1
|
Zhang Z, Cai Y, Zheng N, Deng Y, Gao L, Wang Q, Xia X. Diverse models of cavity engineering in enzyme modification: Creation, filling, and reshaping. Biotechnol Adv 2024; 72:108346. [PMID: 38518963 DOI: 10.1016/j.biotechadv.2024.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Most enzyme modification strategies focus on designing the active sites or their surrounding structures. Interestingly, a large portion of the enzymes (60%) feature active sites located within spacious cavities. Despite recent discoveries, cavity-mediated enzyme engineering remains crucial for enhancing enzyme properties and unraveling folding-unfolding mechanisms. Cavity engineering influences enzyme stability, catalytic activity, specificity, substrate recognition, and docking. This article provides a comprehensive review of various cavity engineering models for enzyme modification, including cavity creation, filling, and reshaping. Additionally, it also discusses feasible tools for geometric analysis, functional assessment, and modification of cavities, and explores potential future research directions in this field. Furthermore, a promising universal modification strategy for cavity engineering that leverages state-of-the-art technologies and methodologies to tailor cavities according to the specific requirements of industrial production conditions is proposed.
Collapse
Affiliation(s)
- Zehua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yongchao Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Nan Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yu Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Ling Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Qiong Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Klamt A, Nagarathinam K, Tanabe M, Kumar A, Balbach J. Hyperbolic Pressure-Temperature Phase Diagram of the Zinc-Finger Protein apoKti11 Detected by NMR Spectroscopy. J Phys Chem B 2019; 123:792-801. [PMID: 30608169 DOI: 10.1021/acs.jpcb.8b11019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For a comprehensive understanding of the thermodynamic state functions describing the stability of a protein, the influence of the intensive properties of temperature and pressure has to be known. With the zinc-finger-containing Kti11, we found a suitable protein for this purpose because folding and unfolding transitions occur at an experimentally accessible temperature (280-330 °K) and pressure (0.1-240 MPa) range. We solved the crystal structure of the apo form of Kti11 to reveal two disulfide bonds at the metal-binding site, which seals off a cavity in the β-barrel part of the protein. From a generally applicable proton NMR approach, we could determine the populations of folded and unfolded chains under all conditions, leading to a hyperbolic pressure-temperature phase diagram rarely observed for proteins. A global fit of a two-state model to all derived populations disclosed reliable values for the change in Gibbs free energy, volume, entropy, heat capacity, compressibility, and thermal expansion upon unfolding. The unfolded state of apoKti11 has a lower compressibility compared to the native state and a smaller volume at ambient pressure. Therefore, a pressure increase up to 200 MPa reduces the population of the native state, and above this value, the native population increases again. Pressure-induced chemical-shift changes in two-dimensional 1H-15N NMR spectra could be employed for a molecular interpretation of the thermodynamic properties of apoKti11.
Collapse
Affiliation(s)
- Andi Klamt
- Institute of Physics, Biophysics , Martin-Luther University Halle-Wittenberg , Betty-Heimann Street 7 , 06120 Halle , Germany
| | - Kumar Nagarathinam
- HALOmem, Membrane Protein Biochemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Street 3 , 06120 Halle (Saale) , Germany.,Institute of Virology , Hannover Medical School , Carl-Neuberg-Straße 1 , D-30625 Hannover , Germany
| | - Mikio Tanabe
- HALOmem, Membrane Protein Biochemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Street 3 , 06120 Halle (Saale) , Germany.,Structural Biology Research Center, Institute of Materials Structure Science , KEK/High Energy Accelerator Research Organization , 1-1 Oho , Tsukuba , Ibaraki , 305-0801 , Japan
| | - Amit Kumar
- Institute of Physics, Biophysics , Martin-Luther University Halle-Wittenberg , Betty-Heimann Street 7 , 06120 Halle , Germany.,Department of Diabetes, Faculty of Lifesciences and Medicine , King's College London , Great Maze Pond , London SE1 1UL , U.K
| | - Jochen Balbach
- Institute of Physics, Biophysics , Martin-Luther University Halle-Wittenberg , Betty-Heimann Street 7 , 06120 Halle , Germany.,HALOmem, Membrane Protein Biochemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Street 3 , 06120 Halle (Saale) , Germany
| |
Collapse
|
3
|
Caro JA, Wand AJ. Practical aspects of high-pressure NMR spectroscopy and its applications in protein biophysics and structural biology. Methods 2018; 148:67-80. [PMID: 29964175 PMCID: PMC6133745 DOI: 10.1016/j.ymeth.2018.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
Pressure and temperature are the two fundamental variables of thermodynamics. Temperature and chemical perturbation are central experimental tools for the exploration of macromolecular structure and dynamics. Though it has long been recognized that hydrostatic pressure offers a complementary and often unique view of macromolecular structure, stability and dynamics, it has not been employed nearly as much. For solution NMR applications the limited use of high-pressure is undoubtedly traced to difficulties of employing pressure in the context of modern multinuclear and multidimensional NMR. Limitations in pressure tolerant NMR sample cells have been overcome and enable detailed studies of macromolecular energy landscapes, hydration, dynamics and function. Here we review the practical considerations for studies of biological macromolecules at elevated pressure, with a particular emphasis on applications in protein biophysics and structural biology.
