1
|
Li Q, Gao S, Zhang Y, Xie Z, Wang L, Li Y, Niu Q, Li H, Guo H, Ma R, He J. Association between Bisphenol A and Prostate-Specific Antigen (PSA) among U.S. Older Males: National Health and Nutrition Examination Survey (NHANES), 2003-2012. Nutrients 2024; 16:2589. [PMID: 39203725 PMCID: PMC11357130 DOI: 10.3390/nu16162589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND There is growing evidence indicating that environmental endocrine disruptors may influence the development of prostate cancer. Despite this, the connection between BPA and PSA levels is still not fully understood and appears intricate. In this study, we aimed to assess the link between BPA exposure and PSA levels using data from the NHANES database. METHODS We conducted a weighted linear regression, logistic regression analysis, natural cubic spline (NCS), subgroup analysis, and interaction analysis on 2768 participants. Urinary BPA was considered the independent variable, while PSA was the dependent variable. RESULTS In the study, the average age of the participants selected was 62.70 years (±12.93). Age was negatively correlated with BPA, while PSA and BMI were positively correlated with BPA concentration (all of the p-value < 0.05). In the fully adjusted model, the weighted linear and logistic regression results showed that BPA was positively correlated with PSA and prostate cancer. NCS analysis results show that BPA and PSA have a non-linear relationship. Sensitivity and subgroup analyses showed similar results. In addition, there were interactions between BPA and age, PIR, education, HbA1c, high-density lipoprotein, smoking status, and Diabetes. CONCLUSIONS There was a positive correlation between urinary BPA and PSA in older American males, especially when the BPA concentration was higher than 4.46 ng/mL. In future practical applications of prostate cancer screening, it is crucial to focus on individuals aged 75 years and older, as well as those with a PIR between 0 and 1, non-Hispanic black, and other risk groups to provide reference values for the primary and secondary prevention of prostate cancer.
Collapse
Affiliation(s)
- Qingyuan Li
- Medical School, Shihezi University, Shihezi 832003, China; (Q.L.); (S.G.); (Y.Z.); (Z.X.); (L.W.); (Y.L.); (Q.N.); (H.L.); (H.G.); (R.M.)
| | - Shipeng Gao
- Medical School, Shihezi University, Shihezi 832003, China; (Q.L.); (S.G.); (Y.Z.); (Z.X.); (L.W.); (Y.L.); (Q.N.); (H.L.); (H.G.); (R.M.)
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, Shihezi 832000, China
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Youxian Zhang
- Medical School, Shihezi University, Shihezi 832003, China; (Q.L.); (S.G.); (Y.Z.); (Z.X.); (L.W.); (Y.L.); (Q.N.); (H.L.); (H.G.); (R.M.)
| | - Zhanpeng Xie
- Medical School, Shihezi University, Shihezi 832003, China; (Q.L.); (S.G.); (Y.Z.); (Z.X.); (L.W.); (Y.L.); (Q.N.); (H.L.); (H.G.); (R.M.)
| | - Lu Wang
- Medical School, Shihezi University, Shihezi 832003, China; (Q.L.); (S.G.); (Y.Z.); (Z.X.); (L.W.); (Y.L.); (Q.N.); (H.L.); (H.G.); (R.M.)
| | - Yu Li
- Medical School, Shihezi University, Shihezi 832003, China; (Q.L.); (S.G.); (Y.Z.); (Z.X.); (L.W.); (Y.L.); (Q.N.); (H.L.); (H.G.); (R.M.)
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, Shihezi 832000, China
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Qiang Niu
- Medical School, Shihezi University, Shihezi 832003, China; (Q.L.); (S.G.); (Y.Z.); (Z.X.); (L.W.); (Y.L.); (Q.N.); (H.L.); (H.G.); (R.M.)
