1
|
Keller P, Hu S, Berger L, Nicola P, Schierholz F, Tamalunas A, Kale OE, Weinhold P, Waidelich R, Stief CG, Hennenberg M. Smooth muscle contractility of laser-enucleated prostate tissues and impacts of preoperative α 1-blocker treatment in patients with and without catheterization. Sci Rep 2025; 15:4985. [PMID: 39929919 PMCID: PMC11811036 DOI: 10.1038/s41598-025-88884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Prostate smooth muscle contraction is central in treatment of voiding symptoms in benign prostatic hyperplasia (BPH). Tissues from transurethral resection of the prostate (TURP) and radical prostatectomy (RP) for prostate cancer are widely used to study contractions. However, findings are limited by traumatization in TURP, and uncertain relationship to BPH in RP tissues. This study aims to examine contractions of laser-enucleated tissues. Tissues from holmium/thulium laser enucleation (HoLEP/ThuLEP) and TURP were contracted by KCl, noradrenaline and electric field stimulation (EFS) in an organ bath. Contractions were compared to RP tissues in previous studies. KCl-induced contractions averaged 2.5 mN, 0.7 mN and 3.3 mN in tissues from HoLEP/ThuLEP, TURP and RP, with non-responsive tissues included (2.4% HoLEP/ThuLEP, 37% TURP). Maximum EFS-induced contractions (Emax) averaged 47% of KCl in HoLEP/ThuLEP tissues, 27% in TURP tissues, and 68-235% in 21 previous studies with RP tissues. Emax values for noradrenaline averaged 99.7% in HoLEP/ThuLEP tissues, 56% in TURP tissues, and ranged from 92 to 260% in RP tissues. Preoperative α1-blocker treatment reduced EFS- and noradrenaline-induced contractions, and increased EC50 values for noradrenaline in laser-enucleated, catheterized patients, but not in patients without catheterization. Also, the ex vivo application of α1-blockers increased the EC50 values for noradrenaline and reduced Emax for EFS. Laser-enucleated tissues allow investigation of prostate smooth muscle contraction in medication-refractory voiding symptoms. Different impacts of preoperative α1-blocker treatment on ex vivo contractility in tissues from patients with and without catheterization point to clinically relevant heterogeneity of patients undergoing surgery for BPH.
Collapse
Affiliation(s)
- Patrick Keller
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sheng Hu
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Laurenz Berger
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Philip Nicola
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Felix Schierholz
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Oluwafemi E Kale
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Philipp Weinhold
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Raphaela Waidelich
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany.
- Urologische Klinik Und Poliklinik, Marchioninistr. 15, 81377, München, Germany.
| |
Collapse
|
2
|
Vatansever A, Yetemen M, Öngen G, Ocakoğlu G, Coşkun B. Characterizing prostate zonal shape changes associated with 5α-reductase inhibitors using MRI. Clin Anat 2024; 37:815-820. [PMID: 39165054 DOI: 10.1002/ca.24218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent medical disorder that primarily affects elderly males. It is distinguished by enhanced angiogenesis of the prostate, aggravating lower urinary tract symptoms (LUTS) and diminishing overall quality of life. Dutasteride, a 5α-reductase inhibitor, has emerged as a significant therapeutic choice for BPH owing to its efficacy in reducing prostate volume. The objective of this study is to analyze alterations in the shapes of prostate zones resulting from dutasteride treatment of BPH, using MRI. We examined 19 drug-administered patients and 33 non-drug-administered patients. MRI sections of all participants before and after drug treatment were collected retrospectively. The transition zone and peripheral zone of the prostate were marked with selected landmarks using TPSDIG v2.04. Generalized Procrustes Analysis was used to analyze shapes statistically. Our results showed that the 5α-reductase inhibitor significantly altered the shape of the transition zone by narrowing its posterior part. There were significant statistical differences between the drug-administered and non-drug-administered groups in the initial and final shapes of the transition zone. These findings indicate that the use of 5α-reductase inhibitors yielded favorable outcomes in terms of prostate size reduction and amelioration of symptoms associated with BPH.
