1
|
Yu H, Peng H. Effects of GHRH and its analogues on the Vascular System. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09932-7. [PMID: 39570567 DOI: 10.1007/s11154-024-09932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Growth hormone-releasing hormone (GHRH) is a crucial endocrine hormone that exerts its biological effects by binding to specific receptors on the cell surface, known as GHRH receptors (GHRH-R). This binding activates downstream signaling pathways. In addition to promoting growth hormone secretion by the pituitary gland, GHRH also functions to maintain multisystem homeostasis by interacting with peripheral tissues that express GHRH-R. Due to the multiple roles of GHRH in body development and tissue repair, a variety of GHRH analogue peptides have been synthesized. Based on their effects on GHRH-R, these GHRH analogues can be classified as GHRH-R agonists and antagonists. Recently, the interaction of GHRH and its analogues with blood vessels, such as promoting angiogenesis and inhibiting vascular calcification (VC), has gained significant attention. This article reviews the effects of GHRH and its analogues on blood vessels.
Collapse
Affiliation(s)
- Hong Yu
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| | - Huan Peng
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
2
|
Granata R, Leone S, Zhang X, Gesmundo I, Steenblock C, Cai R, Sha W, Ghigo E, Hare JM, Bornstein SR, Schally AV. Growth hormone-releasing hormone and its analogues in health and disease. Nat Rev Endocrinol 2024:10.1038/s41574-024-01052-1. [PMID: 39537825 DOI: 10.1038/s41574-024-01052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Growth hormone-releasing hormone (GHRH) and its ability to stimulate the production and release of growth hormone from the pituitary were discovered more than four decades ago. Since then, this hormone has been studied extensively and research into its functions is still ongoing. GHRH has multifaceted roles beyond the originally identified functions that encompass a variety of direct extrapituitary effects. In this Review, we illustrate the different biological activities of GHRH, covering the effects of GHRH agonists and antagonists in physiological and pathological contexts, along with the underlying mechanisms. GHRH and GHRH analogues have been implicated in cell growth, wound healing, cell death, inflammation, immune functions, mood disorders, feeding behaviour, neuroprotection, diabetes mellitus and obesity, as well as cardiovascular, lung and neurodegenerative diseases and some cancers. The positive effects observed in preclinical models in vitro and in vivo strongly support the potential use of GHRH agonists and antagonists as clinical therapeutics.
Collapse
Affiliation(s)
- Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Sheila Leone
- Department of Pharmacy, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
| | - Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Renzhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrew V Schally
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| |
Collapse
|
3
|
Muñoz-Moreno L, Román ID, Bajo AM. GHRH and the prostate. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09922-9. [PMID: 39505776 DOI: 10.1007/s11154-024-09922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
In the late 1960s and early 1970s, hypothalamic regulatory hormones were isolated, characterized and sequenced. Later, it was demonstrated hypothalamic and ectopic production of growth hormone-releasing hormone (GHRH) in normal and tumor tissues, of both humans and animals. Pituitary-type GHRH receptors (pGHRH-R) had been demonstrated to be expressed predominantly in the anterior pituitary gland but also found in other somatic cells, and significantly present in various human cancers; in addition, the expression of splice variants (SVs) of GHRH receptor (GHRH-R) has been found not only in the pituitary but in extrapituitary tissues, including human neoplasms. In relation to the prostate, besides the pGHRH-R, it has been detected the presence of truncated splice variants of GHRH-R (SV1-SV4) in normal human prostate and human prostate cancer (PCa) specimens; lastly, a novel SV of GHRH-R has been detected in human PCa. Signaling pathways activated by GHRH include AC/cAMP/PKA, Ras/Raf/ERK, PI3K/Akt/mTOR and JAK2/STAT3, which are involved in processes such as cell survival, proliferation and cytokine secretion. The neuropeptide GHRH can also transactivate the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER)-2. Thus, GHRH-Rs have become drug targets for several types of clinical conditions, including prostate-related conditions such as prostatitis, benign hyperplasia and cancer. Over the last fifty years, the development of GHRH-R receptor antagonists has been unstoppable, improving their potency, stability and affinity for the receptor. The last series of GHRH-R antagonists, AVR, exhibits superior anticancer and anti-inflammatory activities in both in vivo and in vitro assays.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Departamento de Biología de Sistemas. Unidad de Bioquímica y Biología Molecular (Research group "Cánceres de origen epitelial"), Universidad de Alcalá, Campus Científico-Tecnológico, 28871, Alcalá de Henares, Madrid, Spain
| | - Irene D Román
- Departamento de Biología de Sistemas. Unidad de Bioquímica y Biología Molecular (Research group "Cánceres de origen epitelial"), Universidad de Alcalá, Campus Científico-Tecnológico, 28871, Alcalá de Henares, Madrid, Spain
| | - Ana M Bajo
- Departamento de Biología de Sistemas. Unidad de Bioquímica y Biología Molecular (Research group "Cánceres de origen epitelial"), Universidad de Alcalá, Campus Científico-Tecnológico, 28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
4
|