Collapse
Affiliation(s)
- José A Caro
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6509, United States
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6509, United States.
| |
Collapse
|
4
|
Zwarycz AS, Fossat M, Akanyeti O, Lin Z, Rosenman DJ, Garcia AE, Royer CA, Mills KV, Wang C. V67L Mutation Fills an Internal Cavity To Stabilize RecA Mtu Intein. Biochemistry 2017; 56:2715-2722. [PMID: 28488863 DOI: 10.1021/acs.biochem.6b01264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inteins mediate protein splicing, which has found extensive applications in protein science and biotechnology. In the Mycobacterium tuberculosis RecA mini-mini intein (ΔΔIhh), a single valine to leucine substitution at position 67 (V67L) dramatically increases intein stability and activity. However, crystal structures show that the V67L mutation causes minimal structural rearrangements, with a root-mean-square deviation of 0.2 Å between ΔΔIhh-V67 and ΔΔIhh-L67. Thus, the structural mechanisms for V67L stabilization and activation remain poorly understood. In this study, we used intrinsic tryptophan fluorescence, high-pressure nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations to probe the structural basis of V67L stabilization of the intein fold. Guanidine hydrochloride denaturation monitored by fluorescence yielded free energy changes (ΔGf°) of -4.4 and -6.9 kcal mol-1 for ΔΔIhh-V67 and ΔΔIhh-L67, respectively. High-pressure NMR showed that ΔΔIhh-L67 is more resistant to pressure-induced unfolding than ΔΔIhh-V67 is. The change in the volume of folding (ΔVf) was significantly larger for V67 (71 ± 2 mL mol-1) than for L67 (58 ± 3 mL mol-1) inteins. The measured difference in ΔVf (13 ± 3 mL mol-1) roughly corresponds to the volume of the additional methylene group for Leu, supporting the notion that the V67L mutation fills a nearby cavity to enhance intein stability. In addition, we performed MD simulations to show that V67L decreases side chain dynamics and conformational entropy at the active site. It is plausible that changes in cavities in V67L can also mediate allosteric effects to change active site dynamics and enhance intein activity.
Collapse
Affiliation(s)
- Allison S Zwarycz
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Martin Fossat
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Otar Akanyeti
- Department of Computer Science, Aberystwyth University , Ceredigion SY23 3FL, Wales, U.K
| | - Zhongqian Lin
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - David J Rosenman
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Angel E Garcia
- Center of Nonlinear Studies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
5
|
Inaba S, Fukada H, Oda M. Folding thermodynamics of c-Myb DNA-binding domain in correlation with its α-helical contents. Int J Biol Macromol 2016; 82:725-32. [DOI: 10.1016/j.ijbiomac.2015.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 11/28/2022]
|
6
|
Inaba S, Maeno A, Sakurai K, Narayanan SP, Ikegami T, Akasaka K, Oda M. Functional conformer of c-Myb DNA-binding domain revealed by variable temperature studies. FEBS J 2015; 282:4497-514. [DOI: 10.1111/febs.13508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Satomi Inaba
- Graduate School of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto Japan
| | - Akihiro Maeno
- High Pressure Protein Research Center; Institute of Advanced Technology; Kinki University; Wakayama Japan
| | - Kazumasa Sakurai
- High Pressure Protein Research Center; Institute of Advanced Technology; Kinki University; Wakayama Japan
| | | | | | - Kazuyuki Akasaka
- High Pressure Protein Research Center; Institute of Advanced Technology; Kinki University; Wakayama Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto Japan
| |
Collapse
|
7
|
Sirovetz BJ, Schafer NP, Wolynes PG. Water Mediated Interactions and the Protein Folding Phase Diagram in the Temperature–Pressure Plane. J Phys Chem B 2015; 119:11416-27. [DOI: 10.1021/acs.jpcb.5b03828] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Brian J. Sirovetz
- Center
for Theoretical Biological Physics, Rice University, 6500 Main
Street, Houston, Texas 77030, United States
- Department
of Chemistry, Rice University, Space Science 201, Houston, Texas 77251, United States
| | - Nicholas P. Schafer
- Center
for Theoretical Biological Physics, Rice University, 6500 Main
Street, Houston, Texas 77030, United States
| | - Peter G. Wolynes
- Center
for Theoretical Biological Physics, Rice University, 6500 Main
Street, Houston, Texas 77030, United States
- Department
of Chemistry, Rice University, Space Science 201, Houston, Texas 77251, United States
| |
Collapse
|
8
|
Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure. Proc Natl Acad Sci U S A 2015; 112:E2437-46. [PMID: 25918400 DOI: 10.1073/pnas.1506505112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Application of hydrostatic pressure shifts protein conformational equilibria in a direction to reduce the volume of the system. A current view is that the volume reduction is dominated by elimination of voids or cavities in the protein interior via cavity hydration, although an alternative mechanism wherein cavities are filled with protein side chains resulting from a structure relaxation has been suggested [López CJ, Yang Z, Altenbach C, Hubbell WL (2013) Proc Natl Acad Sci USA 110(46):E4306-E4315]. In the present study, mechanisms for elimination of cavities under high pressure are investigated in the L99A cavity mutant of T4 lysozyme and derivatives thereof using site-directed spin labeling, pressure-resolved double electron-electron resonance, and high-pressure circular dichroism spectroscopy. In the L99A mutant, the ground state is in equilibrium with an excited state of only ∼ 3% of the population in which the cavity is filled by a protein side chain [Bouvignies et al. (2011) Nature 477(7362):111-114]. The results of the present study show that in L99A the native ground state is the dominant conformation to pressures of 3 kbar, with cavity hydration apparently taking place in the range of 2-3 kbar. However, in the presence of additional mutations that lower the free energy of the excited state, pressure strongly populates the excited state, thereby eliminating the cavity with a native side chain rather than solvent. Thus, both cavity hydration and structure relaxation are mechanisms for cavity elimination under pressure, and which is dominant is determined by details of the energy landscape.