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, Shihezi 832000, China
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Haiyan Li
- Medical School, Shihezi University, Shihezi 832003, China; (Q.L.); (S.G.); (Y.Z.); (Z.X.); (L.W.); (Y.L.); (Q.N.); (H.L.); (H.G.); (R.M.)
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, Shihezi 832000, China
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Heng Guo
- Medical School, Shihezi University, Shihezi 832003, China; (Q.L.); (S.G.); (Y.Z.); (Z.X.); (L.W.); (Y.L.); (Q.N.); (H.L.); (H.G.); (R.M.)
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, Shihezi 832000, China
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Rulin Ma
- Medical School, Shihezi University, Shihezi 832003, China; (Q.L.); (S.G.); (Y.Z.); (Z.X.); (L.W.); (Y.L.); (Q.N.); (H.L.); (H.G.); (R.M.)
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, Shihezi 832000, China
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Jia He
- Medical School, Shihezi University, Shihezi 832003, China; (Q.L.); (S.G.); (Y.Z.); (Z.X.); (L.W.); (Y.L.); (Q.N.); (H.L.); (H.G.); (R.M.)
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, Shihezi 832000, China
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China
| |
Collapse
|
2
|
Pietrzak S, Marciniak W, Derkacz R, Matuszczak M, Kiljańczyk A, Baszuk P, Bryśkiewicz M, Sikorski A, Gronwald J, Słojewski M, Cybulski C, Gołąb A, Huzarski T, Dębniak T, Lener MR, Jakubowska A, Kluz T, Soroka M, Scott RJ, Lubiński J. Cobalt Serum Level as a Biomarker of Cause-Specific Survival among Prostate Cancer Patients. Cancers (Basel) 2024; 16:2618. [PMID: 39123346 PMCID: PMC11310964 DOI: 10.3390/cancers16152618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Prostate cancer is the most common cancer diagnosed in men and the second leading cause of death in male cancer patients. The WHO suggests that cobalt is involved in the carcinogenesis of prostate cancer. There are, however, no studies associating cobalt levels and prostate cancer patient survival. In this study, 261 Polish prostate cancer (n = 261) patients were recruited into a prospective cohort between 2009 and 2015. Serum cobalt levels were measured using ICP-MS after prostate cancer diagnosis and before treatment. All study participants were assigned into quartiles (QI-QIV) based on the distribution of serum cobalt levels among censored patients. Univariable and multivariable COX regression models were used to calculate hazard ratios (HRs) for each serum cobalt level quartile. We found a significant relationship between high serum cobalt levels and poor prostate cancer patient total survival (HR = 2.60; 95% CI: 1.17-5.82; p = 0.02). In relation to prostate cancer patients who died as a result of other non-cancer causes, the association with high levels of cobalt was even stronger (HR = 3.67; 95% CI: 1.03-13.00; p = 0.04). The impact of high serum cobalt levels on overall survival of prostate cancer-specific-related deaths was not statistically significant.
Collapse
Affiliation(s)
- Sandra Pietrzak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland; (W.M.); (R.D.)
| | - Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Adam Kiljańczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland; (W.M.); (R.D.)
| | - Marta Bryśkiewicz
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland; (W.M.); (R.D.)
| | - Andrzej Sikorski
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 71-899 Szczecin, Poland; (A.S.); (M.S.); (A.G.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland; (W.M.); (R.D.)
| | - Marcin Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 71-899 Szczecin, Poland; (A.S.); (M.S.); (A.G.)
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland; (W.M.); (R.D.)
| | - Adam Gołąb
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 71-899 Szczecin, Poland; (A.S.); (M.S.); (A.G.)
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland; (W.M.); (R.D.)