Collapse
Affiliation(s)
- Alper Vatansever
- Department of Anatomy, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Melih Yetemen
- Department of Urology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Gökhan Öngen
- Department of Radiology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Gökhan Ocakoğlu
- Department of Biostatistics, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Burhan Coşkun
- Department of Urology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| |
Collapse
|
3
|
Tamalunas A, Wendt A, Springer F, Vigodski V, Trieb M, Eitelberger N, Poth H, Ciotkowska A, Rutz B, Hu S, Schulz H, Ledderose S, Rogenhofer N, Kolben T, Nössner E, Stief CG, Hennenberg M. Immunomodulatory imide drugs inhibit human detrusor smooth muscle contraction and growth of human detrusor smooth muscle cells, and exhibit vaso-regulatory functions. Biomed Pharmacother 2024; 177:117066. [PMID: 38981242 DOI: 10.1016/j.biopha.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The immunomodulatory imide drugs (IMiDs) thalidomide, lenalidomide and pomalidomide may exhibit therapeutic efficacy in the prostate. In lower urinary tract symptoms (LUTS), voiding and storage disorders may arise from benign prostate hyperplasia, or overactive bladder. While current therapeutic options target smooth muscle contraction or cell proliferation, side effects are mostly cardiovascular. Therefore, we investigated effects of IMiDs on human detrusor and porcine artery smooth muscle contraction, and growth-related functions in detrusor smooth muscle cells (HBdSMC). METHODS Cell viability was assessed by CCK8, and apoptosis and cell death by flow cytometry in cultured HBdSMC. Contractions of human detrusor tissues and porcine interlobar and coronary arteries were induced by contractile agonists, or electric field stimulation (EFS) in the presence or absence of an IMID using an organ bath. Proliferation was assessed by EdU assay and colony formation, cytoskeletal organization by phalloidin staining, RESULTS: Depending on tissue type, IMiDs inhibited cholinergic contractions with varying degree, up to 50 %, while non-cholinergic contractions were inhibited up to 80 % and 60 % for U46619 and endothelin-1, respectively, and EFS-induced contractions up to 75 %. IMiDs reduced viable HBdSM cells in a time-dependent manner. Correspondingly, proliferation was reduced, without showing pro-apoptotic effects. In parallel, IMiDs induced cytoskeletal disorganization. CONCLUSIONS IMiDs exhibit regulatory functions in various smooth muscle-rich tissues, and of cell proliferation in the lower urinary tract. This points to a novel drug class effect for IMiDs, in which the molecular mechanisms of action of IMiDs merit further consideration for the application in LUTS.
Collapse
Affiliation(s)
- Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany; Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany.
| | - Amin Wendt
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Florian Springer
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Victor Vigodski
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Moritz Trieb
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | | | - Henrik Poth
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Beata Rutz
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Sheng Hu
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Heiko Schulz
- Department of Pathology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Stephan Ledderose
- Department of Pathology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Nina Rogenhofer
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Elfriede Nössner
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Wang X, He W, Chen H, Yang R, Su H, DiSanto ME, Zhang X. Alteration of the Expression and Functional Activities of Myosin II Isoforms in Enlarged Hyperplastic Prostates. J Pers Med 2024; 14:381. [PMID: 38673008 PMCID: PMC11051519 DOI: 10.3390/jpm14040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Benign prostatic hyperplasia (BPH) is a common pathologic process in aging men, and the contraction of the prostatic smooth muscles (SMs) in the stroma plays a vital role in this pathogenesis, leading to lower urinary tract symptoms (LUTSs). The isoforms of both the SM myosin (SMM) and non-muscle myosin (NMM) are associated with the contraction type of the prostatic SMs, but the mechanism has not been fully elucidated. METHODS We collected prostate tissues from 30 BPH patients receiving surgical treatments, and normal human prostate samples were obtained from 12 brain-dead men. A testosterone-induced (T-induced) rat model was built, and the epithelial hyperplastic prostates were harvested. Competitive RT-PCR was used to detect the expression of SMM isoforms. We investigated the contractility of human prostate strips in vitro in an organ bath. RESULTS The results regarding the comparisons of SMM isoforms varied between rat models and human samples. In comparison with T-induced rats and controls, competitive RT-PCR failed to show any statistically significant difference regarding the compositions of SMM isoforms. For human prostates samples, BPH patients expressed more SM-1 isoforms (66.8% vs. 60.0%, p < 0.001) and myosin light chain-17b (MLC17b) (35.9% vs. 28.5%, p < 0.05) when compared to young donors. There was a significant decrease in prostate myosin heavy chain (MHC) expression in BPH patients, with a 66.4% decrease in MHC at the mRNA level and a 51.2% decrease at the protein level. The upregulated expression of non-muscle myosin heavy chain-B (NMMHC-B) was 1.6-fold at the mRNA level and 2.1-fold at the protein level. The organ bath study showed that isolated prostate strips from BPH patients produced slower tonic contraction compared to normal humans. CONCLUSION In this study, we claim that in the enlarged prostates of patients undergoing surgeries, MHC expression significantly decreased compared to normal tissues, with elevated levels of SM-1, MLC17b, and NMMHC-B isoforms. Modifications in SMM and NMM might play a role in the tonic contractile properties of prostatic SMs and the development of LUTS/BPH. Understanding this mechanism might provide insights into the origins of LUTS/BPH and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China; (X.W.)
