1
|
He W, Gasmi-Seabrook GMC, Ikura M, Lee JE, Ohh M. Time-resolved NMR detection of prolyl-hydroxylation in intrinsically disordered region of HIF-1α. Proc Natl Acad Sci U S A 2024; 121:e2408104121. [PMID: 39231207 PMCID: PMC11406255 DOI: 10.1073/pnas.2408104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Prolyl-hydroxylation is an oxygen-dependent posttranslational modification (PTM) that is known to regulate fibril formation of collagenous proteins and modulate cellular expression of hypoxia-inducible factor (HIF) α subunits. However, our understanding of this important but relatively rare PTM has remained incomplete due to the lack of biophysical methodologies that can directly measure multiple prolyl-hydroxylation events within intrinsically disordered proteins. Here, we describe a real-time 13C-direct detection NMR-based assay for studying the hydroxylation of two evolutionarily conserved prolines (P402 and P564) simultaneously in the intrinsically disordered oxygen-dependent degradation domain of hypoxic-inducible factor 1α by exploiting the "proton-less" nature of prolines. We show unambiguously that P564 is rapidly hydroxylated in a time-resolved manner while P402 hydroxylation lags significantly behind that of P564. The differential hydroxylation rate was negligibly influenced by the binding affinity to prolyl-hydroxylase enzyme, but rather by the surrounding amino acid composition, particularly the conserved tyrosine residue at the +1 position to P564. These findings support the unanticipated notion that the evolutionarily conserved P402 seemingly has a minimal impact in normal oxygen-sensing pathway.
Collapse
Affiliation(s)
- Wenguang He
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael Ohh
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Tran TTQ, Narayanan C, Loes AN, Click TH, Pham NTH, Létourneau M, Harms MJ, Calmettes C, Agarwal PK, Doucet N. Ancestral sequence reconstruction dissects structural and functional differences among eosinophil ribonucleases. J Biol Chem 2024; 300:107280. [PMID: 38588810 PMCID: PMC11101842 DOI: 10.1016/j.jbc.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
Evolutionarily conserved structural folds can give rise to diverse biological functions, yet predicting atomic-scale interactions that contribute to the emergence of novel activities within such folds remains challenging. Pancreatic-type ribonucleases illustrate this complexity, sharing a core structure that has evolved to accommodate varied functions. In this study, we used ancestral sequence reconstruction to probe evolutionary and molecular determinants that distinguish biological activities within eosinophil members of the RNase 2/3 subfamily. Our investigation unveils functional, structural, and dynamical behaviors that differentiate the evolved ancestral ribonuclease (AncRNase) from its contemporary eosinophil RNase orthologs. Leveraging the potential of ancestral reconstruction for protein engineering, we used AncRNase predictions to design a minimal 4-residue variant that transforms human RNase 2 into a chimeric enzyme endowed with the antimicrobial and cytotoxic activities of RNase 3 members. This work provides unique insights into mutational and evolutionary pathways governing structure, function, and conformational states within the eosinophil RNase subfamily, offering potential for targeted modulation of RNase-associated functions.
Collapse
Affiliation(s)
- Thi Thanh Quynh Tran
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Chitra Narayanan
- Department of Chemistry, York College, City University of New York (CUNY), Jamaica, New York, USA
| | - Andrea N Loes
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Timothy H Click
- Chemistry and Biochemistry, University of Mary, Bismarck, North Dakota, USA
| | - N T Hang Pham
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Michael J Harms
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Charles Calmettes
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada; PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, UQAM, Montréal, Quebec, Canada
| | - Pratul K Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada; PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, UQAM, Montréal, Quebec, Canada.
| |
Collapse
|
3
|
Palaniappan C, Rajendran S, Sekar K. Alternate conformations found in protein structures implies biological functions: A case study using cyclophilin A. Curr Res Struct Biol 2024; 7:100145. [PMID: 38690327 PMCID: PMC11059445 DOI: 10.1016/j.crstbi.2024.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Protein dynamics linked to numerous biomolecular functions, such as ligand binding, allosteric regulation, and catalysis, must be better understood at the atomic level. Reactive atoms of key residues drive a repertoire of biomolecular functions by flipping between alternate conformations or conformational substates, seldom found in protein structures. Probing such sparsely sampled alternate conformations would provide mechanistic insight into many biological functions. We are therefore interested in evaluating the instance of amino acids adopted alternate conformations, either in backbone or side-chain atoms or in both. Accordingly, over 70000 protein structures appear to contain alternate conformations only 'A' and 'B' for any atom, particularly the instance of amino acids that adopted alternate conformations are more for Arg, Cys, Met, and Ser than others. The resulting protein structure analysis depicts that amino acids with alternate conformations are mainly found in the helical and β-regions and are often seen in high-resolution X-ray crystal structures. Furthermore, a case study on human cyclophilin A (CypA) was performed to explain the pre-existing intrinsic dynamics of catalytically critical residues from the CypA and how such intrinsic dynamics perturbed upon Ser99Thr mutation using molecular dynamics simulations on the ns-μs timescale. Simulation results demonstrated that the Ser99Thr mutation had impaired the alternate conformations or the catalytically productive micro-environment of Phe113, mimicking the experimentally observed perturbation captured by X-ray crystallography. In brief, a deeper comprehension of alternate conformations adopted by the amino acids may shed light on the interplay between protein structure, dynamics, and function.
Collapse
Affiliation(s)
- Chandrasekaran Palaniappan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Santhosh Rajendran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Kanagaraj Sekar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
4
|
Karami Y, Murail S, Giribaldi J, Lefranc B, Defontaine F, Lesouhaitier O, Leprince J, de Vries S, Tufféry P. Exploring a Structural Data Mining Approach to Design Linkers for Head-to-Tail Peptide Cyclization. J Chem Inf Model 2023; 63:6436-6450. [PMID: 37827517 PMCID: PMC10599322 DOI: 10.1021/acs.jcim.3c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 10/14/2023]
Abstract
Peptides have recently regained interest as therapeutic candidates, but their development remains confronted with several limitations including low bioavailability. Backbone head-to-tail cyclization, i.e., setting a covalent peptide bond linking the last amino acid with the first one, is one effective strategy of peptide-based drug design to stabilize the conformation of bioactive peptides while preserving peptide properties in terms of low toxicity, binding affinity, target selectivity, and preventing enzymatic degradation. Starting from an active peptide, it usually requires the design of a linker of a few amino acids to make it possible to cyclize the peptide, possibly preserving the conformation of the initial peptide and not affecting its activity. However, very little is known about the sequence-structure relationship requirements of designing linkers for peptide cyclization in a rational manner. Recently, we have shown that large-scale data-mining of available protein structures can lead to the precise identification of protein loop conformations, even from remote structural classes. Here, we transpose this approach to linkers, allowing head-to-tail peptide cyclization. First we show that given a linker sequence and the conformation of the linear peptide, it is possible to accurately predict the cyclized peptide conformation. Second, and more importantly, we show that it seems possible to elaborate on the information inferred from protein structures to propose effective candidate linker sequences constrained by length and amino acid composition, providing the first framework for the rational design of head-to-tail cyclization linkers. Finally, we illustrate this for two peptides using a limited set of amino-acids likely not to interfere with peptide function. For a linear peptide derived from Nrf2, the peptide cyclized starting from the experimental structure showed a 26-fold increase in the binding affinity. For urotensin II, a peptide already cyclized by a disulfide bond that exerts a broad array of biological activities, we were able, starting from models of the structure, to design a head-to-tail cyclized peptide, the first synthesized bicyclic 14-residue long urotensin II analogue, showing a retention of in vitro activity. Although preliminary, our results strongly suggest that such an approach has strong potential for cyclic peptide-based drug design.