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Marcin R. Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital No. 1, ul. Szopena 2, 35-055 Rzeszow, Poland;
- Institute of Medical Sciences, Medical College of Rzeszow University, al. Rejtana 16c, 35-959 Rzeszow, Poland
| | - Marianna Soroka
- Department of Genetics and Genomics, Institute of Biology, University of Szczecin, ul. Felczaka 3c, 71-412 Szczecin, Poland;
| | - Rodney J. Scott
- Priority Research Centre for Cancer Research, Innovation and Translation, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia;
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, New Lambton, NSW 2305, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland; (W.M.); (R.D.)
| |
Collapse
|
3
|
Wan L, Fan Y, Wu T, Liu Y, Zhang R, Chen S, Zhao C, Xue Y. Endoplasmic reticulum stress-related genes as prognostic and immunogenic biomarkers in prostate cancer. Eur J Med Res 2024; 29:242. [PMID: 38643190 PMCID: PMC11031923 DOI: 10.1186/s40001-024-01818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The metastasis and aggressive nature of prostate cancer (PCa) has become a major malignancy related threat that concerns men's health. The efficacy of immune monotherapy against PCa is questionable due to its lymphocyte-suppressive nature. METHOD Endoplasmic reticulum stress- (ERS-) and PCa-prognosis-related genes were obtained from the Molecular Signatures Database and the Cancer Genome Atlas database. The expression, prognosis and immune infiltration values of key genes were explored by "survival R package", "rms", "xCELL algorithm", and univariate-multivariate Cox and LASSO regression analyses. The "consensus cluster plus R package" was used for cluster analysis. RESULT As ERS-related genes, ERLIN2 and CDK5RAP3 showed significant expressional, prognostic and clinic-pathologic values. They were defined as the key genes significantly correlated with immune infiltration and response. The nomogram was constructed with T-stage and primary treatment outcome, and the risk-prognostic model was constructed in the following way: Riskscore = (- 0.1918) * ERLIN2 + (0.5254) * CDK5RAP3. Subsequently, prognostic subgroups based on key genes classified the high-risk group as a pro-cancer subgroup that had lower mutation rates of critical genes (SPOP and MUC16), multiple low-expression immune-relevant molecules, and differences in macrophages (M1 and M2) expressions. Finally, ERLIN2 as an anti-oncogene and CDK5RAP3 as a pro-oncogene were further confirmed by cell phenotype assays and immunohistochemistry. CONCLUSION We identified ERLIN2 and CDK5RAP3 as ERS-related genes with important prognostic and immunologic values, and classified patients between high- and low-risk subgroups, which provided new prognostic markers, immunotherapeutic targets, and basis for prognostic assessments.
Collapse
Affiliation(s)
- Lilin Wan
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Department of Urology, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Yunxia Fan
- Department of Urology, Jintan Affiliated Hospital of Jiangsu University, No.500, Jintan Avenue, Jintan District, Changzhou, 213200, China
| | - Tiange Wu
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Department of Urology, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Yifan Liu
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
- Department of Urology, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Ruixin Zhang
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China
| | - Saisai Chen
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China.
- Department of Urology, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China.
| | - Chenggui Zhao
- Department of Laboratory, Zhongda Hospital Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, 210009, China.
| | - Yifeng Xue
- Department of Urology, Jintan Affiliated Hospital of Jiangsu University, No.500, Jintan Avenue, Jintan District, Changzhou, 213200, China.