Collapse
|
9
|
Racca JD, Chen YS, Maloy JD, Wickramasinghe N, Phillips NB, Weiss MA. Structure-function relationships in human testis-determining factor SRY: an aromatic buttress underlies the specific DNA-bending surface of a high mobility group (HMG) box. J Biol Chem 2014; 289:32410-29. [PMID: 25258310 DOI: 10.1074/jbc.m114.597526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human testis determination is initiated by SRY, a Y-encoded architectural transcription factor. Mutations in SRY cause 46 XY gonadal dysgenesis with female somatic phenotype (Swyer syndrome) and confer a high risk of malignancy (gonadoblastoma). Such mutations cluster in the SRY high mobility group (HMG) box, a conserved motif of specific DNA binding and bending. To explore structure-function relationships, we constructed all possible substitutions at a site of clinical mutation (W70L). Our studies thus focused on a core aromatic residue (position 15 of the consensus HMG box) that is invariant among SRY-related HMG box transcription factors (the SOX family) and conserved as aromatic (Phe or Tyr) among other sequence-specific boxes. In a yeast one-hybrid system sensitive to specific SRY-DNA binding, the variant domains exhibited reduced (Phe and Tyr) or absent activity (the remaining 17 substitutions). Representative nonpolar variants with partial or absent activity (Tyr, Phe, Leu, and Ala in order of decreasing side-chain volume) were chosen for study in vitro and in mammalian cell culture. The clinical mutation (Leu) was found to markedly impair multiple biochemical and cellular activities as respectively probed through the following: (i) in vitro assays of specific DNA binding and protein stability, and (ii) cell culture-based assays of proteosomal degradation, nuclear import, enhancer DNA occupancy, and SRY-dependent transcriptional activation. Surprisingly, however, DNA bending is robust to this or the related Ala substitution that profoundly impairs box stability. Together, our findings demonstrate that the folding, trafficking, and gene-regulatory function of SRY requires an invariant aromatic "buttress" beneath its specific DNA-bending surface.
Collapse
Affiliation(s)
- Joseph D Racca
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yen-Shan Chen
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - James D Maloy
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nalinda Wickramasinghe
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nelson B Phillips
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael A Weiss
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
10
|
Abstract
Fluorescence is the most widely used technique to study the effect of pressure on biochemical systems. The use of pressure as a physical variable sheds light into volumetric characteristics of reactions. Here we focus on the effect of pressure on protein solutions using a simple unfolding example in order to illustrate the applications of the methodology. Topics covered in this review include the relationships between practical aspects and technical limitations; the effect of pressure and the study of protein cavities; the interpretation of thermodynamic and relaxation kinetics; and the study of relaxation amplitudes. Finally, we discuss the insights available from the combination of fluorescence and other methods adapted to high pressure, such as SAXS or NMR. Because of the simplicity and accessibility of high-pressure fluorescence, the technique is a starting point that complements appropriately multi-methodological approaches related to understanding protein function, disfunction, and folding from the volumetric point of view.
Collapse
|
11
|
Longo LM, Blaber M. Symmetric protein architecture in protein design: top-down symmetric deconstruction. Methods Mol Biol 2014; 1216:161-182. [PMID: 25213415 DOI: 10.1007/978-1-4939-1486-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Top-down symmetric deconstruction (TDSD) is a joint experimental and computational approach to generate a highly stable, functionally benign protein scaffold for intended application in subsequent functional design studies. By focusing on symmetric protein folds, TDSD can leverage the dramatic reduction in sequence space achieved by applying a primary structure symmetric constraint to the design process. Fundamentally, TDSD is an iterative symmetrization process, in which the goal is to maintain or improve properties of thermodynamic stability and folding cooperativity inherent to a starting sequence (the "proxy"). As such, TDSD does not attempt to solve the inverse protein folding problem directly, which is computationally intractable. The present chapter will take the reader through all of the primary steps of TDSD-selecting a proxy, identifying potential mutations, establishing a stability/folding cooperativity screen-relying heavily on a successful TDSD solution for the common β-trefoil fold.
