1
|
Gu Y, Chen X, Tian M, Liu K. Erythroblast transformation-specific-related gene promotes metastasis of oral squamous cell carcinoma by transcriptionally upregulating peroxiredoxin 1. J Oral Pathol Med 2024; 53:404-413. [PMID: 38797866 DOI: 10.1111/jop.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Some studies confirmed that erythroblast transformation-specific-related gene (ERG) may be a pathogenic factor of oral squamous cell carcinoma (OSCC). However, the undergoing molecular mechanism has not been elucidated yet. OBJECTIVE In this study, the investigation will focus on how the transcription factor ERG modulates the biological behaviors of OSCC. METHODS In this study, cancer tissue specimens and corresponding paracancer tissues were collected from 54 patients. Real-time polymerase chain reaction analysis and Western blots were employed to detect the expression of multiple genes. Cell proliferation assays, Transwell, and flow cytometry assay were utilized to detect the proliferation, invasion, and apoptosis of OSCC cell, respectively. Dual luciferase reporter gene and chromatin immunoprecipitation assays were conducted to verify the regulation of ERG on PRDX1. RESULTS ERG exhibits high expression levels in OSCC. Inhibition of ERG has been shown to effectively suppress the malignant growth of OSCC cells. Moreover, ERG has been found to transcriptionally upregulate the expression of PRDX1. The knockdown of PRDX1 has demonstrated its ability to inhibit the malignant growth of OSCC cells. Interestingly, when PRDX1 is overexpressed, it attenuates the inhibitory effect of si-ERG on the malignant growth of OSCC cells. This suggests that PRDX1 may play a crucial role in mediating the impact of ERG on malignancy in OSCC cells. CONCLUSION The transcription factor ERG promotes the expression of PRDX1, which could enhance the proliferation and invasion while inhibiting the apoptosis of OSCC cells.
Collapse
Affiliation(s)
- Yujia Gu
- The Fifth Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
| | - Xue Chen
- The Fifth Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
| | - Mei Tian
- The Fifth Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
| | - Ke Liu
- Department of Stomatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Kaushal JB, Raut P, Muniyan S, Siddiqui JA, Alsafwani ZW, Seshacharyulu P, Nair SS, Tewari AK, Batra SK. Racial disparity in prostate cancer: an outlook in genetic and molecular landscape. Cancer Metastasis Rev 2024:10.1007/s10555-024-10193-8. [PMID: 38902476 DOI: 10.1007/s10555-024-10193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Prostate cancer (PCa) incidence, morbidity, and mortality rates are significantly impacted by racial disparities. Despite innovative therapeutic approaches and advancements in prevention, men of African American (AA) ancestry are at a higher risk of developing PCa and have a more aggressive and metastatic form of the disease at the time of initial PCa diagnosis than other races. Research on PCa has underlined the biological and molecular basis of racial disparity and emphasized the genetic aspect as the fundamental component of racial inequality. Furthermore, the lower enrollment rate, limited access to national-level cancer facilities, and deferred treatment of AA men and other minorities are hurdles in improving the outcomes of PCa patients. This review provides the most up-to-date information on various biological and molecular contributing factors, such as the single nucleotide polymorphisms (SNPs), mutational spectrum, altered chromosomal loci, differential gene expression, transcriptome analysis, epigenetic factors, tumor microenvironment (TME), and immune modulation of PCa racial disparities. This review also highlights future research avenues to explore the underlying biological factors contributing to PCa disparities, particularly in men of African ancestry.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Zahraa W Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Sujit S Nair
- Department of Urology and the Tisch Cancer Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ashutosh K Tewari
- Department of Urology and the Tisch Cancer Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Division of Urology, Department of Surgery, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
3
|
Shen X, Zhou C, Feng H, Li J, Xia T, Cheng X, Zhao R, Zou D. ETV1 Positively Correlated With Immune Infiltration and Poor Clinical Prognosis in Colorectal Cancer. Front Immunol 2022; 13:939806. [PMID: 35860243 PMCID: PMC9291282 DOI: 10.3389/fimmu.2022.939806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveNumerous studies recently suggested that the immune microenvironment could influence the development of colorectal cancer (CRC). These findings implied that the infiltration of immune cells could be a promising prognostic biomarker for CRC.MethodsFurthermore, the Oncomine database and R2 platform analysis were applied in our research to validate CRC clinical prognosis via expression levels of polyoma enhancer activator 3 (PEA3) members. We explored the correlation of ETV1, ETV4, and ETV5 with tumor-infiltrating immune cells (TIICs) in CRC tumor microenvironments via the Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA). Immunohistochemistry (IHC) was used to validate our CRC clinical data.ResultsOur findings indicated that the upregulation of PEA3 members including ETV1 and ETV5 was positively associated with poor prognosis in CRC patients. Meanwhile, ETV1 and ETV5 may play significant roles in the development progress of CRC. Furthermore, ETV1 tends to be associated with immune infiltration of CRC, especially with cancer-associated fibroblasts and M2 macrophages.ConclusionThese findings revealed that ETV1 and ETV5 played significant roles in the development of CRC. Moreover, ETV1 was significantly associated with the infiltration of cancer-associated fibroblasts and M2 macrophages in CRC. Targeting ETV1 can be a potential auspicious approach for CRC treatment.