Collapse
Affiliation(s)
- Yasaman Karami
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Samuel Murail
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Julien Giribaldi
- Institut
des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier-CNRS, 34293 Montpellier, France
| | - Benjamin Lefranc
- Université
de Rouen Normandie, INSERM U1239 NorDiC, Neuroendocrine, Endocrine and Germinal Differentiation and Communication,
INSERM US51 HeRacLeS, F-76000 Rouen, France
| | - Florian Defontaine
- Université
de Rouen Normandie, UR CBSA, Research Unit
Bacterial Communication and Anti-infectious Strategies, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Université
de Rouen Normandie, UR CBSA, Research Unit
Bacterial Communication and Anti-infectious Strategies, 27000 Evreux, France
| | - Jérôme Leprince
- Université
de Rouen Normandie, INSERM U1239 NorDiC, Neuroendocrine, Endocrine and Germinal Differentiation and Communication,
INSERM US51 HeRacLeS, F-76000 Rouen, France
| | - Sjoerd de Vries
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Pierre Tufféry
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| |
Collapse
|
5
|
Ito A, Asato M, Asami Y, Fukuda K, Yamasaki R, Okamoto I. Synthesis and Conformational Analysis of N-Aromatic Acetamides Bearing Thiophene: Effect of Intramolecular Chalcogen-Chalcogen Interaction on Amide Conformational Stability. J Org Chem 2023. [PMID: 37154822 DOI: 10.1021/acs.joc.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The conformations of aromatic amides bearing an N-(2-thienyl) or N-(3-thienyl) group were investigated in solution and in the crystal state. NMR spectral data indicate that the conformational preferences of these amides in solution are dependent not only on the relative π-electron densities of the N-aromatic moieties, but also on the three-dimensional relationship between carbonyl oxygen and the N-aromatic moieties. A comparison of the conformational preferences of N-(2-thienyl)amides and N-(3-thienyl)amides revealed that the Z-conformers of N-(2-thienyl)acetamides are stabilized by 1,5-type intramolecular S···O═C interactions between amide carbonyl and thiophene sulfur. The crystal structures of these compounds were similar to the solution structures. The stabilization energy due to 1,5-type intramolecular S···O═C interaction in N-aryl-N-(2-thienyl)acetamides and N-methyl-N-(2-thienyl)acetamide was estimated to be ca. 0.74 and 0.93 kcal/mol, respectively.
Collapse
Affiliation(s)
- Ai Ito
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Marino Asato
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yuki Asami
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Kazuo Fukuda
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Ryu Yamasaki
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Iwao Okamoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
6
|
Bernard DN, Narayanan C, Hempel T, Bafna K, Bhojane PP, Létourneau M, Howell EE, Agarwal PK, Doucet N. Conformational exchange divergence along the evolutionary pathway of eosinophil-associated ribonucleases. Structure 2023; 31:329-342.e4. [PMID: 36649708 PMCID: PMC9992247 DOI: 10.1016/j.str.2022.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The evolutionary role of conformational exchange in the emergence and preservation of function within structural homologs remains elusive. While protein engineering has revealed the importance of flexibility in function, productive modulation of atomic-scale dynamics has only been achieved on a finite number of distinct folds. Allosteric control of unique members within dynamically diverse structural families requires a better appreciation of exchange phenomena. Here, we examined the functional and structural role of conformational exchange within eosinophil-associated ribonucleases. Biological and catalytic activity of various EARs was performed in parallel to mapping their conformational behavior on multiple timescales using NMR and computational analyses. Despite functional conservation and conformational seclusion to a specific domain, we show that EARs can display similar or distinct motional profiles, implying divergence rather than conservation of flexibility. Comparing progressively more distant enzymes should unravel how this subfamily has evolved new functions and/or altered their behavior at the molecular level.
Collapse
Affiliation(s)
- David N Bernard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Chitra Narayanan
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; Department of Chemistry, New Jersey City University, Jersey City, NJ 07305, USA
| | - Tim Hempel
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany; Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Khushboo Bafna
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Purva Prashant Bhojane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Elizabeth E Howell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Pratul K Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
7
|
Synthesis and crystal structures of N,N-diarylacetamides bearing two azulene rings. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Kobori S, Huh S, Appavoo SD, Yudin AK. Two-Dimensional Barriers for Probing Conformational Shifts in Macrocycles. J Am Chem Soc 2021; 143:5166-5171. [PMID: 33754700 DOI: 10.1021/jacs.1c01248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe the development and use of composite two-dimensional barriers in macrocyclic backbones. These tunable constructs derive their mode of action from heterocyclic rearrangements. The Boulton-Katritzky reaction has been identified as a particularly versatile means to effect a composite barrier, allowing the examination of the influence of heterocycle translocation on conformation. Kinetic studies using 1H NMR have revealed that the in-plane atom movement is fast in 17, 18, 19-membered rings but slows down in 16-membered rings. The analysis by NMR and MD simulation experiments is consistent with the maintenance of rare cis-amide motifs during conformational interconversion. Taken together, our investigation demonstrates that heterocyclic rearrangement reactions can be used to control macrocyclic backbones and provides fundamental insights that may be applicable to the development of a wide range of other conformational control elements.
Collapse
Affiliation(s)
- Shinya Kobori
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Sungjoon Huh
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Solomon D Appavoo
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| |
Collapse
|
9
|
Visualizing Rev1 catalyze protein-template DNA synthesis. Proc Natl Acad Sci U S A 2020; 117:25494-25504. [PMID: 32999062 DOI: 10.1073/pnas.2010484117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During DNA replication, replicative DNA polymerases may encounter DNA lesions, which can stall replication forks. One way to prevent replication fork stalling is through the recruitment of specialized translesion synthesis (TLS) polymerases that have evolved to incorporate nucleotides opposite DNA lesions. Rev1 is a specialized TLS polymerase that bypasses abasic sites, as well as minor-groove and exocyclic guanine adducts. Lesion bypass is accomplished using a unique protein-template mechanism in which the templating base is evicted from the DNA helix and the incoming dCTP hydrogen bonds with an arginine side chain of Rev1. To understand the protein-template mechanism at an atomic level, we employed a combination of time-lapse X-ray crystallography, molecular dynamics simulations, and DNA enzymology on the Saccharomyces cerevisiae Rev1 protein. We find that Rev1 evicts the templating base from the DNA helix prior to binding the incoming nucleotide. Binding the incoming nucleotide changes the conformation of the DNA substrate to orient it for nucleotidyl transfer, although this is not coupled to large structural changes in Rev1 like those observed with other DNA polymerases. Moreover, we found that following nucleotide incorporation, Rev1 converts the pyrophosphate product to two monophosphates, which drives the reaction in the forward direction and prevents pyrophosphorolysis. Following nucleotide incorporation, the hydrogen bonds between the incorporated nucleotide and the arginine side chain are broken, but the templating base remains extrahelical. These postcatalytic changes prevent potentially mutagenic processive synthesis by Rev1 and facilitate dissociation of the DNA product from the enzyme.
Collapse
|
10
|
Hoitsma NM, Whitaker AM, Beckwitt EC, Jang S, Agarwal P, Van Houten B, Freudenthal BD. AP-endonuclease 1 sculpts DNA through an anchoring tyrosine residue on the DNA intercalating loop. Nucleic Acids Res 2020; 48:7345-7355. [PMID: 32542366 PMCID: PMC7367167 DOI: 10.1093/nar/gkaa496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Base excision repair (BER) maintains genomic stability through the repair of DNA damage. Within BER, AP-endonuclease 1 (APE1) is a multifunctional enzyme that processes DNA intermediates through its backbone cleavage activity. To accomplish these repair activities, APE1 must recognize and accommodate several diverse DNA substrates. This is hypothesized to occur through a DNA sculpting mechanism where structural adjustments of the DNA substrate are imposed by the protein; however, how APE1 uniquely sculpts each substrate within a single rigid active site remains unclear. Here, we utilize structural and biochemical approaches to probe the DNA sculpting mechanism of APE1, specifically by characterizing a protein loop that intercalates the minor groove of the DNA (termed the intercalating loop). Pre-steady-state kinetics reveal a tyrosine residue within the intercalating loop (Y269) that is critical for AP-endonuclease activity. Using X-ray crystallography and molecular dynamics simulations, we determined the Y269 residue acts to anchor the intercalating loop on abasic DNA. Atomic force microscopy reveals the Y269 residue is required for proper DNA bending by APE1, providing evidence for the importance of this mechanism. We conclude that this previously unappreciated tyrosine residue is key to anchoring the intercalating loop and stabilizing the DNA in the APE1 active site.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Laboratory of DNA Replication, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Sunbok Jang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pratul K Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Bennett Van Houten
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
11
|
Valdivia A, Agarwal PK, Bhattacharya SK. Myelin Basic Protein Phospholipid Complexation Likely Competes with Deimination in Experimental Autoimmune Encephalomyelitis Mouse Model. ACS OMEGA 2020; 5:15454-15467. [PMID: 32637820 PMCID: PMC7331039 DOI: 10.1021/acsomega.0c01590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Multiple sclerosis has complex pathogenesis encompassing a variety of components (immunologic, genetic, and environmental). The autoimmunogenicity against the host's myelin basic protein is a major contributor. An increase in myelin basic protein deimination (a post-translational modification) and a change in phospholipid composition have been associated with multiple sclerosis. The interaction of myelin basic protein with phospholipids in the myelin membrane is an important contributor to the stability and maintenance of proper myelin sheath function. The study of this aspect of multiple sclerosis is an area that has yet to be fully explored and that the present study seeks to understand. Several biochemical methods, a capillary electrophoresis coupled system and mass spectrometry, were used in this study. These methods identified four specific phospholipids complexing with myelin basic protein. We show that lysophosphatidylcholine 18:1 provides a robust competitive effect against hyper-deimination. Our data suggest that lysophosphatidylcholine 18:1 has a different biochemical behavior when compared to other phospholipids and lysophosphatidylcholines 14:0, 16:0, and 18:0.