Collapse
Affiliation(s)
- Liam M Longo
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | | |
Collapse
|
12
|
Kanda N, Abe F. Structural and functional implications of the yeast high-affinity tryptophan permease Tat2. Biochemistry 2013; 52:4296-307. [PMID: 23768406 DOI: 10.1021/bi4004638] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tryptophan is hydrophobic, bulky, and the rarest amino acid found in nutrients. Accordingly, the import machinery can be specialized evolutionarily. Our previous study in Saccharomyces cerevisiae demonstrated that tryptophan import by the high-affinity tryptophan permease Tat2 is accompanied by a large volume increase during substrate import. Nevertheless, the mechanisms by which the permease mediates tryptophan recognition and permeation remain to be elucidated. Here we determined amino acid residues essential for Tat2-mediated tryptophan import. By means of random mutagenesis in combination with site-directed mutagenesis based on crystallographic studies of the Escherichia coli arginine/agmatine antiporter AdiC, we identified 15 amino acid residues in the Tat2 transmembrane domains (TMDs) 1, -3, -5, -8, and -10, which are responsible for tryptophan uptake. T98, Y167, and E286 were assumed to form the central cavity in Tat2. G97/T98 and E286 were located within the putative α-helix break in TMD1 and TMD6, respectively, which are highly conserved among yeast amino acid permeases and bacterial solute transporters. Given the conformational change in AdiC upon substrate binding, G97/T98 and E286 of Tat2 were assumed to mediate a structural shift from an outward-open to a tryptophan-bound-occluded structure upon tryptophan binding, and T320, V322, and F324 became stabilized in TMD7. Such dynamic structural changes may account for the large volume increase associated with tryptophan import occurring concomitantly with a movement of water molecules from the tryptophan binding site. We also propose the working hypothesis that E286 mediates the proton influx that is coupled to tryptophan import.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | | |
Collapse
|
13
|
|
14
|
Abstract
It has been known for nearly 100 years that pressure unfolds proteins, yet the physical basis of this effect is not understood. Unfolding by pressure implies that the molar volume of the unfolded state of a protein is smaller than that of the folded state. This decrease in volume has been proposed to arise from differences between the density of bulk water and water associated with the protein, from pressure-dependent changes in the structure of bulk water, from the loss of internal cavities in the folded states of proteins, or from some combination of these three factors. Here, using 10 cavity-containing variants of staphylococcal nuclease, we demonstrate that pressure unfolds proteins primarily as a result of cavities that are present in the folded state and absent in the unfolded one. High-pressure NMR spectroscopy and simulations constrained by the NMR data were used to describe structural and energetic details of the folding landscape of staphylococcal nuclease that are usually inaccessible with existing experimental approaches using harsher denaturants. Besides solving a 100-year-old conundrum concerning the detailed structural origins of pressure unfolding of proteins, these studies illustrate the promise of pressure perturbation as a unique tool for examining the roles of packing, conformational fluctuations, and water penetration as determinants of solution properties of proteins, and for detecting folding intermediates and other structural details of protein-folding landscapes that are invisible to standard experimental approaches.
Collapse
|
15
|
Saha P, Barua B, Bhattacharyya S, Balamurali MM, Schief WR, Baker D, Varadarajan R. Design and characterization of stabilized derivatives of human CD4D12 and CD4D1. Biochemistry 2011; 50:7891-900. [PMID: 21827143 DOI: 10.1021/bi200870r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD4 is present on the surface of T-lymphocytes and is the primary cellular receptor for HIV-1. CD4 consists of a cytoplasmic tail, one transmembrane region, and four extracellular domains, D1-D4. A construct consisting of the first two domains of CD4 (CD4D12) is folded and binds gp120 with similar affinity as soluble 4-domain CD4 (sCD4). However, the first domain alone (CD4D1) was previously shown to be largely unfolded and had 3-fold weaker affinity for gp120 when compared to sCD4 [Sharma, D.; et al. (2005) Biochemistry 44, 16192-16202]. We now report the design and characterization of three single-site mutants of CD4D12 (G6A, L51I, and V86L) and one multisite mutant of CD4D1 (G6A/L51I/L5K/F98T). G6A, L51I, and V86L are cavity-filling mutations while L5K and F98T are surface mutations which were introduced to minimize the aggregation of CD4D1 upon removal of the second domain. Two mutations, G6A and V86L in CD4D12 increased the stability and yield of the protein relative to the wild-type protein. The mutant CD4D1 (CD4D1a) with the 4 mutations was folded and more stable compared to the original CD4D1, but both bound gp120 with comparable affinity. In in vitro neutralization assays, both CD4D1a and G6A-CD4D12 were able to neutralize diverse HIV-1 viruses with similar IC(50)s as 4-domain CD4. These stabilized derivatives of human CD4 can be useful starting points for the design of other more complex viral entry inhibitors.
Collapse
Affiliation(s)
- Piyali Saha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | | | |
Collapse
|
16
|
Nomura T, Kamada R, Ito I, Sakamoto K, Chuman Y, Ishimori K, Shimohigashi Y, Sakaguchi K. Probing phenylalanine environments in oligomeric structures with pentafluorophenylalanine and cyclohexylalanine. Biopolymers 2011; 95:410-9. [PMID: 21280026 DOI: 10.1002/bip.21594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stabilization of protein structures and protein-protein interactions are critical in the engineering of industrially useful enzymes and in the design of pharmaceutically valuable ligands. Hydrophobic interactions involving phenylalanine residues play crucial roles in protein stability and protein-protein/peptide interactions. To establish an effective method to explore the hydrophobic environments of phenylalanine residues, we present a strategy that uses pentafluorophenylalanine (F5Phe) and cyclohexylalanine (Cha). In this study, substitution of F5Phe or Cha for three Phe residues at positions 328, 338, and 341 in the tetramerization domain of the tumor suppressor protein p53 was performed. These residues are located at the interfaces of p53-p53 interactions and are important in the stabilization of the tetrameric structure. The stability of the p53 tetrameric structure did not change significantly when F5Phe-containing peptides at positions Phe328 or Phe338 were used. In contrast, the substitution of Cha for Phe341 in the hydrophobic core enhanced the stability of the tetrameric structure with a T(m) value of 100 degrees C. Phe328 and Phe338 interact with each other through pi-interactions, whereas Phe341 is buried in the surrounding alkyl side-chains of the hydrophobic core of the p53 tetramerization domain. Furthermore, high pressure-assisted denaturation analysis indicated improvement in the occupancy of the hydrophobic core. Considerable stabilization of the p53 tetramer was achieved by filling the identified cavity in the hydrophobic core of the p53 tetramer. The results indicate the status of the Phe residues, indicating that the "pair substitution" of Cha and F5Phe is highly suitable for probing the environments of Phe residues.
