1
|
Dallos MC, Obradovic AZ, McCann P, Chowdhury N, Pratapa A, Aggen DH, Gaffney C, Autio KA, Virk RK, De Marzo AM, Antonarakis ES, Scher HI, Drake CG, Rathkopf DE. Androgen Deprivation Therapy Drives a Distinct Immune Phenotype in Localized Prostate Cancer. Clin Cancer Res 2024; 30:5218-5230. [PMID: 39269310 DOI: 10.1158/1078-0432.ccr-24-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE Androgen deprivation therapy (ADT) remains the backbone of prostate cancer treatment. Beyond the suppression of testosterone and tumor cell growth, emerging evidence suggests that ADT also modulates the immune tumor microenvironment. However, a more precise understanding of the timing and intricacies of these immunologic shifts is needed. EXPERIMENTAL DESIGN In this study, we analyzed 49 primary prostate cancers, comparing those surgically removed either without treatment or following treatment with degarelix at 4, 7, and 14 days before surgery. Utilizing next-generation DNA and RNA sequencing and multiplexed immunofluorescence, we examined alterations in immune phenotypes in the presence or absence of ADT. RESULTS Our findings reveal that ADT rapidly transforms the typically bland prostate tumor microenvironment into an inflamed environment within days. Notably, we observed an increase in activated CD8 T cells along with an increase in suppressive regulatory T cells (Treg). We also found an expansion of the myeloid compartment, particularly proinflammatory M1-like tumor-associated macrophages. Intriguingly, discernable changes which have not previously been described also occurred in tumor cells, including upregulation of antigen presentation by MHC classes I and II and, unexpectedly, a decrease in the "do not eat me" signal CD47. CONCLUSIONS These observations underscore the critical role of timing and disease context in order to optimize the therapeutic efficacy of immune modulators combined with androgen ablation, for which the presurgical neoadjuvant setting may be ideal. Our findings warrant future prospective validation, which is currently underway.
Collapse
Affiliation(s)
- Matthew C Dallos
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Aleksandar Z Obradovic
- Department of Medicine, Columbia University Medical Center, New York, New York
- Department of Systems Biology, Columbia University Medical Center, New York, New York
| | - Patrick McCann
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Aditya Pratapa
- Akoya Biosciences Incorporated, Marlborough, Massachusetts
| | - David H Aggen
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - Karen A Autio
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Renu K Virk
- Department of Pathology, Columbia University Irving Medical Center, New York, New York
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emmanuel S Antonarakis
- Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Charles G Drake
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Dana E Rathkopf
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
2
|
Zhang Y, Shao Y, Ren J, Fang Y, Yang B, Lu S, Liu P. NCAPD3 exerts tumor-promoting effects in prostatic cancer via dual impact on miR-30a-5p by STAT3-MALAT1 and MYC. Cell Death Discov 2024; 10:159. [PMID: 38561330 PMCID: PMC10985108 DOI: 10.1038/s41420-024-01930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Non-SMC condensin II complex subunit D3 (NCAPD3) is a subunit of the non-structural maintenance of chromosomes condensin II complex, which involves chromosome condensation and segregation during mitosis. NCAPD3 has recently been demonstrated as a crucial oncogenic factor. However, the underlying mechanism of NCAPD3 in prostate cancer (PCa) remains not completely clear. In this study, we confirmed that lncRNA MALAT1 was induced by NCAPD3-STAT3, and the expression of miR-30a-5p was controlled by NCAPD3 in PCa cells by miRNA-seq. Through quantitative real-time PCR, fluorescence in situ hybridization, western blotting, and immunohistochemistry assay, we demonstrated that miR-30a-5p was lowly expressed in PCa cells and tissues compared to the controls, which was contrary to NCAPD3 expression and markedly downregulated by NCAPD3. Then, MALAT1 was analyzed for the complementary sequence in the potential interaction with miR-30a-5p by using the predicted target module of public databases. Dual-luciferase reporter assay and RNA immunoprecipitation were carried out to verify that MALAT1 functioned as a sponge for miR-30a-5p to reduce miR-30a-5p expression. Meanwhile, MYC acted as a transcriptional repressor to directly bind the promoter of the miR-30a-5p located gene and repress the miR-30a-5p expression. Furthermore, the upregulation of NCAPD3 on cell viability and migration was significantly attenuated in PC-3 cells when miR-30a-5p was overexpressed. NCAPD3 overexpression also accelerated tumor growth in the xenograft mouse model and repressed miR-30-5p. In summary, this work elucidates NCAPD3 inhibits miR-30a-5p through two pathways: increasing STAT3-MALAT1 to sponge miR-30a-5p and increasing MYC to directly inhibit miR-30a-5p transcription, which could serve as potential therapeutic targets for prostate cancer.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China
| | - Yingying Shao
- College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China
| | - Jia Ren
- College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China
| | - Yuanyuan Fang
- College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China
| | - Bolin Yang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affliated Hospital of Nanjing University of Chinese Medicine, 210029, Nanjing, Jiangsu, P. R. China
| | - Shan Lu
- College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China.
| | - Ping Liu
- College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China.