Collapse
Affiliation(s)
- Anddre
Osmar Valdivia
- Department
of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida 33136, United States
- Neuroscience
Graduate Program, University of Miami, Miami, Florida 33136, United States
| | - Pratul K. Agarwal
- Department
of Biochemistry & Cell and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Physiological
Sciences andHigh Performance Computing Center, Oklahoma
State University, Stillwater, 106 Math Sciences, Stillwater, Oklahoma 74078-1010, United States
| | - Sanjoy K. Bhattacharya
- Department
of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida 33136, United States
- Neuroscience
Graduate Program, University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
12
|
Hester KP, Bhattarai K, Jiang H, Agarwal PK, Pope C. Engineering Dynamic Surface Peptide Networks on Butyrylcholinesterase G117H for Enhanced Organophosphosphorus Anticholinesterase Catalysis. Chem Res Toxicol 2019; 32:1801-1810. [PMID: 31411024 DOI: 10.1021/acs.chemrestox.9b00146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The single residue mutation of butyrylcholinesterase (BChEG117H) hydrolyzes a number of organophosphosphorus (OP) anticholinesterases. Whereas other BChE active site/proximal mutations have been investigated, none are sufficiently active to be prophylactically useful. In a fundamentally different computer simulations driven strategy, we identified a surface peptide loop (residues 278-285) exhibiting dynamic motions during catalysis and modified it via residue insertions. We evaluated these loop mutants using computer simulations, substrate kinetics, resistance to inhibition, and enzyme reactivation assays using both the choline ester and OP substrates. A slight but significant increase in reactivation was noted with paraoxon with one of the mutants, and changes in KM and catalytic efficiency were noted in others. Simulations suggested weaker interactions between OP versus choline substrates and the active site of all engineered versions of the enzyme. The results indicate that an improvement of OP anticholinesterase hydrolysis through surface loop engineering may be a more effective strategy in an enzyme with higher intrinsic OP compound hydrolase activity.
Collapse
Affiliation(s)
- Kirstin P Hester
- Department of Physiological Sciences , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Krishna Bhattarai
- Department of Entomology and Plant Pathology , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Haobo Jiang
- Department of Entomology and Plant Pathology , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Pratul K Agarwal
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States.,Arium BioLabs , 2519 Caspian Drive , Knoxville , Tennessee 37932 , United States
| | - Carey Pope
- Department of Physiological Sciences , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| |
Collapse
|
13
|
Bafna K, Narayanan C, Chennubhotla SC, Doucet N, Agarwal PK. Nucleotide substrate binding characterization in human pancreatic-type ribonucleases. PLoS One 2019; 14:e0220037. [PMID: 31393891 PMCID: PMC6687278 DOI: 10.1371/journal.pone.0220037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/07/2019] [Indexed: 12/15/2022] Open
Abstract
Human genome contains a group of more than a dozen similar genes with diverse biological functions including antiviral, antibacterial and angiogenesis activities. The characterized gene products of this group show significant sequence similarity and a common structural fold associated with binding and cleavage of ribonucleic acid (RNA) substrates. Therefore, these proteins have been categorized as members of human pancreatic-type ribonucleases (hRNases). hRNases differ in cell/tissue localization and display distinct substrate binding preferences and a wide range of ribonucleolytic catalytic efficiencies. Limited information is available about structural and dynamical properties that influence this diversity among these homologous RNases. Here, we use computer simulations to characterize substrate interactions, electrostatics and dynamical properties of hRNases 1-7 associated with binding to two nucleotide substrates (ACAC and AUAU). Results indicate that even with complete conservation of active-site catalytic triad associated with ribonucleolytic activity, these enzymes show significant differences in substrate interactions. Detailed characterization suggests that in addition to binding site electrostatic and van der Waals interactions, dynamics of distal regions may also play a role in binding. Another key insight is that a small difference in temperature of 300 K (used in experimental studies) and 310 K (physiological temperature) shows significant changes in enzyme-substrate interactions.
Collapse
Affiliation(s)
- Khushboo Bafna
- Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Chitra Narayanan
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - S. Chakra Chennubhotla
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Québec, Quebec, Canada
| | - Pratul K. Agarwal
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
14
|
Wapeesittipan P, Mey ASJS, Walkinshaw MD, Michel J. Allosteric effects in cyclophilin mutants may be explained by changes in nano-microsecond time scale motions. Commun Chem 2019. [DOI: 10.1038/s42004-019-0136-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
Duff MR, Desai N, Craig MA, Agarwal PK, Howell EE. Crowders Steal Dihydrofolate Reductase Ligands through Quinary Interactions. Biochemistry 2019; 58:1198-1213. [PMID: 30724552 DOI: 10.1021/acs.biochem.8b01110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydrofolate reductase (DHFR) reduces dihydrofolate (DHF) to tetrahydrofolate using NADPH as a cofactor. Due to its role in one carbon metabolism, chromosomal DHFR is the target of the antibacterial drug, trimethoprim. Resistance to trimethoprim has resulted in a type II DHFR that is not structurally related to the chromosomal enzyme target. Because of its metabolic significance, understanding DHFR kinetics and ligand binding behavior in more cell-like conditions, where the total macromolecule concentration can be as great as 300 mg/mL, is important. The progress-curve kinetics and ligand binding properties of the drug target (chromosomal E. coli DHFR) and the drug resistant (R67 DHFR) enzymes were studied in the presence of macromolecular cosolutes. There were varied effects on NADPH oxidation and binding to the two DHFRs, with some cosolutes increasing affinity and others weakening binding. However, DHF binding and reduction in both DHFRs decreased in the presence of all cosolutes. The decreased binding of ligands is mostly attributed to weak associations with the macromolecules, as opposed to crowder effects on the DHFRs. Computer simulations found weak, transient interactions for both ligands with several proteins. The net charge of protein cosolutes correlated with effects on NADP+ binding, with near neutral and positively charged proteins having more detrimental effects on binding. For DHF binding, effects correlated more with the size of binding pockets on the protein crowders. These nonspecific interactions between DHFR ligands and proteins predict that the in vivo efficiency of DHFRs may be much lower than expected from their in vitro rates.
Collapse
Affiliation(s)
- Michael R Duff
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| | - Nidhi Desai
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| | - Michael A Craig
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| | - Pratul K Agarwal
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| | - Elizabeth E Howell
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
16
|
Abstract
Even after a century of investigation, our understanding of how enzymes work remains far from complete. In particular, several factors that enable enzymes to achieve high catalytic efficiencies remain only poorly understood. A number of theories have been developed, which propose or reaffirm that enzymes work as structural scaffolds, serving to bring together and properly orient the participants so that the reaction can proceed; therefore, leading to enzymes being viewed as only passive participants in the catalyzed reaction. A growing body of evidence shows that enzymes are not rigid structures but are constantly undergoing a wide range of internal motions and conformational fluctuations. In this Perspective, on the basis of studies from our group, we discuss the emerging biophysical model of enzyme catalysis that provides a detailed understanding of the interconnection among internal protein motions, conformational substates, enzyme mechanisms, and the catalytic efficiency of enzymes. For a number of enzymes, networks of conserved residues that extend from the surface of the enzyme all the way to the active site have been discovered. These networks are hypothesized to serve as pathways of energy transfer that enables thermodynamical coupling of the surrounding solvent with enzyme catalysis and play a role in promoting enzyme function. Additionally, the role of enzyme structure and electrostatic effects has been well acknowledged for quite some time. Collectively, the recent knowledge gained about enzyme mechanisms suggests that the conventional paradigm of enzyme structure encoding function is incomplete and needs to be extended to structure encodes dynamics, and together these enzyme features encode function including catalytic rate acceleration.