Collapse
Affiliation(s)
- Takao Nomura
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rouget JB, Aksel T, Roche J, Saldana JL, Garcia AE, Barrick D, Royer CA. Size and sequence and the volume change of protein folding. J Am Chem Soc 2011; 133:6020-7. [PMID: 21446709 PMCID: PMC3151578 DOI: 10.1021/ja200228w] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The application of hydrostatic pressure generally leads to protein unfolding, implying, in accordance with Le Chatelier's principle, that the unfolded state has a smaller molar volume than the folded state. However, the origin of the volume change upon unfolding, ΔV(u), has yet to be determined. We have examined systematically the effects of protein size and sequence on the value of ΔV(u) using as a model system a series of deletion variants of the ankyrin repeat domain of the Notch receptor. The results provide strong evidence in support of the notion that the major contributing factor to pressure effects on proteins is their imperfect internal packing in the folded state. These packing defects appear to be specifically localized in the 3D structure, in contrast to the uniformly distributed effects of temperature and denaturants that depend upon hydration of exposed surface area upon unfolding. Given its local nature, the extent to which pressure globally affects protein structure can inform on the degree of cooperativity and long-range coupling intrinsic to the folded state. We also show that the energetics of the protein's conformations can significantly modulate their volumetric properties, providing further insight into protein stability.
Collapse
Affiliation(s)
- Jean-Baptiste Rouget
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR5048, Université Montpellier 1&2, Montpellier France
| | - Tural Aksel
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD USA
| | - Julien Roche
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR5048, Université Montpellier 1&2, Montpellier France
- Department of Physics and Applied Physics and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY USA
| | - Jean-Louis Saldana
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR5048, Université Montpellier 1&2, Montpellier France
| | - Angel E. Garcia
- Department of Physics and Applied Physics and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY USA
| | - Doug Barrick
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD USA
| | - Catherine A. Royer
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR5048, Université Montpellier 1&2, Montpellier France
| |
Collapse
|
18
|
Kitahara R, Hata K, Maeno A, Akasaka K, Chimenti MS, Garcia-Moreno E B, Schroer MA, Jeworrek C, Tolan M, Winter R, Roche J, Roumestand C, Montet de Guillen K, Royer CA. Structural plasticity of staphylococcal nuclease probed by perturbation with pressure and pH. Proteins 2011; 79:1293-305. [PMID: 21254234 DOI: 10.1002/prot.22966] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/01/2010] [Accepted: 11/29/2010] [Indexed: 11/11/2022]
Abstract
The ionization of internal groups in proteins can trigger conformational change. Despite this being the structural basis of most biological energy transduction, these processes are poorly understood. Small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy experiments at ambient and high hydrostatic pressure were used to examine how the presence and ionization of Lys-66, buried in the hydrophobic core of a stabilized variant of staphylococcal nuclease, affect conformation and dynamics. NMR spectroscopy at atmospheric pressure showed previously that the neutral Lys-66 affects slow conformational fluctuations globally, whereas the effects of the charged form are localized to the region immediately surrounding position 66. Ab initio models from SAXS data suggest that when Lys-66 is charged the protein expands, which is consistent with results from NMR spectroscopy. The application of moderate pressure (<2 kbar) at pH values where Lys-66 is normally neutral at ambient pressure left most of the structure unperturbed but produced significant nonlinear changes in chemical shifts in the helix where Lys-66 is located. Above 2 kbar pressure at these pH values the protein with Lys-66 unfolded cooperatively adopting a relatively compact, albeit random structure according to Kratky analysis of the SAXS data. In contrast, at low pH and high pressure the unfolded state of the variant with Lys-66 is more expanded than that of the reference protein. The combined global and local view of the structural reorganization triggered by ionization of the internal Lys-66 reveals more detectable changes than were previously suggested by NMR spectroscopy at ambient pressure.
Collapse
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Grigera JR, McCarthy AN. The behavior of the hydrophobic effect under pressure and protein denaturation. Biophys J 2010; 98:1626-31. [PMID: 20409483 DOI: 10.1016/j.bpj.2009.12.4298] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 11/18/2009] [Accepted: 12/07/2009] [Indexed: 11/25/2022] Open
Abstract
It is well known that proteins denature under high pressure. The mechanism that underlies such a process is still not clearly understood, however, giving way to controversial interpretations. Using molecular dynamics simulation on systems that may be regarded experimentally as limiting examples of the effect of high pressure on globular proteins, such as lysozyme and apomyoglobin, we have effectively reproduced such similarities and differences in behavior as are interpreted from experiment. From the analysis of such data, we explain the experimental evidence at hand through the effect of pressure on the change of water structure, and hence the weakening of the hydrophobic effect that is known to be the main driving force in protein folding.
Collapse
Affiliation(s)
- J Raúl Grigera
- Institute of Physics of Fluids and Biological Systems, (La Plata UNLP-CONICET) 59-789, B1900BTE, La Plata, Argentina.
| | | |
Collapse
|
20
|
Matthews BW, Liu L. A review about nothing: are apolar cavities in proteins really empty? Protein Sci 2009; 18:494-502. [PMID: 19241368 DOI: 10.1002/pro.61] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cavities within proteins that are strictly apolar typically appear to be empty. It has been suggested, however, that water molecules may be present within such cavities but are too disordered to be seen in conventional crystallographic analyses. In contrast, it is argued here that solvent mobility will be limited by the size of the cavity and for this reason high-occupancy solvent in cavities of typical volume should be readily detectable using X-ray crystallography. Recent experimental studies of cavity hydration are reviewed. Such studies are consistent with theoretical predictions that it is energetically unfavorable to have a single water molecule in an apolar cavity. As apolar cavities become larger, a point is reached where it is favorable to have the cavity occupied by a cluster of mutually H-bonded water molecules. The exact size of such a cavity in a protein is yet to be verified.