| |
Collapse
|
4
|
Kaufmann B, Fischer S, Athanasiou A, Lautenbach N, Wittig A, Bieri U, Schmid FA, von Stauffenberg F, Scherer T, Eberli D, Gorin MA, Schiess R, Poyet C. Evaluation of Proclarix in the diagnostic work-up of prostate cancer. BJUI COMPASS 2024; 5:297-303. [PMID: 38371198 PMCID: PMC10869654 DOI: 10.1002/bco2.293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 02/20/2024] Open
Abstract
Objectives The use of multiparametric magnetic resonance imaging (mpMRI) has been widely adopted in the diagnostic work-up for suspicious prostate cancer (PCa) and is recommended in most current guidelines. However, mpMRI lesions are often indeterminate and/or turn out to be false-positive on prostate biopsy. The aim of this work was to evaluate Proclarix, a biomarker test for the detection of relevant PCa, regarding its diagnostic value in all men before biopsy and in men with indeterminate lesions on mpMRI (PI-RADS 3) during work-up for PCa. Materials and Methods Men undergoing mpMRI-targeted and systematic biopsy of the prostate were prospectively enrolled. The Proclarix test was evaluated for the detection accuracy of clinically significant PCa (csPCa) defined as Grade Group ≥ 2 and its association to mpMRI results. Further, Proclarix's performance was also tested when adapted to prostate volume (Proclarix density) and performance compared to PSA density (PSAD). Results A total of 150 men with a median age of 65 years and median PSA of 5.8 ng/mL were included in this study. CsPCa was diagnosed in 65 (43%) men. Proclarix was significantly associated with csPCa and higher PI-RADS score (p < 0.001). At the pre-defined cut-off of 10%, Proclarix's sensitivity for csPCa was 94%, specificity 19%, negative predictive value 80% and positive predictive value 47%. Proclarix density showed the highest AUC for the detection of csPCa of 0.77 (95%CI: 0.69-0.85) compared to PSA, PSAD and Proclarix alone. Proclarix was able to identify all six csPCa in men with PI-RADS 3 lesions (n = 28), whereas PSAD missed two out of six. At optimized cut-offs, Proclarix density outperformed PSAD by potentially avoiding 41% of unnecessary biopsies. Conclusion Proclarix demonstrates high sensitivity in detecting csPCa but may still result in unnecessary biopsies. However, Proclarix density was able to outperform PSAD and Proclarix and was found to be useful in men with PI-RADS 3 findings by safely avoiding unnecessary biopsies without missing csPCa.
Collapse
Affiliation(s)
- Basil Kaufmann
- Department of UrologyUniversity Hospital ZurichZurichSwitzerland
- Milton and Carroll Petrie Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sharon Fischer
- Department of UrologyUniversity Hospital ZurichZurichSwitzerland
| | | | | | | | - Uwe Bieri
- Department of UrologyUniversity Hospital ZurichZurichSwitzerland
| | | | | | - Thomas Scherer
- Department of UrologyUniversity Hospital ZurichZurichSwitzerland
| | - Daniel Eberli
- Department of UrologyUniversity Hospital ZurichZurichSwitzerland
| | - Michael A. Gorin
- Milton and Carroll Petrie Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Cédric Poyet
- Department of UrologyUniversity Hospital ZurichZurichSwitzerland
| |
Collapse
|
5
|
Baston C, Preda A, Iordache A, Olaru V, Surcel C, Sinescu I, Gingu C. How to Integrate Prostate Cancer Biomarkers in Urology Clinical Practice: An Update. Cancers (Basel) 2024; 16:316. [PMID: 38254807 PMCID: PMC10813985 DOI: 10.3390/cancers16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Nowadays, the management of prostate cancer has become more and more challenging due to the increasing number of available treatment options, therapeutic agents, and our understanding of its carcinogenesis and disease progression. Moreover, currently available risk stratification systems used to facilitate clinical decision-making have limitations, particularly in providing a personalized and patient-centered management strategy. Although prognosis and prostate cancer-specific survival have improved in recent years, the heterogenous behavior of the disease among patients included in the same risk prognostic group negatively impacts not only our clinical decision-making but also oncological outcomes, irrespective of the treatment strategy. Several biomarkers, along with available tests, have been developed to help clinicians in difficult decision-making scenarios and guide management strategies. In this review article, we focus on the scientific evidence that supports the clinical use of several biomarkers considered by professional urological societies (and included in uro-oncological guidelines) in the diagnosis process and specific difficult management strategies for clinically localized or advanced prostate cancer.