Collapse
Affiliation(s)
- Pratul K Agarwal
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
17
|
|
18
|
Shukla S, Bafna K, Gullett C, Myles DAA, Agarwal PK, Cuneo MJ. Differential Substrate Recognition by Maltose Binding Proteins Influenced by Structure and Dynamics. Biochemistry 2018; 57:5864-5876. [PMID: 30204415 PMCID: PMC6189639 DOI: 10.1021/acs.biochem.8b00783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The genome of the hyperthermophile Thermotoga maritima contains three isoforms of maltose binding protein (MBP) that are high-affinity receptors for di-, tri-, and tetrasaccharides. Two of these proteins (tmMBP1 and tmMBP2) share significant sequence identity, approximately 90%, while the third (tmMBP3) shares less than 40% identity. MBP from Escherichia coli (ecMBP) shares 35% sequence identity with the tmMBPs. This subset of MBP isoforms offers an interesting opportunity to investigate the mechanisms underlying the evolution of substrate specificity and affinity profiles in a genome where redundant MBP genes are present. In this study, the X-ray crystal structures of tmMBP1, tmMBP2, and tmMBP3 are reported in the absence and presence of oligosaccharides. tmMBP1 and tmMBP2 have binding pockets that are larger than that of tmMBP3, enabling them to bind to larger substrates, while tmMBP1 and tmMBP2 also undergo substrate-induced hinge bending motions (∼52°) that are larger than that of tmMBP3 (∼35°). Small-angle X-ray scattering was used to compare protein behavior in solution, and computer simulations provided insights into dynamics of these proteins. Comparing quantitative protein-substrate interactions and dynamical properties of tmMBPs with those of the promiscuous ecMBP and disaccharide selective Thermococcus litoralis MBP provides insights into the features that enable selective binding. Collectively, the results provide insights into how the structure and dynamics of tmMBP homologues enable them to differentiate between a myriad of chemical entities while maintaining their common fold.
Collapse
Affiliation(s)
- Shantanu Shukla
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Khushboo Bafna
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee
| | - Caeley Gullett
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Dean A. A. Myles
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Pratul K. Agarwal
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee
| | - Matthew J. Cuneo
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Deparment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
19
|
Thakkar BS, Svendsen JSM, Engh RA. Density Functional Studies on Secondary Amides: Role of Steric Factors in Cis/Trans Isomerization. Molecules 2018; 23:molecules23102455. [PMID: 30257481 PMCID: PMC6222500 DOI: 10.3390/molecules23102455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022] Open
Abstract
Cis/trans isomerization of amide bonds is a key step in a wide range of biological and synthetic processes. Occurring through C-N amide bond rotation, it also coincides with the activation of amides in enzymatic hydrolysis. In recently described QM studies of cis/trans isomerization in secondary amides using density functional methods, we highlighted that a peptidic prototype, such as glycylglycine methyl ester, can suitably represent the isomerization and complexities arising out of a larger molecular backbone, and can serve as the primary scaffold for model structures with different substitution patterns in order to assess and compare the steric effect of the substitution patterns. Here, we describe our theoretical assessment of such steric effects using tert-butyl as a representative bulky substitution. We analyze the geometries and relative stabilities of both trans and cis isomers, and effects on the cis/trans isomerization barrier. We also use the additivity principle to calculate absolute steric effects with a gradual increase in bulk. The study establishes that bulky substitutions significantly destabilize cis isomers and also increases the isomerization barrier, thereby synergistically hindering the cis/trans isomerization of secondary amides. These results provide a basis for the rationalization of kinetic and thermodynamic properties of peptides with potential applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Balmukund S Thakkar
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | | | - Richard A Engh
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
20
|
Duff MR, Borreguero JM, Cuneo MJ, Ramanathan A, He J, Kamath G, Chennubhotla SC, Meilleur F, Howell EE, Herwig KW, Myles DAA, Agarwal PK. Modulating Enzyme Activity by Altering Protein Dynamics with Solvent. Biochemistry 2018; 57:4263-4275. [PMID: 29901984 DOI: 10.1021/acs.biochem.8b00424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Optimal enzyme activity depends on a number of factors, including structure and dynamics. The role of enzyme structure is well recognized; however, the linkage between protein dynamics and enzyme activity has given rise to a contentious debate. We have developed an approach that uses an aqueous mixture of organic solvent to control the functionally relevant enzyme dynamics (without changing the structure), which in turn modulates the enzyme activity. Using this approach, we predicted that the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) from Escherichia coli in aqueous mixtures of isopropanol (IPA) with water will decrease by ∼3 fold at 20% (v/v) IPA concentration. Stopped-flow kinetic measurements find that the pH-independent khydride rate decreases by 2.2 fold. X-ray crystallographic enzyme structures show no noticeable differences, while computational studies indicate that the transition state and electrostatic effects were identical for water and mixed solvent conditions; quasi-elastic neutron scattering studies show that the dynamical enzyme motions are suppressed. Our approach provides a unique avenue to modulating enzyme activity through changes in enzyme dynamics. Further it provides vital insights that show the altered motions of DHFR cause significant changes in the enzyme's ability to access its functionally relevant conformational substates, explaining the decreased khydride rate. This approach has important implications for obtaining fundamental insights into the role of rate-limiting dynamics in catalysis and as well as for enzyme engineering.
Collapse
Affiliation(s)
- Michael R Duff
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States
| | - Jose M Borreguero
- Neutron Data Analysis and Visualization Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Matthew J Cuneo
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Arvind Ramanathan
- Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Junhong He
- Neutron Technologies Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Ganesh Kamath
- Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - S Chakra Chennubhotla
- Department of Computational and Systems Biology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
| | - Flora Meilleur
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States.,Molecular and Structural Biochemistry Department , North Carolina State University , Raleigh , North Carolina , United States
| | - Elizabeth E Howell
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States
| | - Kenneth W Herwig
- Neutron Technologies Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Dean A A Myles
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Pratul K Agarwal
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States.,Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| |
Collapse
|
21
|
Gagné D, Narayanan C, Bafna K, Charest LA, Agarwal PK, Doucet N. Sequence-specific backbone resonance assignments and microsecond timescale molecular dynamics simulation of human eosinophil-derived neurotoxin. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:143-149. [PMID: 28271277 PMCID: PMC5589483 DOI: 10.1007/s12104-017-9736-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Eight active canonical members of the pancreatic-like ribonuclease A (RNase A) superfamily have been identified in human. All structural homologs share similar RNA-degrading functions, while also cumulating other various biological activities in different tissues. The functional homologs eosinophil-derived neurotoxin (EDN, or RNase 2) and eosinophil cationic protein (ECP, or RNase 3) are known to be expressed and secreted by eosinophils in response to infection, and have thus been postulated to play an important role in host defense and inflammatory response. We recently initiated the biophysical and dynamical investigation of several vertebrate RNase homologs and observed that clustering residue dynamics appear to be linked with the phylogeny and biological specificity of several members. Here we report the 1H, 13C and 15N backbone resonance assignments of human EDN (RNase 2) and its molecular dynamics simulation on the microsecond timescale, providing means to pursue this comparative atomic-scale functional and dynamical analysis by NMR and computation over multiple time frames.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA
| | - Chitra Narayanan
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Khushboo Bafna
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Laurie-Anne Charest
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Pratul K Agarwal
- Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
- PROTEO, The Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval, 1045 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.
- GRASP, The Groupe de recherche Axé sur la Structure des Protéines, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
22
|
Li L, Ghimire-Rijal S, Lucas SL, Stanley CB, Wright E, Agarwal PK, Myles DA, Cuneo MJ. Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding. Biochemistry 2017; 56:5328-5337. [PMID: 28876049 DOI: 10.1021/acs.biochem.7b00657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ligand-induced conformational changes of periplasmic binding proteins (PBP) play a key role in the acquisition of metabolites in ATP binding cassette (ABC) transport systems. This conformational change allows for differential recognition of the ligand occupancy of the PBP by the ABC transporter. This minimizes futile ATP hydrolysis in the transporter, a phenomenon in which ATP hydrolysis is not coupled to metabolite transport. In many systems, the PBP conformational change is insufficient at eliminating futile ATP hydrolysis. Here we identify an additional state of the PBP that is also allosterically regulated by the ligand. Ligand binding to the homodimeric apo PBP leads to a tightening of the interface α-helices so that the hydrogen bonding pattern shifts to that of a 310 helix, in-turn altering the contacts and the dynamics of the protein interface so that the monomer exists in the presence of ligand.