| | - Weixiang He
- Department of Urology, Xijing Hospital of the Fourth Military Medical University, Xi’an 710000, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China; (X.W.)
| | - Rui Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China; (X.W.)
| | - Hongmei Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430071, China; (X.W.)
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
5
|
Katsimperis S, Kapriniotis K, Manolitsis I, Bellos T, Angelopoulos P, Juliebø-Jones P, Somani B, Skolarikos A, Tzelves L. Early investigational agents for the treatment of benign prostatic hyperplasia'. Expert Opin Investig Drugs 2024; 33:359-370. [PMID: 38421373 DOI: 10.1080/13543784.2024.2326023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Benign prostatic hyperplasia (BPH), as a clinical entity that affects many people, has always been in the forefront of interest among researchers, pharmaceutical companies, and physicians. Patients with BPH exhibit a diverse range of symptoms, while current treatment options can occasionally cause adverse events. All the aforementioned have led to an increased demand for more effective treatment options. AREAS COVERED This review summarizes the outcomes of new medications used in a pre-clinical and clinical setting for the management of male lower urinary tract symptoms (LUTS)/BPH and provides information about ongoing trials and future directions in the management of this condition. More specifically, sheds light upon drug categories, such as reductase‑adrenoceptor antagonists, drugs interfering with the nitric oxide (NO)/cyclic guanosine monophosphate (GMP) signaling pathway, onabotulinumtoxinA, vitamin D3 (calcitriol) analogues, selective cannabinoid (CB) receptor agonists, talaporfin sodium, inhibitor of transforming growth factor beta 1 (TGF-β1), drugs targeting the hormonal control of the prostate, phytotherapy, and many more. EXPERT OPINION Clinical trials are being conducted on a number of new medications that may emerge as effective therapeutic alternatives in the coming years.
Collapse
Affiliation(s)
- Stamatios Katsimperis
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ioannis Manolitsis
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Themistoklis Bellos
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Angelopoulos
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Patrick Juliebø-Jones
- Department of Urology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bhaskar Somani
- Department of Urology, University Hospital Southampton, Southampton, UK
| | - Andreas Skolarikos
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Lazaros Tzelves
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Urology, University College of London Hospitals (UCLH), London, UK
| |
Collapse
|
6
|
Hennenberg M, Michel MC. Adrenoceptors in the Lower Urinary Tract. Handb Exp Pharmacol 2024; 285:333-367. [PMID: 37455288 DOI: 10.1007/164_2023_678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Adrenoceptors importantly contribute to the physiological regulation of lower urinary tract (LUT) function and have become a target of several clinically successful treatments for major LUT diseases. In the bladder dome, β-adrenoceptor subtypes are found in multiple cell types and mediate relaxation of detrusor smooth muscle, perhaps partly indirectly by acting on afferent nerves and cells of the mucosa. β3-adrenoceptor agonists such as mirabegron and vibegron are used to treat overactive bladder syndrome. In the bladder trigone and urethra, α1-adrenoceptors cause contraction and thereby physiologically contribute to bladder outlet resistance. α1-adrenoceptors in the prostate also cause contraction and pathophysiologically elevate bladder outlet resistance leading to voiding dysfunction in benign prostatic hyperplasia. α1-adrenoceptor antagonist such as tamsulosin is widely used as a first-line option to treat LUT symptoms in men, but it remains unclear to which extent and how smooth muscle relaxation contributes to symptom relief.