Collapse
Affiliation(s)
- Brian W Matthews
- Department of Physics, Institute of Molecular Biology, Howard Hughes Medical Institute, 1229 University of Oregon, Eugene, Oregon 97403-1229, USA.
| | | |
Collapse
|
21
|
High pressure stabilization of collagen structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1151-8. [DOI: 10.1016/j.bbapap.2009.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/31/2009] [Accepted: 04/06/2009] [Indexed: 11/20/2022]
|
22
|
Seefeldt MB, Crouch C, Kendrick B, Randolph TW. Specific volume and adiabatic compressibility measurements of native and aggregated recombinant human interleukin-1 receptor antagonist: Density differences enable pressure-modulated refolding. Biotechnol Bioeng 2007; 98:476-85. [PMID: 17335058 DOI: 10.1002/bit.21398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High hydrostatic pressures have been used to dissociate non-native protein aggregates and foster refolding to the native conformation. In this study, partial specific volume and adiabatic compressibility measurements were used to examine the volumetric contributions to pressure-modulated refolding. The thermodynamics of pressure-modulated refolding from non-native aggregates of recombinant human interleukin-1 receptor antagonist (IL-1ra) were determined by partial specific volume and adiabatic compressibility measurements. Aggregates of IL-1ra formed at elevated temperatures (55 degrees C) were found to be less dense than native IL-1ra and refolded at 31 degrees C under 1,500 bar pressure with a yield of 57%. Partial specific adiabatic compressibility measurements suggest that the formation of solvent-free cavities within the interior of IL-1ra aggregates cause the apparent increase in specific volume. Dense, pressure-stable aggregates could be formed at 2,000 bar which could not be refolded with additional high pressure treatment, demonstrating that aggregate formation conditions and structure dictate pressure-modulated refolding yields.
Collapse
Affiliation(s)
- Matthew B Seefeldt
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Although core residues can sometimes be replaced by shorter ones without introducing significant changes in protein structure, the energetic consequences are typically large and destabilizing. Many efforts have been devoted to understand and predict changes in stability from analysis of the environment of mutated residues, but the relationships proposed for individual proteins have often failed to describe additional data. We report here 17 apoflavodoxin large-to-small mutations that cause overall protein destabilizations of 0.6-3.9 kcal.mol(-1). By comparing two-state urea and three-state thermal unfolding data, the overall destabilizations observed are partitioned into effects on the N-to-I and on the I-to-U equilibria. In all cases, the equilibrium intermediate exerts a "buffering" effect that reduces the impact of the overall destabilization on the N-to-I equilibrium. The performance of several structure-energetics relationships, proposed to explain the energetics of hydrophobic shortening mutations, has been evaluated by using an apoflavodoxin data set consisting of 14 mutations involving branching-conservative aliphatic side-chain shortenings and a larger data set, including similar mutations implemented in seven model proteins. Our analysis shows that the stability changes observed for any of the different types of mutations (LA, IA, IV, and VA) in either data set are best explained by a combination of differential hydrophobicity and of the calculated volume of the modeled cavity (as previously observed for LA and IA mutations in lysozyme T4). In contrast, sequence conservation within the flavodoxin family, which is a good predictor for charge-reversal stabilizing mutations, does not perform so well for aliphatic shortening ones.
Collapse
Affiliation(s)
- Marta Bueno
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias & Biocomputation, and Complex Systems Physics Institute (BIFI), Universidad de Zaragoza, Spain
| | | | | | | |
Collapse
|
24
|
Cheung JK, Shah P, Truskett TM. Heteropolymer collapse theory for protein folding in the pressure-temperature plane. Biophys J 2006; 91:2427-35. [PMID: 16844760 PMCID: PMC1562399 DOI: 10.1529/biophysj.106.081802] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We revisit a heteropolymer collapse theory originally introduced to explore how the balance between hydrophobic interactions and configurational entropy determines the thermal stability of globular proteins at ambient pressure. We generalize the theory by introducing a basic statistical mechanical treatment for how pressure impacts the solvent-mediated interactions between hydrophobic amino-acid residues. In particular, we estimate the strength of the hydrophobic interactions using a molecular thermodynamic model for the interfacial free energy between liquid water and a curved hydrophobic solute. The model, which also reproduces many of the distinctive thermodynamic properties of aqueous solutions in bulk and interfacial environments, predicts that the water-solute interfacial free energy is significantly reduced by the application of high hydrostatic pressures. This allows water to penetrate into folded heteropolymers at high pressure and break apart their hydrophobic cores, a scenario suggested earlier by information theory calculations. As a result, folded heteropolymers are predicted to display the kind of closed region of stability in the pressure-temperature plane exhibited by native proteins. We compare predictions of the collapse theory with experimental data for several proteins.