Collapse
Affiliation(s)
| | | | - Sarah L Lucas
- Department of Biomedical Engineering, North Carolina State University , Raleigh North Carolina 27607, United States
| | | | - Edward Wright
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Pratul K Agarwal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | | | | |
Collapse
|
23
|
Thakkar BS, Svendsen JSM, Engh RA. Cis/Trans Isomerization in Secondary Amides: Reaction Paths, Nitrogen Inversion, and Relevance to Peptidic Systems. J Phys Chem A 2017; 121:6830-6837. [DOI: 10.1021/acs.jpca.7b05584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Balmukund S. Thakkar
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø-9037, Norway
| | | | - Richard A. Engh
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø-9037, Norway
| |
Collapse
|
24
|
Gagné D, Narayanan C, Nguyen-Thi N, Roux LD, Bernard DN, Brunzelle JS, Couture JF, Agarwal PK, Doucet N. Ligand Binding Enhances Millisecond Conformational Exchange in Xylanase B2 from Streptomyces lividans. Biochemistry 2016; 55:4184-96. [PMID: 27387012 DOI: 10.1021/acs.biochem.6b00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Xylanases catalyze the hydrolysis of xylan, an abundant carbon and energy source with important commercial ramifications. Despite tremendous efforts devoted to the catalytic improvement of xylanases, success remains limited because of our relatively poor understanding of their molecular properties. Previous reports suggested the potential role of atomic-scale residue dynamics in modulating the catalytic activity of GH11 xylanases; however, dynamics in these studies was probed on time scales orders of magnitude faster than the catalytic time frame. Here, we used nuclear magnetic resonance titration and relaxation dispersion experiments ((15)N-CPMG) in combination with X-ray crystallography and computational simulations to probe conformational motions occurring on the catalytically relevant millisecond time frame in xylanase B2 (XlnB2) and its catalytically impaired mutant E87A from Streptomyces lividans 66. Our results show distinct dynamical properties for the apo and ligand-bound states of the enzymes. The apo form of XlnB2 experiences conformational exchange for residues in the fingers and palm regions of the catalytic cleft, while the catalytically impaired E87A variant displays millisecond dynamics only in the fingers, demonstrating the long-range effect of the mutation on flexibility. Ligand binding induces enhanced conformational exchange of residues interacting with the ligand in the fingers and thumb loop regions, emphasizing the potential role of residue motions in the fingers and thumb loop regions for recognition, positioning, processivity, and/or stabilization of ligands in XlnB2. To the best of our knowledge, this work represents the first experimental characterization of millisecond dynamics in a GH11 xylanase family member. These results offer new insights into the potential role of conformational exchange in GH11 enzymes, providing essential dynamic information to help improve protein engineering and design applications.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Chitra Narayanan
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Nhung Nguyen-Thi
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Louise D Roux
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - David N Bernard
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Joseph S Brunzelle
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University , 320 East Superior Street, Chicago, Illinois 60611, United States
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.,PROTEO, Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval , 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada.,GRASP, Groupe de Recherche Axé sur la Structure des Protéines, McGill University , 3649 Promenade Sir William Osler, Montréal, Québec H3G 0B1, Canada
| | - Pratul K Agarwal
- Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States.,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada.,PROTEO, Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval , 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada.,GRASP, Groupe de Recherche Axé sur la Structure des Protéines, McGill University , 3649 Promenade Sir William Osler, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
25
|
Agarwal PK, Doucet N, Chennubhotla C, Ramanathan A, Narayanan C. Conformational Sub-states and Populations in Enzyme Catalysis. Methods Enzymol 2016; 578:273-97. [PMID: 27497171 DOI: 10.1016/bs.mie.2016.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enzyme function involves substrate and cofactor binding, precise positioning of reactants in the active site, chemical turnover, and release of products. In addition to formation of crucial structural interactions between enzyme and substrate(s), coordinated motions within the enzyme-substrate complex allow reaction to proceed at a much faster rate, compared to the reaction in solution and in the absence of enzyme. An increasing number of enzyme systems show the presence of conserved protein motions that are important for function. A wide variety of motions are naturally sampled (over femtosecond to millisecond time-scales) as the enzyme complex moves along the energetic landscape, driven by temperature and dynamical events from the surrounding environment. Areas of low energy along the landscape form conformational sub-states, which show higher conformational populations than surrounding areas. A small number of these protein conformational sub-states contain functionally important structural and dynamical features, which assist the enzyme mechanism along the catalytic cycle. Identification and characterization of these higher-energy (also called excited) sub-states and the associated populations are challenging, as these sub-states are very short-lived and therefore rarely populated. Specialized techniques based on computer simulations, theoretical modeling, and nuclear magnetic resonance have been developed for quantitative characterization of these sub-states and populations. This chapter discusses these techniques and provides examples of their applications to enzyme systems.
Collapse
Affiliation(s)
- P K Agarwal
- Computational Biology Institute, Oak Ridge National Laboratory, Oak Ridge, TN, United States; University of Tennessee, Knoxville, TN, United States.
| | - N Doucet
- INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | | | - A Ramanathan
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - C Narayanan
- INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| |
Collapse
|
26
|
Gagné D, French RL, Narayanan C, Simonović M, Agarwal PK, Doucet N. Perturbation of the Conformational Dynamics of an Active-Site Loop Alters Enzyme Activity. Structure 2015; 23:2256-2266. [PMID: 26655472 DOI: 10.1016/j.str.2015.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 01/28/2023]
Abstract
The role of internal dynamics in enzyme function is highly debated. Specifically, how small changes in structure far away from the reaction site alter protein dynamics and overall enzyme mechanisms is of wide interest in protein engineering. Using RNase A as a model, we demonstrate that elimination of a single methyl group located >10 Å away from the reaction site significantly alters conformational integrity and binding properties of the enzyme. This A109G mutation does not perturb structure or thermodynamic stability, both in the apo and ligand-bound states. However, significant enhancement in conformational dynamics was observed for the bound variant, as probed over nano- to millisecond timescales, resulting in major ligand repositioning. These results illustrate the large effects caused by small changes in structure on long-range conformational dynamics and ligand specificities within proteins, further supporting the importance of preserving wild-type dynamics in enzyme systems that rely on flexibility for function.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Rachel L French
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland, Chicago, IL 60607, USA
| | - Chitra Narayanan
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland, Chicago, IL 60607, USA
| | - Pratul K Agarwal
- Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA; Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, 1045 Avenue de la Médecine, Université Laval, QC G1V 0A6, Canada; GRASP, the Groupe de Recherche Axé sur la Structure des Protéines, 3649 Promenade Sir William Osler, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
27
|
Dokainish HM, Ion BF, Gauld JW. Computational investigations on the catalytic mechanism of maleate isomerase: the role of the active site cysteine residues. Phys Chem Chem Phys 2015; 16:12462-74. [PMID: 24827730 DOI: 10.1039/c4cp01342e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The maleate isomerase (MI) catalysed isomerization of maleate to fumarate has been investigated using a wide range of computational modelling techniques, including small model DFT calculations, QM-cluster approach, quantum mechanical/molecular mechanical approach (QM/MM in the ONIOM formalism) and molecular dynamics simulations. Several fundamental questions regarding the mechanism were answered in detail, such as the activation and stabilization of the catalytic Cys in a rather hydrophobic active site. The two previously proposed mechanisms were considered, where either enediolate or succinyl-Cys intermediate forms. Small model calculations as well as an ONIOM-based approach suggest that an enediolate intermediate is too unstable. Furthermore, the formation of succinyl-Cys intermediate via the nucleophilic attack of Cys76(-) on the substrate C2 (as proposed experimentally) was found to be energetically unfeasible in both QM-cluster and ONIOM approaches. Instead, our results show that Cys194, upon activation via the substrate, acts as a nucleophile and Cys76 acts as an acid/base catalyst, forming a succinyl-Cys intermediate in a concerted fashion. Indeed, the calculated PA of Cys76 is always higher than that of Cys194 before or upon substrate binding in the active site. Furthermore, the mechanism proceeds via multiple steps by substrate rotation around C2-C3 with the assistance of the now negatively charged Cys76, leading to the formation of fumarate. Finally, our calculated barrier is in good agreement with experiment. These findings represent a novel mechanism in the racemase superfamily.
Collapse
Affiliation(s)
- Hisham M Dokainish
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | | | | |
Collapse
|
28
|
Barbany M, Meyer T, Hospital A, Faustino I, D'Abramo M, Morata J, Orozco M, de la Cruz X. Molecular dynamics study of naturally existing cavity couplings in proteins. PLoS One 2015; 10:e0119978. [PMID: 25816327 PMCID: PMC4376744 DOI: 10.1371/journal.pone.0119978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We have divided this problem into two parts. In the first part, we have explored the presence of cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics simulations. For each of these proteins, we have obtained two trajectories around their native state. After applying a stringent filtering procedure, we found significant cavity correlations in 60% of the proteins. We analyze and discuss the structure origins of these correlations, including neighbourhood, cavity distance, etc. In the second part of our study, we have used longer simulations (≥100 ns) from the MoDEL project, to obtain a broader view of cavity couplings, particularly about their dependence on time. Using moving window computations we explored the fluctuations of cavity couplings along time, finding that these couplings could fluctuate substantially during the trajectory, reaching in several cases correlations above 0.25/0.5. In summary, we describe the structural origin and the variations with time of cavity couplings. We complete our work with a brief discussion of the biological implications of these results.