Gesmundo I, Pedrolli F, Cai R, Sha W, Schally AV, Granata R. Growth hormone-releasing hormone and cancer. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09919-4. [PMID: 39422787 DOI: 10.1007/s11154-024-09919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting the synthesis and release of growth hormone (GH), stimulates the proliferation of human normal and malignant cells by binding to GHRH-receptor (GHRH-R) and its main splice variant, SV1. Both GHRH and GHRH-Rs are expressed in various cancers, forming a stimulatory pathway for cancer cell growth; additionally, SV1 possesses ligand independent proliferative effects. Therefore, targeting GHRH-Rs pharmacologically has been proposed for the treatment of cancer. Various classes of synthetic GHRH antagonists have been developed, endowed with strong anticancer activity in vitro and in vivo, in addition to displaying anti-inflammatory, antioxidant and immune-modulatory functions. GHRH antagonists exert indirect effects by blocking the pituitary GH/hepatic insulin-like growth factor I (IGF-I) axis, or directly inhibiting the binding of GHRH on tumor GHRH-Rs. Additionally, GHRH antagonists block the mitogenic functions of SV1 in tumor cells. This review illustrates the main findings on the antitumor effects of GHRH antagonists in experimental human cancers, along with their underlying mechanisms. The development of GHRH antagonists, with reduced toxicity and high stability, could lead to novel therapeutic agents for the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Renzhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller, Miami, FL, USA
| | - Andrew V Schally
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller, Miami, FL, USA
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
5
|
Cacciatore A, Shinde D, Musumeci C, Sandrini G, Guarrera L, Albino D, Civenni G, Storelli E, Mosole S, Federici E, Fusina A, Iozzo M, Rinaldi A, Pecoraro M, Geiger R, Bolis M, Catapano CV, Carbone GM. Epigenome-wide impact of MAT2A sustains the androgen-indifferent state and confers synthetic vulnerability in ERG fusion-positive prostate cancer. Nat Commun 2024; 15:6672. [PMID: 39107274 PMCID: PMC11303763 DOI: 10.1038/s41467-024-50908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2024] [Indexed: 08/09/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a frequently occurring disease with adverse clinical outcomes and limited therapeutic options. Here, we identify methionine adenosyltransferase 2a (MAT2A) as a critical driver of the androgen-indifferent state in ERG fusion-positive CRPC. MAT2A is upregulated in CRPC and cooperates with ERG in promoting cell plasticity, stemness and tumorigenesis. RNA, ATAC and ChIP-sequencing coupled with histone post-translational modification analysis by mass spectrometry show that MAT2A broadly impacts the transcriptional and epigenetic landscape. MAT2A enhances H3K4me2 at multiple genomic sites, promoting the expression of pro-tumorigenic non-canonical AR target genes. Genetic and pharmacological inhibition of MAT2A reverses the transcriptional and epigenetic remodeling in CRPC models and improves the response to AR and EZH2 inhibitors. These data reveal a role of MAT2A in epigenetic reprogramming and provide a proof of concept for testing MAT2A inhibitors in CRPC patients to improve clinical responses and prevent treatment resistance.
Collapse
MESH Headings
- Male
- Humans
- Transcriptional Regulator ERG/genetics
- Transcriptional Regulator ERG/metabolism
- Methionine Adenosyltransferase/genetics
- Methionine Adenosyltransferase/metabolism
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Epigenesis, Genetic/drug effects
- Animals
- Androgens/metabolism
- Epigenome
- Mice
- Histones/metabolism
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Enhancer of Zeste Homolog 2 Protein/genetics
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
Collapse
Affiliation(s)
- Alessia Cacciatore
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Carola Musumeci
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Giada Sandrini
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Bioinformatics Core Unit, 6500, Bellinzona, Switzerland
| | - Luca Guarrera
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156, Milano, Italy
| | - Domenico Albino
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Gianluca Civenni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Elisa Storelli
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Elisa Federici
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Alessio Fusina
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Marta Iozzo
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156, Milano, Italy
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland.
| |
Collapse
|
6
|
Golconda P, Andrade-Medina M, Oberstein A. Subconfluent ARPE-19 Cells Display Mesenchymal Cell-State Characteristics and Behave like Fibroblasts, Rather Than Epithelial Cells, in Experimental HCMV Infection Studies. Viruses 2023; 16:49. [PMID: 38257749 PMCID: PMC10821009 DOI: 10.3390/v16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Human cytomegalovirus (HCMV) has a broad cellular tropism and epithelial cells are important physiological targets during infection. The retinal pigment epithelial cell line ARPE-19 has been used to model HCMV infection in epithelial cells for decades and remains a commonly used cell type for studying viral entry, replication, and the cellular response to infection. We previously found that ARPE-19 cells, despite being derived from an epithelial cell explant, express extremely low levels of canonical epithelial proteins, such as E-cadherin and EpCAM. Here, we perform comparative studies of ARPE-19 and additional epithelial cell lines with strong epithelial characteristics. We find that ARPE-19 cells cultured under subconfluent conditions resemble mesenchymal fibroblasts, rather than epithelial cells; this is consistent with previous studies showing that ARPE-19 cultures require extended periods of high confluency culture to maintain epithelial characteristics. By reanalyzing public gene expression data and using machine learning, we find evidence that ARPE-19 cultures maintained across many labs exhibit mesenchymal characteristics and that the majority of studies employing ARPE-19 use them in a mesenchymal state. Lastly, by performing experimental HCMV infections across mesenchymal and epithelial cell lines, we find that ARPE-19 cells behave like mesenchymal fibroblasts, producing logarithmic yields of cell-free infectious progeny, while cell lines with strong epithelial character exhibit an atypical infectious cycle and naturally restrict the production of cell-free progeny. Our work highlights important characteristics of the ARPE-19 cell line and suggests that subconfluent ARPE-19 cells may not be optimal for modeling epithelial infection with HCMV or other human viruses. It also suggests that HCMV biosynthesis and/or spread may occur quite differently in epithelial cells compared to mesenchymal cells. These differences could contribute to viral persistence or pathogenesis in epithelial tissues.
Collapse
Affiliation(s)
| | | | - Adam Oberstein
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Ave., Chicago, IL 60612, USA; (P.G.); (M.A.-M.)
| |
Collapse
|