Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF.
Mol Biol Cell 1993;
4:1317-26. [PMID:
8167412 PMCID:
PMC275767 DOI:
10.1091/mbc.4.12.1317]
[Citation(s) in RCA: 789] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Vascular endothelial growth factor (VEGF)mRNA undergoes alternative splicing events that generate four different homodimeric isoforms, VEGF121, VEGF165, VEGF189, or VEGF206. VEGF121 is a nonheparin-binding acidic protein, which is freely diffusible. The longer forms, VEGF189 or VEGF206, are highly basic proteins tightly bound to extracellular heparin-containing proteoglycans. VEGF165 has intermediate properties. To determine the localization of VEGF isoforms, transfected human embryonic kidney CEN4 cells expressing VEGF165, VEGF189, or VEGF206 were stained by immunofluorescence with a specific monoclonal antibody. The staining was found in patches and streaks suggestive of extracellular matrix (ECM). VEGF165 was observed largely in Golgi apparatus-like structures. Immunogold labeling of cells expressing VEGF189 or VEGF206 revealed that the staining was localized to the subepithelial ECM. VEGF associated with the ECM was bioactive, because endothelial cells cultured on ECM derived from cells expressing VEGF189 or VEGF206 were markedly stimulated to proliferate. In addition, ECM-bound VEGF can be released into a soluble and bioactive form by heparin or plasmin. ECM-bound VEGF189 and VEGF206 have molecular masses consistent with the intact polypeptides. The ECM may represent an important source of VEGF and angiogenic potential.
Collapse