Collapse
Affiliation(s)
- Montserrat Barbany
- Translational Bioinformatics in Neurosciences, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Tim Meyer
- Theoretische und computergestützte Biophysik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Adam Hospital
- Joint IRB (Institute for Research in Biomedicine)—BSC (Barcelona Supercomputing Center) Program on Computational Biology, Barcelona, Spain
| | - Ignacio Faustino
- Joint IRB (Institute for Research in Biomedicine)—BSC (Barcelona Supercomputing Center) Program on Computational Biology, Barcelona, Spain
| | - Marco D'Abramo
- Department of Chemistry, Università degli Studi di Roma "La Sapienza", Roma, Italy
| | - Jordi Morata
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Modesto Orozco
- Joint IRB (Institute for Research in Biomedicine)—BSC (Barcelona Supercomputing Center) Program on Computational Biology, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier de la Cruz
- Translational Bioinformatics in Neurosciences, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
29
|
Discrete Derivatives for Atom-Pairs as a Novel Graph-Theoretical Invariant for Generating New Molecular Descriptors: Orthogonality, Interpretation and QSARs/QSPRs on Benchmark Databases. Mol Inform 2014; 33:343-68. [DOI: 10.1002/minf.201300173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/29/2014] [Indexed: 11/07/2022]
|
30
|
GhattyVenkataKrishna PK, Carri GA. Effect of glycerol–water binary mixtures on the structure and dynamics of protein solutions. J Biomol Struct Dyn 2013; 32:424-37. [DOI: 10.1080/07391102.2013.773562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
GhattyVenkataKrishna PK, Carri GA. The effect of complex solvents on the structure and dynamics of protein solutions: The case of Lysozyme in trehalose/water mixtures. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:14. [PMID: 23404569 DOI: 10.1140/epje/i2013-13014-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/15/2012] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
We present a Molecular Dynamics simulation study of the effect of trehalose concentration on the structure and dynamics of individual proteins immersed in trehalose/water mixtures. Hen egg-white Lysozyme is used in this study and trehalose concentrations of 0%, 10%, 20%, 30% and 100% by weight are explored. Surprisingly, we have found that changes in trehalose concentration do not change the global structural characteristics of the protein as measured by standard quantities like the mean square deviation, radius of gyration, solvent accessible surface area, inertia tensor and asphericity. Only in the limit of pure trehalose these metrics change significantly. Specifically, we found that the protein is compressed by 2% when immersed in pure trehalose. At the amino acid level there is noticeable rearrangement of the surface residues due to the change in polarity of the surrounding environment with the addition of trehalose. From a dynamic perspective, our computation of the Incoherent Intermediate Scattering Function shows that the protein slows down with increasing trehalose concentration; however, this slowdown is not monotonic. Finally, we also report in-depth results for the hydration layer around the protein including its structure, hydrogen-bonding characteristics and dynamic behavior at different length scales.
Collapse
|
32
|
In Silico Strategies Toward Enzyme Function and Dynamics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012. [DOI: 10.1016/b978-0-12-398312-1.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
33
|
Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis. PLoS Biol 2011; 9:e1001193. [PMID: 22087074 PMCID: PMC3210774 DOI: 10.1371/journal.pbio.1001193] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/27/2011] [Indexed: 11/19/2022] Open
Abstract
Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 Å away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme–substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme–substrate interactions, thereby impacting the mechanism of catalyzed chemistry. These results have implications for understanding the mechanism of allostery, and for protein engineering and drug design.
Collapse
|
34
|
Borreguero JM, He J, Meilleur F, Weiss KL, Brown CM, Myles DA, Herwig KW, Agarwal PK. Redox-promoting protein motions in rubredoxin. J Phys Chem B 2011; 115:8925-36. [PMID: 21608980 DOI: 10.1021/jp201346x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins are dynamic objects, constantly undergoing conformational fluctuations, yet the linkage between internal protein motion and function is widely debated. This study reports on the characterization of temperature-activated collective and individual atomic motions of oxidized rubredoxin, a small 53 residue protein from thermophilic Pyrococcus furiosus (RdPf). Computational modeling allows detailed investigations of protein motions as a function of temperature, and neutron scattering experiments are used to compare to computational results. Just above the dynamical transition temperature which marks the onset of significant anharmonic motions of the protein, the computational simulations show both a significant reorientation of the average electrostatic force experienced by the coordinated Fe(3+) ion and a dramatic rise in its strength. At higher temperatures, additional anharmonic modes become activated and dominate the electrostatic fluctuations experienced by the ion. At 360 K, close to the optimal growth temperature of P. furiosus, simulations show that three anharmonic modes including motions of two conserved residues located at the protein active site (Ile7 and Ile40) give rise to the majority of the electrostatic fluctuations experienced by the Fe(3+) ion. The motions of these residues undergo displacements which may facilitate solvent access to the ion.
Collapse
Affiliation(s)
- Jose M Borreguero
- Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ramanathan A, Savol AJ, Langmead CJ, Agarwal PK, Chennubhotla CS. Discovering conformational sub-states relevant to protein function. PLoS One 2011; 6:e15827. [PMID: 21297978 PMCID: PMC3030567 DOI: 10.1371/journal.pone.0015827] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/25/2010] [Indexed: 11/23/2022] Open
Abstract
Background Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these sub-states present significant challenges for their identification and characterization. Methods and Findings To overcome these challenges we have developed a new computational technique, quasi-anharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function. Conclusions Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function.
Collapse
Affiliation(s)
- Arvind Ramanathan
- Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Andrej J. Savol
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Joint Carnegie Mellon University–University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America
| | - Christopher J. Langmead
- Computer Science Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Pratul K. Agarwal
- Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- * E-mail: (PKA); (CSC)
| | - Chakra S. Chennubhotla
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (PKA); (CSC)
| |
Collapse
|
36
|
Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins. Top Curr Chem (Cham) 2011; 328:35-67. [DOI: 10.1007/128_2011_151] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Ramanathan A, Agarwal PK, Kurnikova M, Langmead CJ. An online approach for mining collective behaviors from molecular dynamics simulations. J Comput Biol 2010; 17:309-24. [PMID: 20377447 DOI: 10.1089/cmb.2009.0167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collective behavior involving distally separate regions in a protein is known to widely affect its function. In this article, we present an online approach to study and characterize collective behavior in proteins as molecular dynamics (MD) simulations progress. Our representation of MD simulations as a stream of continuously evolving data allows us to succinctly capture spatial and temporal dependencies that may exist and analyze them efficiently using data mining techniques. By using tensor analysis we identify (a) collective motions (i.e., dynamic couplings) and (b) time-points during the simulation where the collective motions suddenly change. We demonstrate the applicability of this method on two different protein simulations for barnase and cyclophilin A. We characterize the collective motions in these proteins using our method and analyze sudden changes in these motions. Taken together, our results indicate that tensor analysis is well suited to extracting information from MD trajectories in an online fashion.
Collapse
Affiliation(s)
- Arvind Ramanathan
- Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
38
|
Ramanathan A, Agarwal PK. Computational identification of slow conformational fluctuations in proteins. J Phys Chem B 2009; 113:16669-80. [PMID: 19908896 PMCID: PMC2872677 DOI: 10.1021/jp9077213] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational flexibility of proteins has been linked to their designated functions. Slow conformational fluctuations occurring at the microsecond to millisecond time scale, in particular, have recently attracted considerable interest in connection to the mechanism of enzyme catalysis. Computational methods are providing valuable insights into the connection between protein structure, flexibility, and function. In this report, we present studies on identification and characterization of microsecond flexibility of ubiquitin, based on quasi-harmonic analysis (QHA) and normal-mode analysis (NMA). The results indicate that the slowest 10 QHA modes, computed from the 0.5 mus molecular dynamics ensemble, contribute over 78% of all motions. The identified slow movements show over 75% similarity with the conformational fluctuations observed in nuclear magnetic resonance ensemble and also agree with displacements in the set of X-ray structures. The slowest modes show high flexibility in the beta1-beta2, alpha1-beta3, and beta3-beta4 loop regions, with functional implications in the mechanism of binding other proteins. NMA of ubiquitin structures was not able to reproduce the long time scale fluctuations, as they were found to strongly depend on the reference structures. Further, conformational fluctuations coupled to the cis/trans isomerization reaction catalyzed by the enzyme cyclophilin A (CypA), occurring at the microsecond to millisecond time scale, have also been identified and characterized on the basis of QHA of conformations sampled along the reaction pathway. The results indicate that QHA covers the same conformational landscape as the experimentally observed CypA flexibility. Overall, the identified slow conformational fluctuations in ubiquitin and CypA indicate that the intrinsic flexibility of these proteins is closely linked to their designated functions.