Collapse
Affiliation(s)
- Catalin Baston
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Adrian Preda
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Alexandru Iordache
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Vlad Olaru
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Cristian Surcel
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Ioanel Sinescu
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Constantin Gingu
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| |
Collapse
|
6
|
Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023; 12:79. [PMID: 38255186 PMCID: PMC10813710 DOI: 10.3390/biomedicines12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Wang X, Huang R, Yu J, Zhu F, Xi X, Huang Y, Zhang C, Hu H. Identification of differentially expressed circRNAs in prostate cancer of different clinical stages by RNA sequencing. Sci Rep 2023; 13:21175. [PMID: 38040819 PMCID: PMC10692156 DOI: 10.1038/s41598-023-48521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Circular RNAs (circRNAs) are linked to cancer, but it's still not clear what role they play in prostatic cancer. Through high-throughput sequencing, the goal of this study was to compare how circRNAs are expressed at different stages of prostate cancer. 12 patients attending the Department of Urology at the Second Affiliated Hospital of Nanchang University between June 2020 and October 2021 were used for RNA sequencing, and 14 patients were used for real-time fluorescent quantitative PCR (qRT-PCR). The expression profiles of prostate cancer circRNAs were constructed by sequencing with the help of next-generation high-throughput sequencing technology, and the differentially expressed circRNAs were analyzed by targeting microRNA (miRNA) loci and Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the genes from which circRNAs originated. Finally, the expression of target circRNAs in two prostate tissues was verified by qRT-PCR. Following high-throughput sequencing, 13,047 circRNAs were identified, and 605 circRNAs with significant differential expression were identified, of which 361 circRNAs were up-regulated, and 244 circRNAs were down-regulated. Analysis of circRNA-originated genes using GO and the KEGG enrichment analysis showed that circRNA host genes can regulate and influence multiple signaling pathways in prostate cancer with important biological functions. And the circRNA-miRNA network was constructed. The highest number of differentially expressed circRNA-binding miRNAs were: hsa_circ_000 7582 (52), hsa_circ_000 6198 (37), hsa_circ_000 6759 (28), hsa_circ_000 5675 (25), and hsa_circ_000 2172 (22). Moreover, we further screened out the circRNA (hsa_circ_0005692) that was significantly differentially expressed and common to all groups and verified by qRT-PCR that the expression of the target circRNA (hsa_circ_0005692) was significantly downregulated in prostate cancer compared with benign prostatic hyperplasia (BPH) tissues.
Collapse
Affiliation(s)
- Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
- Northeast Yunnan Regional Center Hospital, Zhaotong, 657000, China
| | - Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Juhui Yu
- Department of Urology, People's Hospital of Wuyuan County, Shangrao, 33320, China
| | - Fei Zhu
- Department of Urology, People's Hospital of Wuyuan County, Shangrao, 33320, China
| | - Xiaoqing Xi
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yawei Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
8
|
Zhang T, Chen X, Ju X, Yuan J, Zhou J, Zhang Z, Ju G, Xu D. PPARG is a potential target of Tanshinone IIA in prostate cancer treatment: a combination study of molecular docking and dynamic simulation based on transcriptomic bioinformatics. Eur J Med Res 2023; 28:487. [PMID: 37932808 PMCID: PMC10626789 DOI: 10.1186/s40001-023-01477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Tanshinone IIA is a lipophilic organic compound from the root of Danshen (Salvia miltiorrhiza) and is one of the most well-known Tanshinone molecules by pharmacologists. In recent years, in addition to effects of anti-cardiovascular and neurological diseases, Tanshinone IIA has also shown some degrees of anti-prostate cancer potential. Although they do have some studies focusing on the molecular mechanism of Tanshinone IIA's anti-prostate cancer effects, a further understanding on the transcriptomic and structural level is still lacking. In this study, transcriptomic sequencing technology and computer technology were employed to illustrate the effects of Tanshinone IIA on prostate cancer through bioinformatic analysis and molecular dynamics simulation, and PPARG was considered to be one of the targets for Tanshinone IIA according to docking scoring and dynamic calculation. Our study provides a novel direction to further understand the mechanism of the effects of Tanshinone IIA on prostate cancer, and further molecular biological studies need to be carried on to further investigate the molecular mechanism of Tanshinone IIA's anti-prostate cancer effect through PPARG.