Collapse
Affiliation(s)
- Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
7
|
Murad L, Bouhadana D, Nguyen DD, Chughtai B, Zorn KC, Bhojani N, Elterman DS. Treating LUTS in Men with Benign Prostatic Obstruction: A Review Article. Drugs Aging 2023; 40:815-836. [PMID: 37556075 DOI: 10.1007/s40266-023-01054-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 08/10/2023]
Abstract
Benign prostatic obstruction (BPO) is a prevalent condition that affects men, primarily toward their old age. The condition is often accompanied by lower urinary tract symptoms (LUTS), which can significantly impair a patient's quality of life and lead to other medical complications. Accurate diagnosis of BPO is essential for effective management of complications secondary to BPO, and treatment plans should be tailored patients, and occasionally according to surgeon experience. As such, this literature review aims to analyze the current available data on male LUTS secondary to BPO by providing a comprehensive overview of relevant studies, as well as the surgical and medical management guidelines from the Canadian Urological Association (CUA), American Urological Association (AUA), and European Association of Urology (EAU). By synthesizing the existing literature, this review purports to summarize the current body of knowledge surrounding BPO and male LUTS, and support healthcare providers in making informed decisions about the management of male LUTS secondary to BPO, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Liam Murad
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - David Bouhadana
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - David-Dan Nguyen
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Bilal Chughtai
- Department of Urology, Weill Cornell Medical College-New York Presbyterian, New York, NY, USA
| | - Kevin C Zorn
- Division of Urology, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Naeem Bhojani
- Division of Urology, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Dean S Elterman
- Division of Urology, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Li Y, Zhou Y, Liu D, Wang Z, Qiu J, Zhang J, Chen P, Zeng G, Guo Y, Wang X, DiSanto ME, Zhang X. Glutathione Peroxidase 3 induced mitochondria-mediated apoptosis via AMPK /ERK1/2 pathway and resisted autophagy-related ferroptosis via AMPK/mTOR pathway in hyperplastic prostate. J Transl Med 2023; 21:575. [PMID: 37633909 PMCID: PMC10463608 DOI: 10.1186/s12967-023-04432-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a common disease in elderly men, mainly resulted from an imbalance between cell proliferation and death. Glutathione peroxidase 3 (GPX3) was one of the differentially expressed genes in BPH identified by transcriptome sequencing of 5 hyperplastic and 3 normal prostate specimens, which had not been elucidated in the prostate. This study aimed to ascertain the mechanism of GPX3 involved in cell proliferation, apoptosis, autophagy and ferroptosis in BPH. METHODS Human prostate tissues, GPX3 silencing and overexpression prostate cell (BPH-1 and WPMY-1) models and testosterone-induced rat BPH (T-BPH) model were utilized. The qRT-PCR, CCK8 assay, flow cytometry, Western blotting, immunofluorescence, hematoxylin and eosin, masson's trichrome, immunohistochemical staining and transmission electron microscopy analysis were performed during in vivo and in vitro experiments. RESULTS Our study indicated that GPX3 was localized both in the stroma and epithelium of prostate, and down-regulated in BPH samples. Overexpression of GPX3 inhibited AMPK and activated ERK1/2 pathway, thereby inducing mitochondria-dependent apoptosis and G0/G1 phase arrest, which could be significantly reversed by MEK1/2 inhibitor U0126 preconditioning. Moreover, overexpression of GPX3 further exerted anti-autophagy by inhibiting AMPK/m-TOR and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4, mitochondrial GPX4 and cytoplasmic GPX4) to antagonize autophagy-related ferroptosis. Consistently, GPX3 deficiency generated opposite changes in both cell lines. Finally, T-BPH rat model was treated with GPX3 indirect agonist troglitazone (TRO) or GPX4 inhibitor RAS-selective lethal 3 (RSL3) or TRO plus RSL3. These treatments produced significant atrophy of the prostate and related molecular changes were similar to our in vitro observations. CONCLUSIONS Our novel data manifested that GPX3, which was capable of inducing apoptosis via AMPK/ERK1/2 pathway and antagonizing autophagy-related ferroptosis through AMPK/m-TOR signalling, was a promising therapeutic target for BPH in the future.