Collapse
Affiliation(s)
- Arvind Ramanathan
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Computational Biology Institute, and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Pratul K. Agarwal
- Computational Biology Institute, and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| |
Collapse
|
39
|
Fraser JS, Clarkson MW, Degnan SC, Erion R, Kern D, Alber T. Hidden alternative structures of proline isomerase essential for catalysis. Nature 2009; 462:669-73. [PMID: 19956261 PMCID: PMC2805857 DOI: 10.1038/nature08615] [Citation(s) in RCA: 388] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/26/2009] [Indexed: 11/09/2022]
Abstract
A long-standing challenge is to understand at the atomic level how protein dynamics contribute to enzyme catalysis. X-ray crystallography can provide snapshots of conformational substates sampled during enzymatic reactions, while NMR relaxation methods reveal the rates of interconversion between substates and the corresponding relative populations. However, these current methods cannot simultaneously reveal the detailed atomic structures of the rare states and rationalize the finding that intrinsic motions in the free enzyme occur on a timescale similar to the catalytic turnover rate. Here we introduce dual strategies of ambient-temperature X-ray crystallographic data collection and automated electron-density sampling to structurally unravel interconverting substates of the human proline isomerase, cyclophilin A (CYPA, also known as PPIA). A conservative mutation outside the active site was designed to stabilize features of the previously hidden minor conformation. This mutation not only inverts the equilibrium between the substates, but also causes large, parallel reductions in the conformational interconversion rates and the catalytic rate. These studies introduce crystallographic approaches to define functional minor protein conformations and, in combination with NMR analysis of the enzyme dynamics in solution, show how collective motions directly contribute to the catalytic power of an enzyme.
Collapse
Affiliation(s)
- James S Fraser
- Department of Molecular and Cell Biology/QB3, University of California, Berkeley, California 94720-3220, USA
| | | | | | | | | | | |
Collapse
|
40
|
Mechanism of action of cyclophilin a explored by metadynamics simulations. PLoS Comput Biol 2009; 5:e1000309. [PMID: 19282959 PMCID: PMC2643488 DOI: 10.1371/journal.pcbi.1000309] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 01/28/2009] [Indexed: 11/22/2022] Open
Abstract
Trans/cis prolyl isomerisation is involved in several biological processes, including the development of numerous diseases. In the HIV-1 capsid protein (CA), such a process takes place in the uncoating and recruitment of the virion and is catalyzed by cyclophilin A (CypA). Here, we use metadynamics simulations to investigate the isomerization of CA's model substrate HAGPIA in water and in its target protein CypA. Our results allow us to propose a novel mechanistic hypothesis, which is finally consistent with all of the available molecular biology data. Peptidyl prolyl isomerases are ubiquitous enzymes whose actions are crucial in several biological processes, such as, for instance, in cellular signalling and in the onset of several diseases, e.g., HIV infection. Therefore, these isomerases are promising targets for the design of new drugs. For this purpose, we need to understand their molecular mechanism of action. One of the most characterized peptidyl prolyl isomerases is cyclophilin A. Previous studies characterized the roles of several protein regions in isomerase function. However, there are still experimentally identified important portions of the protein whose specific actions in the mechanism are still not known. Here, we address this problem by an extensive computational study of cyclophilin A and a substrate peptide that is part of the HIV-1 capside protein. We present a novel four-step mechanism of the whole enzymatic process, which is consistent with all of the available experimental data. Moreover, these steps can be used as targets for the development of drugs, e.g., for HIV-1 infection.
Collapse
|
41
|
Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJE. Convergent Evolution of Enzyme Active Sites Is not a Rare Phenomenon. J Mol Biol 2007; 372:817-45. [PMID: 17681532 DOI: 10.1016/j.jmb.2007.06.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 05/14/2007] [Accepted: 06/08/2007] [Indexed: 02/03/2023]
Abstract
Since convergent evolution of enzyme active sites was first identified in serine proteases, other individual instances of this phenomenon have been documented. However, a systematic analysis assessing the frequency of this phenomenon across enzyme space is still lacking. This work uses the Query3d structural comparison algorithm to integrate for the first time detailed knowledge about catalytic residues, available through the Catalytic Site Atlas (CSA), with the evolutionary information provided by the Structural Classification of Proteins (SCOP) database. This study considers two modes of convergent evolution: (i) mechanistic analogues which are enzymes that use the same mechanism to perform related, but possibly different, reactions (considered here as sharing the first three digits of the EC number); and (ii) transformational analogues which catalyse exactly the same reaction (identical EC numbers), but may use different mechanisms. Mechanistic analogues were identified in 15% (26 out of 169) of the three-digit EC groups considered, showing that this phenomenon is not rare. Furthermore 11 of these groups also contain transformational analogues. The catalytic triad is the most widespread active site; the results of the structural comparison show that this mechanism, or variations thereof, is present in 23 superfamilies. Transformational analogues were identified for 45 of the 951 four-digit EC numbers present within the CSA and about half of these were also mechanistic analogues exhibiting convergence of their active sites. This analysis has also been extended to the whole Protein Data Bank to provide a complete and manually curated list of the all the transformational analogues whose structure is classified in SCOP. The results of this work show that the phenomenon of convergent evolution is not rare, especially when considering large enzymatic families.
Collapse
Affiliation(s)
- Pier Federico Gherardini
- Biochemistry Building, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
42
|
Brockman MA, Schneidewind A, Lahaie M, Schmidt A, Miura T, Desouza I, Ryvkin F, Derdeyn CA, Allen S, Hunter E, Mulenga J, Goepfert PA, Walker BD, Allen TM. Escape and compensation from early HLA-B57-mediated cytotoxic T-lymphocyte pressure on human immunodeficiency virus type 1 Gag alter capsid interactions with cyclophilin A. J Virol 2007; 81:12608-18. [PMID: 17728232 PMCID: PMC2169025 DOI: 10.1128/jvi.01369-07] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain histocompatibility leukocyte antigen (HLA) alleles are associated with improved clinical outcomes for individuals infected with human immunodeficiency virus type 1 (HIV-1), but the mechanisms for their effects remain undefined. An early CD8(+) T-cell escape mutation in the dominant HLA-B57-restricted Gag epitope TW10 (TSTLQEQIGW) has been shown to impair HIV-1 replication capacity in vitro. We demonstrate here that this T(242)N substitution in the capsid protein is associated with upstream mutations at residues H(219), I(223), and M(228) in the cyclophilin A (CypA)-binding loop in B57(+) individuals with progressive disease. In an independent cohort of epidemiologically linked transmission pairs, the presence of these substitutions in viruses encoding T(242)N was associated with significantly higher plasma viremia in donors, further suggesting that these secondary mutations compensated for the replication defect of T(242)N. Using NL4-3 constructs, we illustrate the ability of these CypA loop changes to partially restore replication of the T(242)N variant in vitro. Notably, these mutations also enhanced viral resistance to the drug cyclosporine A, indicating a reduced dependence of the compensated virus on CypA that is normally essential for optimal infectivity. Therefore, mutations in TW10 allow HIV-1 to evade a dominant early CD8(+) T-cell response, but the benefits of escape are offset by a defect in capsid function. These data suggest that TW10 escape variants undergo a postentry block that is partially overcome by changes in the CypA-binding loop and identify a mechanism for an HIV-1 fitness defect that may contribute to the slower disease progression associated with HLA-B57.
