1
|
Archer M, Lin KM, Kolanukuduru KP, Zhang J, Ben-David R, Kotula L, Kyprianou N. Impact of cell plasticity on prostate tumor heterogeneity and therapeutic response. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:331-351. [PMID: 39839748 PMCID: PMC11744350 DOI: 10.62347/yfrp8901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic process of lineage plasticity in which epithelial cancer cells acquire mesenchymal traits, enabling them to metastasize to distant organs. This review explores the current understanding of how lineage plasticity and phenotypic reprogramming drive prostate cancer progression to lethal stages, contribute to therapeutic resistance, and highlight strategies to overcome the EMT phenotype within the prostate tumor microenvironment (TME). Emerging evidence reveals that prostate tumor cells can undergo lineage switching, adopting alternative growth pathways in response to anti-androgen therapies and taxane-based chemotherapy. These adaptive mechanisms support tumor survival and growth, underscoring the need for deeper insights into the processes driving prostate cancer differentiation, including neuroendocrine differentiation and lineage plasticity. A comprehensive understanding of these mechanisms will pave the way for innovative therapeutic strategies. Effectively targeting prostate cancer cells with heightened plasticity and therapeutic vulnerability holds promise for overcoming treatment resistance and preventing tumor recurrence. Such advancements are critical for developing effective approaches to prostate cancer treatment and improving patient survival outcomes.
Collapse
Affiliation(s)
- Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | - Kevin M Lin
- Department of Urology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical UniversitySyracuse, NY, USA
| | | | - Joy Zhang
- Department of Urology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuse, NY, USA
| | - Reuben Ben-David
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical UniversitySyracuse, NY, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Pathology and Molecular & Cell Based Medicine, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| |
Collapse
|
2
|
Archer M, Begemann D, Gonzalez-Kozlova E, Nepali PR, Labanca E, Shepherd P, Dogra N, Navone N, Kyprianou N. Kinesin Facilitates Phenotypic Targeting of Therapeutic Resistance in Advanced Prostate Cancer. Mol Cancer Res 2024; 22:730-745. [PMID: 38648082 PMCID: PMC11296928 DOI: 10.1158/1541-7786.mcr-23-1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Understanding the mechanisms underlying resistance is critical to improving therapeutic outcomes in patients with metastatic castration-resistant prostate cancer. Previous work showed that dynamic interconversions between epithelial-mesenchymal transition to mesenchymal-epithelial transition defines the phenotypic landscape of prostate tumors, as a potential driver of the emergence of therapeutic resistance. In this study, we use in vitro and in vivo preclinical MDA PCa patient-derived xenograft models of resistant human prostate cancer to determine molecular mechanisms of cross-resistance between antiandrogen therapy and taxane chemotherapy, underlying the therapeutically resistant phenotype. Transcriptomic profiling revealed that resistant and sensitive prostate cancer C4-2B cells have a unique differential gene signature response to cabazitaxel. Gene pathway analysis showed that sensitive cells exhibit an increase in DNA damage, while resistant cells express genes associated with protein regulation in response to cabazitaxel. The patient-derived xenograft model specimens are from patients who have metastatic lethal castration-resistant prostate cancer, treated with androgen deprivation therapy, antiandrogens, and chemotherapy including second-line taxane chemotherapy, cabazitaxel. Immunohistochemistry revealed high expression of E-cadherin and low expression of vimentin resulting in redifferentiation toward an epithelial phenotype. Furthermore, the mitotic kinesin-related protein involved in microtubule binding and the SLCO1B3 transporter (implicated in cabazitaxel intracellular transport) are associated with resistance in these prostate tumors. Combinational targeting of kinesins (ispinesib) with cabazitaxel was more effective than single monotherapies in inducing cell death in resistant prostate tumors. Implications: Our findings are of translational significance in identifying kinesin as a novel target of cross-resistance toward enhancing therapeutic vulnerability and improved clinical outcomes in patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane Begemann
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prerna R. Nepali
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Estefania Labanca
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Shepherd
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Navneet Dogra
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology and Molecular & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nora Navone
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology and Molecular & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
4
|
Shan X, Li X, Luo Z, Lin Q, Lu Y, Jiang M, Zhang J, Huang J, Xie L, Guo X, Liu X, Shi Y, Liu Y, Yin H, Yang F, Luo L, You J. A Clinically-Achievable Injectable and Sprayable in Situ Lyotropic Liquid Crystalline Platform in Treating Hormone-Sensitive and Castration-Resistant Prostate Cancer. ACS NANO 2023; 17:6045-6061. [PMID: 36881028 DOI: 10.1021/acsnano.3c00649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
When it comes to long-acting injections, lyotropic liquid crystals (LLCs) are considered as an effective and powerful drug delivery technology due to their low manufacturing and injection difficulty, consistent releasing behaviors with low burst, as well as broadly applicable drug loading capacity. However, monoolein and phytantriol, as two widely used LLC-forming materials, may give rise to tissue cytotoxicity and undesired immunological responses, which may hinder the wide application of this technology. In this study, we opted for two ingredients, phosphatidylcholine and α-tocopherol, as carriers on account of their nature-obtainable and biocompatible qualities. By changing the ratios between them, we conducted research on crystalline types, nanosized structures, viscoelastic differences, characteristics of releasing behaviors, and in vivo safety. To fully exploit this in situ LLC platform with both injectability and sprayability, we focused on the treatment of both hormone-sensitive (HSPC) and castration-resistant prostate cancer (CRPC). For HSPC, we found that spraying leuprolide and a cabazitaxel-loaded LLC platform on the tumor bed after resection greatly reduced tumor metastatic rate and prolonged the survival time. Besides, for CRPC, our results demonstrated that although leuprolide (a kind of drug for castration) alone could hardly limit the progression of CRPC with low MHC-I expression, its combination with cabazitaxel in our LLC platform achieved a significantly better tumor-inhibiting and anti-recurrent efficacy than single cabazitaxel-loaded LLC platform, owing to enhanced CD4+ T cell infiltration in tumors and immune-potentiating cytokines. In conclusion, our dual-functional and clinically achievable strategy might provide a treating solution toward both HSPC and CRPC.