Collapse
Affiliation(s)
- Tongtong Zhang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Xinglin Chen
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Xiran Ju
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Jixiang Yuan
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Jielong Zhou
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Zhihang Zhang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Guanqun Ju
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China.
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China.
| | - Dongliang Xu
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China.
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China.
| |
Collapse
|
9
|
Ferro M, Rocco B, Maggi M, Lucarelli G, Falagario UG, Del Giudice F, Crocetto F, Barone B, La Civita E, Lasorsa F, Brescia A, Catellani M, Busetto GM, Tataru OS, Terracciano D. Beyond blood biomarkers: the role of SelectMDX in clinically significant prostate cancer identification. Expert Rev Mol Diagn 2023; 23:1061-1070. [PMID: 37897252 DOI: 10.1080/14737159.2023.2277366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION New potential biomarkers to pre-intervention identification of a clinically significant prostate cancer (csPCa) will prevent overdiagnosis and overtreatment and limit quality of life impairment of PCa patients. AREAS COVERED We have developed a comprehensive review focusing our research on the increasing knowledge of the role of SelectMDX® in csPCa detection. Areas identified as clinically relevant are the ability of SelectMDX® to predict csPCa in active surveillance setting, its predictive ability when combined with multiparametric MRI and the role of SelectMDX® in the landscape of urinary biomarkers. EXPERT OPINION Several PCa biomarkers have been developed either alone or in combination with clinical variables to improve csPCa detection. SelectMDX® score includes genomic markers, age, PSA, prostate volume, and digital rectal examination. Several studies have shown consistency in the ability to improve detection of csPCa, avoidance of unnecessary prostate biopsies, helpful in decision-making for clinical benefit of PCa patients with future well designed, and impactful studies.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, IEO - European Institute of Oncology, IRCCS - Istituto di Ricovero e Cura a Carattere Scientifico, via Ripamonti 435, Milan 20141, Italy
| | - Bernardo Rocco
- Unit of Urology, Department of Health Science, University of Milan, ASST Santi Paolo and Carlo, Via A. Di Rudini 8, Milan 20142, Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Piazza Umberto I - 70121, Bari, Italy
| | - Ugo Giovanni Falagario
- Department of Urology and Organ Transplantation, University of Foggia, Via A.Gramsci 89/91, 71122 Foggia, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Pansini, 5 - 80131, Naples, Italy
| | - Biagio Barone
- Department of Surgical Sciences, Urology Unit, AORN Sant'Anna e San Sebastiano, Caserta, Via Ferdinando Palasciano, 81100 Caserta , Italy
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples "Federico II", Corso Umberto I 40 - 80138 Naples, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Piazza Umberto I - 70121, Bari, Italy
| | - Antonio Brescia
- Department of Urology, IEO - European Institute of Oncology, IRCCS - Istituto di Ricovero e Cura a Carattere Scientifico, via Ripamonti 435, Milan 20141, Italy
| | - Michele Catellani
- Department of Urology, IEO - European Institute of Oncology, IRCCS - Istituto di Ricovero e Cura a Carattere Scientifico, via Ripamonti 435, Milan 20141, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Via A.Gramsci 89/91, 71122 Foggia, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, Gh Marinescu 35, 540142 Târgu Mures, Romania
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples "Federico II", Corso Umberto I 40 - 80138 Naples, Italy
| |
Collapse
|
10
|
Campistol M, Triquell M, Regis L, Celma A, de Torres I, Semidey ME, Mast R, Mendez O, Planas J, Trilla E, Morote J. Relationship between Proclarix and the Aggressiveness of Prostate Cancer. Mol Diagn Ther 2023; 27:487-498. [PMID: 37081322 DOI: 10.1007/s40291-023-00649-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