Collapse
Affiliation(s)
- Jason K Cheung
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- Kazuyuki Akasaka
- School of biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa-shi, Wakayama 649-6493, Japan.
| |
Collapse
|
26
|
Bueno M, Cremades N, Neira JL, Sancho J. Filling Small, Empty Protein Cavities: Structural and Energetic Consequences. J Mol Biol 2006; 358:701-12. [PMID: 16563433 DOI: 10.1016/j.jmb.2006.02.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/17/2006] [Accepted: 02/23/2006] [Indexed: 11/28/2022]
Abstract
Most proteins contain small cavities that can be filled by replacing cavity-lining residues by larger ones. Since shortening mutations in hydrophobic cores tend to destabilize proteins, it is expected that cavity-filling mutations may conversely increase protein stability. We have filled three small cavities in apoflavodoxin and determined by NMR and equilibrium unfolding analysis their impact in protein structure and stability. The smallest cavity (14 A3) has been filled, at two different positions, with a variety of residues and, in all cases, the mutant proteins are locally unfolded, their structure and energetics resembling those of an equilibrium intermediate of the thermal unfolding of the wild-type protein. In contrast, two slightly larger cavities of 20 A3 and 21 A3 have been filled with Val to Ile or Val to Leu mutations and the mutants preserve both the native fold and the equilibrium unfolding mechanism. From the known relationship, observed in shortening mutations, between stability changes and the differential hydrophobicity of the exchanged residues and the volume of the cavities, the filling of these apoflavodoxin cavities is expected to stabilize the protein by approximately 1.5 kcal mol(-1). However, both urea and thermal denaturation analysis reveal much more modest stabilizations, ranging from 0.0 kcal mol(-1) to 0.6 kcal mol(-1), which reflects that the accommodation of single extra methyl groups in small cavities requires some rearrangement, necessarily destabilizing, that lowers the expected theoretical stabilization. As the size of these cavities is representative of that of the typical small, empty cavities found in most proteins, it seems unlikely that filling this type of cavities will give rise to large stabilizations.
Collapse
Affiliation(s)
- Marta Bueno
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | |
Collapse
|
27
|
Li H, Akasaka K. Conformational fluctuations of proteins revealed by variable pressure NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:331-45. [PMID: 16448868 DOI: 10.1016/j.bbapap.2005.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 12/12/2005] [Accepted: 12/13/2005] [Indexed: 11/19/2022]
Abstract
With the high-resolution variable-pressure NMR spectroscopy, one can study conformational fluctuations of proteins in a much wider conformational space than hitherto explored by NMR and other spectroscopic techniques. This is because a protein in solution generally exists as a dynamic mixture of conformers mutually differing in partial molar volume, and pressure can select the population of a conformer according to its relative volume. In this review, we describe how variable-pressure NMR can be used to probe conformational fluctuations of proteins in a wide conformational space from the folded to the fully unfolded structures, with actual examples. Furthermore, the newly emerging technique "NMR snapshots" expresses amply fluctuating protein structures as changes in atomic coordinates. Finally, the concept of conformational fluctuation is extended to include intermolecular association leading to amyloidosis.
Collapse
Affiliation(s)
- Hua Li
- RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan
| | | |
Collapse
|
28
|
Royer CA. Insights into the role of hydration in protein structure and stability obtained through hydrostatic pressure studies. Braz J Med Biol Res 2005; 38:1167-73. [PMID: 16082456 DOI: 10.1590/s0100-879x2005000800003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects) accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.
Collapse
Affiliation(s)
- C A Royer
- Centre de Biochimie Structurale, Montpellier Cedex, France.
| |
Collapse
|
29
|
Campos LA, Garcia-Mira MM, Godoy-Ruiz R, Sanchez-Ruiz JM, Sancho J. Do Proteins Always Benefit from a Stability Increase? Relevant and Residual Stabilisation in a Three-state Protein by Charge Optimisation. J Mol Biol 2004; 344:223-37. [PMID: 15504413 DOI: 10.1016/j.jmb.2004.09.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/31/2004] [Accepted: 09/20/2004] [Indexed: 11/28/2022]
Abstract
The vast majority of our knowledge on protein stability arises from the study of simple two-state models. However, proteins displaying equilibrium intermediates under certain conditions abound and it is unclear whether the energetics of native/intermediate equilibria is well represented in current knowledge. We consider here that the overall conformational stability of three-state proteins is made of a "relevant" term and a "residual" one, corresponding to the free energy differences of the native to intermediate (N-to-I) and intermediate to denatured (I-to-D) equilibria, respectively. The N-to-I free energy difference is considered to be the relevant stability because protein-unfolding intermediates are likely devoid of biological activity. We use surface charge optimisation to first increase the overall (N-to-D) stability of a model three-state protein (apoflavodoxin) and then investigate whether the stabilisation obtained is realised into relevant or into residual stability. Most of the mutations designed from electrostatic calculations or from simple sequence conservation analysis produce large increases in the overall stability of the protein. However, in most cases, this simply leads to similarly large increases of the residual stability. Two mutations, nevertheless, show a different trend and increase the relevant stability of the protein substantially. When all the mutations are mapped onto the structure of the apoflavodoxin thermal-unfolding intermediate (obtained independently by equilibrium phi-analysis and NMR) they cluster perfectly so that the mutations increasing the relevant stability appear in the small unstructured region of the intermediate and the others in the native-like region. This illustrates the need for specific investigation of N-to-I equilibria and the structure of protein intermediates, and indicates that it is possible to rationally stabilise a protein against partial unfolding once the structure of the intermediate conformation is known, even if at low resolution.
Collapse
Affiliation(s)
- Luis A Campos
- Biocomputation and Complex Systems Physics Institute, University of Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | |
Collapse
|
30
|
Abstract
We demonstrate that a novel high-pressure cell is suitable for fluorescence correlation spectroscopy (FCS). The pressure cell consists of a single fused silica microcapillary. The cylindrical shape of the capillary leads to refraction of the excitation light, which affects the point spread function of the system. We characterize the influence of these beam distortions by FCS and photon-counting histogram (PCH) analysis and identify the optimal position for fluorescence fluctuation experiments in the capillary. At this position within the capillary, FCS and photon-counting histogram experiments are described by the same equations as used in standard FCS experiments. We report the first experimental realization of fluorescence fluctuation spectroscopy under high pressure. A fluorescent dye was used as a model system for evaluating the properties of the capillary under pressure. The autocorrelation function and the photon count distribution were measured in the pressure range from 0 to 300 MPa. The fluctuation amplitude and the diffusion coefficient show a small pressure dependence. The changes of these parameters, which are on the order of 10%, are due to the pressure changes of the viscosity and the density of the aqueous medium.