Collapse
Affiliation(s)
- Xiaonan Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunhua Zhou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Feng
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialu Li
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxue Xia
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xi Cheng
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xi Cheng, ; Ren Zhao, ; Duowu Zou,
| | - Ren Zhao
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xi Cheng, ; Ren Zhao, ; Duowu Zou,
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xi Cheng, ; Ren Zhao, ; Duowu Zou,
| |
Collapse
|
4
|
Khosh Kish E, Choudhry M, Gamallat Y, Buharideen SM, D D, Bismar TA. The Expression of Proto-Oncogene ETS-Related Gene ( ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094772. [PMID: 35563163 PMCID: PMC9105369 DOI: 10.3390/ijms23094772] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ETS-related gene (ERG) is proto-oncogene that is classified as a member of the ETS transcription factor family, which has been found to be consistently overexpressed in about half of the patients with clinically significant prostate cancer (PCa). The overexpression of ERG can mostly be attributed to the fusion of the ERG and transmembrane serine protease 2 (TMPRSS2) genes, and this fusion is estimated to represent about 85% of all gene fusions observed in prostate cancer. Clinically, individuals with ERG gene fusion are mostly documented to have advanced tumor stages, increased mortality, and higher rates of metastasis in non-surgical cohorts. In the current review, we elucidate ERG’s molecular interaction with downstream genes and the pathways associated with PCa. Studies have documented that ERG plays a central role in PCa progression due to its ability to enhance tumor growth by promoting inflammatory and angiogenic responses. ERG has also been implicated in the epithelial–mesenchymal transition (EMT) in PCa cells, which increases the ability of cancer cells to metastasize. In vivo, research has demonstrated that higher levels of ERG expression are involved with nuclear pleomorphism that prompts hyperplasia and the loss of cell polarity.
Collapse
Affiliation(s)
- Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Sabrina Marsha Buharideen
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Dhananjaya D
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Calgary, AB T2V 1P9, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
5
|
Kuhlmann PK, Chen M, Luu M, Naser-Tavakolian A, Kim HL, Saouaf R, Daskivich TJ. Predictors of disparity between targeted and in-zone systematic cores during transrectal MR/US-fusion prostate biopsy. Urol Oncol 2022; 40:162.e1-162.e7. [DOI: 10.1016/j.urolonc.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
|
6
|
Mangolini A, Rocca C, Bassi C, Ippolito C, Negrini M, Dell'Atti L, Lanza G, Gafà R, Bianchi N, Pinton P, Aguiari G. DETECTION OF DISEASE‐CAUSING MUTATIONS IN PROSTATE CANCER BY NGS SEQUENCING. Cell Biol Int 2022; 46:1047-1061. [PMID: 35347810 PMCID: PMC9320837 DOI: 10.1002/cbin.11803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Gene mutations may affect the fate of many tumors including prostate cancer (PCa); therefore, the research of specific mutations associated with tumor outcomes might help the urologist to identify the best therapy for PCa patients such as surgical resection, adjuvant therapy or active surveillance. Genomic DNA (gDNA) was extracted from 48 paraffin‐embedded PCa samples and normal paired tissues. Next, gDNA was amplified and analyzed by next‐generation sequencing (NGS) using a specific gene panel for PCa. Raw data were refined to exclude false‐positive mutations; thus, variants with coverage and frequency lower than 100× and 5%, respectively were removed. Mutation significance was processed by Genomic Evolutionary Rate Profiling, ClinVar, and Varsome tools. Most of 3000 mutations (80%) were single nucleotide variants and the remaining 20% indels. After raw data elaboration, 312 variants were selected. Most mutated genes were KMT2D (26.45%), FOXA1 (16.13%), ATM (15.81%), ZFHX3 (9.35%), TP53 (8.06%), and APC (5.48%). Hot spot mutations in FOXA1, ATM, ZFHX3, SPOP, and MED12 were also found. Truncating mutations of ATM, lesions lying in hot spot regions of SPOP and FOXA1 as well as mutations of TP53 correlated with poor prognosis. Importantly, we have also found some germline mutations associated with hereditary cancer‐predisposing syndrome. gDNA sequencing of 48 cancer tissues by NGS allowed to detect new tumor variants as well as confirmed lesions in genes linked to prostate cancer. Overall, somatic and germline mutations linked to good/poor prognosis could represent new prognostic tools to improve the management of PCa patients.
Collapse
Affiliation(s)
- Alessandra Mangolini
- Department of Neuroscience and RehabilitationUniversity of Ferraravia fossato di mortara, 7444121FerraraItaly
| | - Christian Rocca
- UO Urology, St Anna Hospital, via Aldo Moro 844124FerraraItaly
| | - Cristian Bassi
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | | | - Massimo Negrini
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | - Lucio Dell'Atti
- Division of Urology, Department of Clinical, Special and Dental Science, University Hospital "Ospedali Riuniti", Marche Polytechnic University, 71 Conca Street60126AnconaItaly
| | - Giovanni Lanza
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | - Roberta Gafà
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | - Nicoletta Bianchi
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | - Paolo Pinton
- Department of Medical SciencesUniversity of Ferraravia fossato di mortara, 64/B44121FerraraItaly
| | - Gianluca Aguiari
- Department of Neuroscience and RehabilitationUniversity of Ferraravia fossato di mortara, 7444121FerraraItaly
| |
Collapse
|