INTRODUCTION Proclarix is a CE-marked test that provides the risk of clinically significant prostate cancer (csPCa), ranging from 0% to 100%, based on the serum measurement of Thrombospondin-1, cathepsin D, prostate-specific antigen (PSA), and percentage of free PSA in addition to age. We hypothesize that Proclarix could be correlated with PCa aggressiveness. We analyzed the association of this new biomarker with four surrogates of aggressiveness: grade group (GG) in the biopsy, clinical stage, risk of biochemical recurrence after primary treatment of localized PCa, and pathology in the surgical specimen. MATERIAL AND METHODS This is a retrospective study from 606 men with suspicion of PCa [PSA of ≥ 3.0 ng/mL and/or abnormal digital rectal examination (DRE)], in whom Proclarix was assessed (0-100%). The GG was defined by the International Society of Urological Pathology categories. The TNM was used for clinical staging (cT based on DRE, whereas cN and cM were established with computed tomography and 99-technetium bone scintigraphy). The risk of biochemical recurrence of localized PCa after primary treatment was defined by combining PSA, GG, and cT. Finally, an unfavorable pathology in a surgical specimen was defined as GG > 2 or pT ≥ 3. RESULTS The median age of the cohort was 67 years old, with a median PSA of 7 ng/mL and a rate of abnormal DRE of 23.3%. CsPCa was detected in 254 men (41.9%), with a median Proclarix of 60.1% compared with 37.3% obtained in patients with insignificant PCa and 20.7% in men without PCa. Among patients with GG > 3, Proclarix was significantly higher (58.2%) than in those with GG of 3 or lower (33.1%, p < 0.001). Men with localized tumors exhibited a Proclarix median of 37.3% compared with those with advanced disease (60.1%, p < 0.001). Proclarix levels among 197 patients with low and intermediate risk of biochemical recurrence were 24.9% and 35.0%, respectively, significantly lower compared with patients with high-risk disease (58.7%, p < 0.001). Unfavorable pathology was observed in 35 patients out of the 79 who underwent radical prostatectomy, with a Proclarix median of 35.7% compared with 23.7% obtained in patients with favorable pathology (p = 0.013). Proclarix and magnetic resonance imaging were independent predictors of the four surrogates of aggressiveness analyzed. CONCLUSION There is a correlation between Proclarix and the aggressiveness of PCa.
Collapse
Affiliation(s)
- Miriam Campistol
- Department of Urology, Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain.
- Department of Surgery, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| | - Marina Triquell
- Department of Urology, Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Lucas Regis
- Department of Urology, Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain
- Prostate Cancer Research Group, Vall d'Hebron, Research Institute, 08035, Barcelona, Spain
| | - Ana Celma
- Department of Urology, Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain
- Prostate Cancer Research Group, Vall d'Hebron, Research Institute, 08035, Barcelona, Spain
| | - Inés de Torres
- Prostate Cancer Research Group, Vall d'Hebron, Research Institute, 08035, Barcelona, Spain
- Department of Pathology, Vall d'Hebron Hospital, 08035, Barcelona, Spain
- Department of Morphological Sciences, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - María E Semidey
- Prostate Cancer Research Group, Vall d'Hebron, Research Institute, 08035, Barcelona, Spain
- Department of Pathology, Vall d'Hebron Hospital, 08035, Barcelona, Spain
- Department of Morphological Sciences, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Richard Mast
- Department of Radiology, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| | - Olga Mendez
- Prostate Cancer Research Group, Vall d'Hebron, Research Institute, 08035, Barcelona, Spain
| | - Jacques Planas
- Department of Urology, Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain
- Prostate Cancer Research Group, Vall d'Hebron, Research Institute, 08035, Barcelona, Spain
| | - Enrique Trilla