Collapse
Affiliation(s)
- Joachim D Müller
- Laboratory for Fluorescence Dynamics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
31
|
Imai T, Hirata F. Partial molar volume and compressibility of a molecule with internal degrees of freedom. J Chem Phys 2003. [DOI: 10.1063/1.1600437] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
32
|
Xiang SH, Kwong PD, Gupta R, Rizzuto CD, Casper DJ, Wyatt R, Wang L, Hendrickson WA, Doyle ML, Sodroski J. Mutagenic stabilization and/or disruption of a CD4-bound state reveals distinct conformations of the human immunodeficiency virus type 1 gp120 envelope glycoprotein. J Virol 2002; 76:9888-99. [PMID: 12208966 PMCID: PMC136507 DOI: 10.1128/jvi.76.19.9888-9899.2002] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein is conformationally flexible. Upon binding to the host cell receptor CD4, gp120 assumes a conformation that is recognized by the second receptor, CCR5 and/or CXCR4, and by the CD4-induced (CD4i) antibodies. Guided by the X-ray crystal structure of a gp120-CD4-CD4i antibody complex, we introduced changes into gp120 that were designed to stabilize or disrupt this conformation. One mutant, 375 S/W, in which the tryptophan indole group is predicted to occupy the Phe 43 cavity in the gp120 interior, apparently favors a gp120 conformation closer to that of the CD4-bound state. The 375 S/W mutant was recognized as well as or better than wild-type gp120 by CD4 and CD4i antibodies, and the large decrease in entropy observed when wild-type gp120 bound CD4 was reduced for the 375 S/W mutant. The recognition of the 375 S/W mutant by CD4BS antibodies, which are directed against the CD4-binding region of gp120, was markedly reduced compared with that of the wild-type gp120. Compared with the wild-type virus, viruses with the 375 S/W envelope glycoproteins were resistant to neutralization by IgG1b12, a CD4BS antibody, were slightly more sensitive to soluble CD4 neutralization and were neutralized more efficiently by the 2G12 antibody. Another mutant, 423 I/P, in which the gp120 bridging sheet was disrupted, did not bind CD4, CCR5, or CD4i antibodies, even though recognition by CD4BS antibodies was efficient. These results indicate that CD4BS antibodies recognize conformations of gp120 different from that recognized by CD4 and CD4i antibodies.
Collapse
Affiliation(s)
- Shi-Hua Xiang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School. Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Niraula TN, Haraoka K, Ando Y, Li H, Yamada H, Akasaka K. Decreased thermodynamic stability as a crucial factor for familial amyloidotic polyneuropathy. J Mol Biol 2002; 320:333-42. [PMID: 12079390 DOI: 10.1016/s0022-2836(02)00425-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A single mutation in the wild-type transthyretin (WT TTR) such as V30M causes a familial amyloidotic polyneuropathy disease. Comparison of the three-dimensional crystal structures of WT and V30M does not tell much about the reason. High-pressure NMR revealed that at neutral pH both WT and V30M exist as equilibrium between the native tetramer and the dissociated/unfolded monomer. The native tetramer is highly stable in WT (deltaG(0)=104 kJ/mol at 37 degrees C, pH 7.1), but the stability is significantly reduced in V30M (deltadeltaG(0)=-18 kJ/mol), increasing the fraction of the unfolded monomer by a 1000-fold. Significant reduction of thermodynamic stability of WT TTR by mutation could be a crucial factor for familial amyloidotic polyneuropathy.
Collapse
Affiliation(s)
- Tara Nath Niraula
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Kitahara R, Yamada H, Akasaka K, Wright PE. High pressure NMR reveals that apomyoglobin is an equilibrium mixture from the native to the unfolded. J Mol Biol 2002; 320:311-9. [PMID: 12079388 DOI: 10.1016/s0022-2836(02)00449-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pressure-induced reversible conformational changes of sperm whale apomyoglobin have been studied between 30 bar and 3000 bar on individual residue basis by utilizing 1H/15N hetero nuclear single-quantum coherence two-dimensional NMR spectroscopy at pH 6.0 and 35 degrees C. Apomyoglobin showed a series of pressure-dependent NMR spectra as a function of pressure, assignable to the native (N), intermediates (I), molten globule (MG) and unfolded (U) conformers. At 30 bar, the native fold (N) shows disorder only in the F helix. Between 500 bar and 1200 bar, a series of locally disordered conformers I are produced, in which local disorder occurs in the C helix, the CD loop, the G helix and part of the H helix. At 2000 bar, most cross-peaks exhibit severe line-broadening, suggesting the formation of a molten globule, but at 3000 bar all the cross-peaks reappear, showing that the molten globule turns into a well-hydrated, mobile unfolded conformation U. Since all the spectral changes were reversible with pressure, apomyoglobin is considered to exist as an equilibrium mixture of the N, I, MG and U conformers at all pressures. MG is situated at 2.4+/-(0.1) kcal/mol above N at 1 bar and the unfolding transition from the combined N-I state to MG is accompanied by a loss of partial molar volume by 75+/-(3) ml/mol. On the basis of these observations, we postulate a theorem that the partial molar volume of a protein decreases in parallel with the loss of its conformational order.
Collapse
Affiliation(s)
- Ryo Kitahara
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|