Collapse
Affiliation(s)
- Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Lin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lin Xie
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Fuchun Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
5
|
Kaur P, Mohamed NE, Archer M, Figueiro MG, Kyprianou N. Impact of Circadian Rhythms on the Development and Clinical Management of Genitourinary Cancers. Front Oncol 2022; 12:759153. [PMID: 35356228 PMCID: PMC8959649 DOI: 10.3389/fonc.2022.759153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
The circadian system is an innate clock mechanism that governs biological processes on a near 24-hour cycle. Circadian rhythm disruption (i.e., misalignment of circadian rhythms), which results from the lack of synchrony between the master circadian clock located in the suprachiasmatic nuclei (SCN) and the environment (i.e., exposure to day light) or the master clock and the peripheral clocks, has been associated with increased risk of and unfavorable cancer outcomes. Growing evidence supports the link between circadian disruption and increased prevalence and mortality of genitourinary cancers (GU) including prostate, bladder, and renal cancer. The circadian system also plays an essential role on the timely implementation of chronopharmacological treatments, such as melatonin and chronotherapy, to reduce tumor progression, improve therapeutic response and reduce negative therapy side effects. The potential benefits of the manipulating circadian rhythms in the clinical setting of GU cancer detection and treatment remain to be exploited. In this review, we discuss the current evidence on the influence of circadian rhythms on (disease) cancer development and hope to elucidate the unmet clinical need of defining the extensive involvement of the circadian system in predicting risk for GU cancer development and alleviating the burden of implementing anti-cancer therapies.
Collapse
Affiliation(s)
- Priya Kaur
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nihal E. Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mariana G. Figueiro
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Tisch Cancer Institute, Mount Sinai Health, New York, NY, United States,*Correspondence: Natasha Kyprianou, ; Mariana G. Figueiro,
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Tisch Cancer Institute, Mount Sinai Health, New York, NY, United States,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States,*Correspondence: Natasha Kyprianou, ; Mariana G. Figueiro,
| |
Collapse
|
6
|
Zhou C, Chen Y, He X, Zheng Z, Xue D. Functional Implication of Exosomal miR-217 and miR-23b-3p in the Progression of Prostate Cancer. Onco Targets Ther 2020; 13:11595-11606. [PMID: 33209036 PMCID: PMC7670263 DOI: 10.2147/ott.s272869] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Objective The microRNA expression profile of plasma exosomes in prostate cancer (PCa) is of critical importance in the disease exploration. This study aimed to explore the clinical application of exosomal miRNAs as biomarkers for PCa. Methods Exosome-like vesicles of PCa patients and healthy controls were purified by differential centrifugation. The purified vesicles within the ranges of 50 and 100 nm were classified as exosomes according to the results of transmission electron microscopy and Western blot. Both, in vitro and in vivo, validations were performed by small RNA sequencing, CCK8, RT-qPCR, flow cytometry, Western blot, transwell and immunofluorescent staining assays. Results High-throughput sequencing identified that 94 miRNAs were differentially expressed in PCa patients in comparison with healthy controls (P<0.01; fold change ≥2). Among them, 64 miRNAs were upregulated, and 30 miRNAs were downregulated. In comparison to the healthy controls, the expression levels of miR-217 were significantly upregulated, while miR-23b-3p were significantly downregulated in the exosomes and serum collected from PCa patients. Both, in vitro and in vivo, studies revealed that exosomes secreted by PCa cells with up-regulated miR-217 levels promoted cell proliferation and invasion; meanwhile, the exosomes with up-regulated miR-23b-3p levels inhibited cell proliferation and invasion. The epithelial–mesenchymal transition process may have been involved in the above-mentioned regulation. Conclusion This study identified the dysregulated expression of exosomal miRNAs in PCa patients, including miR-217 and miR-23b-3p, by validating their function on proliferation and invasion in PCa cells. This regulation may have been affected by the epithelial–mesenchymal transition process, suggesting that they can be used as potential targets in the diagnosis and treatment of PCa.
Collapse
Affiliation(s)
- Cuixing Zhou
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Zhuojun Zheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| |
Collapse
|