| |
Collapse
|
3
|
Zhang E, Chen Z, Liu W, Lin L, Wu L, Guan J, Wang J, Kong C, Bi J, Zhang M. NCAPG2 promotes prostate cancer malignancy and stemness via STAT3/c-MYC signaling. J Transl Med 2024; 22:12. [PMID: 38166947 PMCID: PMC10763290 DOI: 10.1186/s12967-023-04834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second leading cause of cancer-related mortality among men worldwide, and its incidence has risen substantially in recent years. Therefore, there is an urgent need to identify novel biomarkers and precise therapeutic targets for managing PCa progression and recurrence. METHODS We investigated the clinical significance of NCAPG2 in PCa by exploring public datasets and our tissue microarray. Receiver operating characteristic (ROC) curve and survival analyses were performed to evaluate the correlation between NCAPG2 and PCa progression. Cell proliferation, wound healing, transwell, flow cytometry, cell cycle, tumor sphere formation, immunofluorescence (IF), co-immunoprecipitation (co-IP), and chromatin immunoprecipitation (ChIP) assays were conducted to further elucidate the molecular mechanism of NCAPG2 in PCa. Subcutaneous and orthotopic xenograft models were applied to investigate the effects of NCAPG2 on PCa proliferation in vivo. Tandem mass tag (TMT) quantitative proteomics was utilized to detect proteomic changes under NCAPG2 overexpression. RESULTS NCAPG2 was significantly upregulated in PCa, and its overexpression was associated with PCa progression and unfavorable prognosis. Knockdown of NCAPG2 inhibited the malignant behavior of PCa cells, whereas its overexpression promoted PCa aggressiveness. NCAPG2 depletion attenuated the development and growth of PCa in vivo. TMT quantitative proteomics analyses indicated that c-MYC activity was strongly correlated with NCAPG2 expression. The malignancy-promoting effect of NCAPG2 in PCa was mediated via c-MYC. NCAPG2 could directly bind to STAT3 and induce STAT3 occupancy on the MYC promoter, thus to transcriptionally activate c-MYC expression. Finally, we identified that NCAPG2 was positively correlated with cancer stem cell (CSC) markers and enhanced self-renewal capacity of PCa cells. CONCLUSIONS NCAPG2 is highly expressed in PCa, and its level is significantly associated with PCa prognosis. NCAPG2 promotes PCa malignancy and drives cancer stemness via the STAT3/c-MYC signaling axis, highlighting its potential as a therapeutic target for PCa.
Collapse
Affiliation(s)
- Enchong Zhang
- Department of Urology, Shenjing Hospital of China Medical University, Shenyang, China
| | - Zhengjie Chen
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
- Institute of Urology, China Medical University, Shenyang, China
| | - Wangmin Liu
- Department of Urology, Shenjing Hospital of China Medical University, Shenyang, China
| | - Lin Lin
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Johnny Guan
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jianfeng Wang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
- Institute of Urology, China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
- Institute of Urology, China Medical University, Shenyang, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
- Institute of Urology, China Medical University, Shenyang, China.
| | - Mo Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
- Institute of Urology, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Jing Z, Liu Q, He X, Jia Z, Xu Z, Yang B, Liu P. NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer. J Exp Clin Cancer Res 2022; 41:198. [PMID: 35689245 PMCID: PMC9188166 DOI: 10.1186/s13046-022-02412-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
NCAPD3 is one of the three non-SMC subunits of condensin II complex, which plays an important role in the chromosome condensation and segregation during mitosis. Notably, elevated levels of NCAPD3 are found in many somatic cancers. However, the clinical role, biological functions of NCAPD3 in cancers especially in colorectal cancer (CRC) and the underlying molecular mechanisms remain poorly elucidated.
Methods
Clinical CRC and adjacent normal tissues were used to confirm the expression of NCAPD3. The association of NCAPD3 expression with clinicopathological characteristics and patient outcomes were analyzed by using online database. In vivo subcutaneous tumor xenograft model, NCAPD3 gene knockout following azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced tumor mouse model, Co-IP, western blot, qRT-PCR, IHC, ChIP assays and cell functional assays were used to investigate the biological functions of NCAPD3 in CRC and the underlying molecular mechanisms.
Results
NCAPD3 was overexpressed in CRC tissues and positively correlated with poor prognosis of CRC patients. NCAPD3 knockout suppressed CRC development in AOM/DSS induced and xenograft mice models. Moreover, we found that NCAPD3 promoted aerobic glycolysis in CRC. Mechanistically, NCAPD3 up-regulated the level of c-Myc and interacted with c-Myc to recruit more c-Myc to the gene promoter of its downstream glycolytic regulators GLUT1, HK2, ENO1, PKM2 and LDHA, and finally enhanced cellular aerobic glycolysis. Also, NCAPD3 increased the level of E2F1 and interacted with E2F1 to recruit more E2F1 to the promoter regions of PDK1 and PDK3 genes, which resulted in the inhibition of PDH activity and TCA cycle.
Conclusions
Our data demonstrated that NCAPD3 promoted glucose metabolism reprogramming and enhanced Warburg effect in colorectal tumorigenesis and CRC progression. These findings reveal a novel mechanism underlying NCAPD3 mediated CRC cell growth and provide new targets for CRC treatment.
Collapse
|