Collapse
Affiliation(s)
- Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Jizhang Qiu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
9
|
Liu C, Feng H, Song L, Li S, Wu Y, Yang L. Synergistic effects of thalidomide and cisplatin are mediated via the PI3K/AKT and JAK1/STAT3 signaling pathways in cervical cancer. Oncol Rep 2022; 48:169. [PMID: 35920185 PMCID: PMC9478987 DOI: 10.3892/or.2022.8384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022] Open
Abstract
Thalidomide (THD) has been found to synergize with cisplatin (DDP) in certain types of cancers; however, their combined use in the treatment of cervical cancer has not been reported to date, at least to the best of our knowledge. Thus, the present study aimed to explore the synergistic effects of THD and DDP and determine their regulatory effects on the phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT) and Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) pathways in cervical cancer. For this purpose, 0‑160 µM THD and 0‑64 µM DDP monotherapy or in combination were used to treat the HeLa and SiHa cervical cancer cell lines. This was followed by the calculation of the combination index (CI) and 160 µM THD and 16 µM DDP were then used to treat the cells. Relative cell viability and apoptosis, as well as the mRNA and protein levels of PI3K, AKT, JAK1 and STAT3 were evaluated. The results revealed that THD and DDP monotherapy suppressed the viability of the HeLa and SiHa cells in a concentration‑dependent manner. Moreover, THD and DDP treatment exerted a more prominent suppressive effect on the relative viability of HeLa and SiHa cells compared with DDP monotherapy at several concentration settings; further CI calculation revealed that the optimal synergistic concentrations were 160 µM for THD and 16 µM for DDP. Subsequently, combined treatment with THD and DDP suppressed relative cell viability, whereas it promoted cell apoptosis compared with THD or DPP monotherapy; it also inhibited the PI3K/AKT and JAK1/STAT3 signaling pathways compared with DPP or THD monotherapy in both HeLa and SiHa cells. On the whole, the present study demonstrated that THD synergizes with DDP to exert suppressive effects on cervical cancer cell lines. This synergistic action also inactivated the PI3K/AKT and JAK1/STAT3 pathways. Thus, these findings suggest that the combined use of THD and DPP may have potential for use in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Cairu Liu
- Department of Gynecology and Obstetrics, HanDan Central Hospital, Handan, Hebei 056008, P.R. China
| | - Haiqin Feng
- Department of Gynecology and Obstetrics, HanDan Central Hospital, Handan, Hebei 056008, P.R. China
| | - Lihong Song
- Department of Gynecology and Obstetrics, HanDan Central Hospital, Handan, Hebei 056008, P.R. China
| | - Shuirui Li
- Department of Gynecology and Obstetrics, HanDan Central Hospital, Handan, Hebei 056008, P.R. China
| | - Yiping Wu
- Department of Gynecology and Obstetrics, HanDan Central Hospital, Handan, Hebei 056008, P.R. China
| | - Liping Yang
- Department of Gynecology and Obstetrics, HanDan Central Hospital, Handan, Hebei 056008, P.R. China
| |
Collapse
|
10
|
Tamalunas A, Sauckel C, Ciotkowska A, Rutz B, Wang R, Huang R, Li B, Stief CG, Gratzke C, Hennenberg M. Lenalidomide and pomalidomide inhibit growth of prostate stromal cells and human prostate smooth muscle contraction. Life Sci 2021; 281:119771. [PMID: 34186051 DOI: 10.1016/j.lfs.2021.119771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022]
Abstract
AIMS Medical treatment for lower urinary tract symptoms secondary to benign prostatic hyperplasia is characterized by an unfavorable balance between limited efficacy and pronounced side effects. We recently reported, that thalidomide reduces prostate smooth muscle contraction and inhibits cell growth. Like thalidomide, its analogs lenalidomide and pomalidomide are also in clinical use. Therefore, we investigated the effects of lenalidomide and pomalidomide on human prostate smooth muscle contraction, cytoskeletal organization, and growth-related functions in stromal cells. MATERIALS AND METHODS Proliferation was assessed by EdU assay and colony formation, cytoskeletal organization by phalloidin staining, cell viability by CCK8, and apoptosis and cell death by flow cytometry in cultured prostate stromal cells (WPMY-1). Contractions of human prostate tissues from radical prostatectomy were induced by methoxamine, noradrenaline, phenylephrine, endothelin-1, U46619, or electric field stimulation (EFS) in an organ bath. KEY FINDINGS Proliferation of WPMY-1 cells was significantly reduced by lenalidomide (5-200 μM) and pomalidomide (2.5-5 μM). In parallel, organization of actin filaments collapsed after treatment with lenalidomide and pomalidomide. Lenalidomide and pomalidomide inhibited both adrenergic contractions and non-adrenergic contractions as well as neurogenic contractions induced by EFS. Neither reduction in viability, nor increase in cell death or apoptosis was observed in WPMY-1 cells. SIGNIFICANCE Thalidomide-derivatives impair growth of human prostate stromal cells, without showing a decrease in cell viability and, in parallel, inhibit adrenergic, neurogenic, and non-adrenergic contractions by breakdown of the actin cytoskeleton. Urodynamic effects in vivo appear possible.
Collapse
Affiliation(s)
| | - Cora Sauckel
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Beata Rutz
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Ru Huang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Bingsheng Li
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|