- Department of Urology, Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain
- Prostate Cancer Research Group, Vall d'Hebron, Research Institute, 08035, Barcelona, Spain
- Department of Surgery, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Juan Morote
- Department of Urology, Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain
- Prostate Cancer Research Group, Vall d'Hebron, Research Institute, 08035, Barcelona, Spain
- Department of Surgery, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| |
Collapse
|
11
|
Gentile F, La Civita E, Ventura BD, Ferro M, Bruzzese D, Crocetto F, Tennstedt P, Steuber T, Velotta R, Terracciano D. A Neural Network Model Combining [-2]proPSA, freePSA, Total PSA, Cathepsin D, and Thrombospondin-1 Showed Increased Accuracy in the Identification of Clinically Significant Prostate Cancer. Cancers (Basel) 2023; 15:cancers15051355. [PMID: 36900150 PMCID: PMC10000171 DOI: 10.3390/cancers15051355] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND The Prostate Health Index (PHI) and Proclarix (PCLX) have been proposed as blood-based tests for prostate cancer (PCa). In this study, we evaluated the feasibility of an artificial neural network (ANN)-based approach to develop a combinatorial model including PHI and PCLX biomarkers to recognize clinically significant PCa (csPCa) at initial diagnosis. METHODS To this aim, we prospectively enrolled 344 men from two different centres. All patients underwent radical prostatectomy (RP). All men had a prostate-specific antigen (PSA) between 2 and 10 ng/mL. We used an artificial neural network to develop models that can identify csPCa efficiently. As inputs, the model uses [-2]proPSA, freePSA, total PSA, cathepsin D, thrombospondin, and age. RESULTS The output of the model is an estimate of the presence of a low or high Gleason score PCa defined at RP. After training on a dataset of up to 220 samples and optimization of the variables, the model achieved values as high as 78% for sensitivity and 62% for specificity for all-cancer detection compared with those of PHI and PCLX alone. For csPCa detection, the model showed 66% (95% CI 66-68%) for sensitivity and 68% (95% CI 66-68%) for specificity. These values were significantly different compared with those of PHI (p < 0.0001 and 0.0001, respectively) and PCLX (p = 0.0003 and 0.0006, respectively) alone. CONCLUSIONS Our preliminary study suggests that combining PHI and PCLX biomarkers may help to estimate, with higher accuracy, the presence of csPCa at initial diagnosis, allowing a personalized treatment approach. Further studies training the model on larger datasets are strongly encouraged to support the efficiency of this approach.
Collapse
Affiliation(s)
- Francesco Gentile
- Nanotechnology Research Centre, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- ElicaDea, Spinoff of Federico II University, 80131 Naples, Italy
- Correspondence: (F.G.); (D.T.)
| | - Evelina La Civita
- ElicaDea, Spinoff of Federico II University, 80131 Naples, Italy
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Bartolomeo Della Ventura
- ElicaDea, Spinoff of Federico II University, 80131 Naples, Italy
- Department of Physics “Ettore Pancini”, University of Naples “Federico II”, 80126 Naples, Italy
| | - Matteo Ferro
- ElicaDea, Spinoff of Federico II University, 80131 Naples, Italy
- Division of Urology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
| | - Dario Bruzzese
- ElicaDea, Spinoff of Federico II University, 80131 Naples, Italy
- Department of Public Health, Federico II University of Naples, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences, Sciences of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Pierre Tennstedt
- Martini-Klinik, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Steuber
- Martini-Klinik, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Raffaele Velotta
- Department of Physics “Ettore Pancini”, University of Naples “Federico II”, 80126 Naples, Italy
| | - Daniela Terracciano
- ElicaDea, Spinoff of Federico II University, 80131 Naples, Italy
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
- Correspondence: (F.G.); (D.T.)
| |
Collapse
|