Collapse
Affiliation(s)
- Mark A Brockman
- Partners AIDS Research Center, Massachusetts General Hospital-East, CNY 6625, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rits MAN, van Dort KA, Münk C, Meijer AB, Kootstra NA. Efficient Transduction of Simian Cells by HIV-1-based Lentiviral Vectors that Contain Mutations in the Capsid Protein. Mol Ther 2007; 15:930-7. [PMID: 17299408 DOI: 10.1038/mt.sj.6300091] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recently, the cyclophilin A (CyPA)-binding region of the HIV-1 capsid protein was identified as a viral determinant involved in the post-entry restriction in Old World monkey cells. Here, we constructed a panel of HIV-1-based lentiviral vectors (LVs) that contain either mutations in the CyPA-binding region or the CyPA-binding region of the related viruses HIV-1 group O and HIV-2. We demonstrated that amino-acid changes in the CyPA-binding region of the capsid can alter the phenotype of the virus resulting in CyPA-independent infection in human cells and non-restricted infection in simian cells. Combining these data with the available structural data, we speculate that reduced affinity of the capsid for CyPA is associated with an unrestricted infection of simian cells. In addition, we observed that primary rhesus macaque peripheral blood mononuclear cells could be transduced efficiently by the LV that contained the CyPA-binding region of HIV-2. Therefore, this LV might be very useful for long-term safety studies in large animal models like rhesus macaques.
Collapse
Affiliation(s)
- Maarten A N Rits
- Department of Clinical Viro Immunology, Sanquin Research, Landsteiner Laboratory, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Efficient Transduction of Simian Cells by HIV-1-based Lentiviral Vectors that Contain Mutations in the Capsid Protein. Mol Ther 2007. [DOI: 10.1038/sj.mt.6300091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
45
|
Trzesniak D, van Gunsteren WF. Catalytic mechanism of cyclophilin as observed in molecular dynamics simulations: pathway prediction and reconciliation of X-ray crystallographic and NMR solution data. Protein Sci 2007; 15:2544-51. [PMID: 17075133 PMCID: PMC2242407 DOI: 10.1110/ps.062356406] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cyclophilins are proteins that catalyze X-proline cis-trans interconversion, where X represents any amino acid. Its mechanism of action has been investigated over the past years but still generates discussion, especially because until recently structures of the ligand in the cis and trans conformations for the same system were lacking. X-ray crystallographic structures for the complex cyclophilin A and HIV-1 capsid mutants with ligands in the cis and trans conformations suggest a mechanism where the N-terminal portion of the ligand rotates during the cis-trans isomerization. However, a few years before, a C-terminal rotating ligand was proposed to explain NMR solution data. In the present study we use molecular dynamics (MD) simulations to generate a trans structure starting from the cis structure. From simulations starting from the cis and trans structures obtained through the rotational pathways, the seeming contradiction between the two sets of experimental data could be resolved. The simulated N-terminal rotated trans structure shows good agreement with the equivalent crystal structure and, moreover, is consistent with the NMR data. These results illustrate the use of MD simulation at atomic resolution to model structural transitions and to interpret experimental data.
Collapse
Affiliation(s)
- Daniel Trzesniak
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology Zürich, ETH, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
46
|
Kormos BL, Baranger AM, Beveridge DL. A study of collective atomic fluctuations and cooperativity in the U1A-RNA complex based on molecular dynamics simulations. J Struct Biol 2006; 157:500-13. [PMID: 17194603 PMCID: PMC1994251 DOI: 10.1016/j.jsb.2006.10.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 10/02/2006] [Accepted: 10/04/2006] [Indexed: 11/21/2022]
Abstract
Cooperative interactions play an important role in recognition and binding in macromolecular systems. In this study, we find that cross-correlated atomic fluctuations can be used to identify cooperative networks in a protein-RNA system. The dynamics of the RRM-containing protein U1A-stem loop 2 RNA complex have been calculated theoretically from a 10 ns molecular dynamics (MD) simulation. The simulation was analyzed by calculating the covariance matrix of all atomic fluctuations. These matrix elements are then presented in the form of a two-dimensional grid, which displays fluctuations on a per residue basis. The results indicate the presence of strong, selective cross-correlated fluctuations throughout the RRM in U1A-RNA. The atomic fluctuations correspond well with previous biophysical studies in which a multiplicity of cooperative networks have been reported and indicate that the various networks identified in separate individual experiments are fluctuationally correlated into a hyper-network encompassing most of the RRM. The calculated results also correspond well with independent results from a statistical covariance analysis of 330 aligned RRM sequences. This method has significant implications as a predictive tool regarding cooperativity in the protein-nucleic acid recognition process.
Collapse
Affiliation(s)
- Bethany L Kormos
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, 237 Church St., Middletown, CT 06459, USA.
| | | | | |
Collapse
|
47
|
Agarwal PK, Alam SR. Biomolecular simulations on petascale: promises and challenges. ACTA ACUST UNITED AC 2006. [DOI: 10.1088/1742-6596/46/1/046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Agarwal PK. Enzymes: An integrated view of structure, dynamics and function. Microb Cell Fact 2006; 5:2. [PMID: 16409630 PMCID: PMC1379655 DOI: 10.1186/1475-2859-5-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 01/12/2006] [Indexed: 11/16/2022] Open
Abstract
Microbes utilize enzymes to perform a variety of functions. Enzymes are biocatalysts working as highly efficient machines at the molecular level. In the past, enzymes have been viewed as static entities and their function has been explained on the basis of direct structural interactions between the enzyme and the substrate. A variety of experimental and computational techniques, however, continue to reveal that proteins are dynamically active machines, with various parts exhibiting internal motions at a wide range of time-scales. Increasing evidence also indicates that these internal protein motions play a role in promoting protein function such as enzyme catalysis. Moreover, the thermodynamical fluctuations of the solvent, surrounding the protein, have an impact on internal protein motions and, therefore, on enzyme function. In this review, we describe recent biochemical and theoretical investigations of internal protein dynamics linked to enzyme catalysis. In the enzyme cyclophilin A, investigations have lead to the discovery of a network of protein vibrations promoting catalysis. Cyclophilin A catalyzes peptidyl-prolyl cis/trans isomerization in a variety of peptide and protein substrates. Recent studies of cyclophilin A are discussed in detail and other enzymes (dihydrofolate reductase and liver alcohol dehydrogenase) where similar discoveries have been reported are also briefly discussed. The detailed characterization of the discovered networks indicates that protein dynamics plays a role in rate-enhancement achieved by enzymes. An integrated view of enzyme structure, dynamics and function have wide implications in understanding allosteric and co-operative effects, as well as protein engineering of more efficient enzymes and novel drug design.
Collapse
Affiliation(s)
- Pratul K Agarwal
- Computational Biology Institute, and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| |
Collapse
|
49
|
Abstract
An integrated view of protein structure, dynamics, and function is emerging, where proteins are considered as dynamically active assemblies and internal motions are closely linked to function such as enzyme catalysis. Further, the motion of solvent bound to external regions of protein impacts internal motions and, therefore, protein function. Recently, we discovered a network of protein vibrations in enzyme cyclophilin A, coupled to its catalytic activity of peptidyl-prolyl cis-trans isomerization. Detailed studies suggest that this network, extending from surface regions to active site, is a conserved part of enzyme structure and has a role in promoting catalysis. In this report, theoretical investigations of concerted conformational fluctuations occurring on microsecond and longer time scales within the discovered network are presented. Using a new technique, kinetic energy was added to protein vibrational modes corresponding to conformational fluctuations in the network. The results reveal that protein dynamics promotes catalysis by altering transition state barrier crossing behavior of reaction trajectories. An increase in transmission coefficient and number of productive trajectories with increasing amounts of kinetic energy in vibrational modes is observed. Variations in active site enzyme-substrate interactions near transition state are found to be correlated with barrier recrossings. Simulations also showed that energy transferred from first solvation shell to surface residues impacts catalysis through network fluctuations. The detailed characterization of network presented here indicates that protein dynamics plays a role in rate enhancement by enzymes. Therefore, coupled networks in enzymes have wide implications in understanding allostericity and cooperative effects, as well as protein engineering and drug design.
Collapse
Affiliation(s)
- Pratul K Agarwal
- Computational Biology Institute, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| |
Collapse
|
50
|
Bon Homme M, Carter C, Scarlata S. The cysteine residues of HIV-1 capsid regulate oligomerization and cyclophilin A-induced changes. Biophys J 2005; 88:2078-88. [PMID: 15626706 PMCID: PMC1305260 DOI: 10.1529/biophysj.104.053298] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 12/28/2004] [Indexed: 11/18/2022] Open
Abstract
Assembly of the HIV-1 virus involves, in part, strong interactions between the capsid (CA) domains of the Gag polyprotein. During maturation, the core of HIV-1 virions undergoes profound morphological changes due primarily to proteolysis of the CA domain from other Gag domains which may allow for more efficient disassembly of the viral core in the early stages of infection. The host protein cyclophilin A (CypA), a cis-trans prolyl isomerase, in some way seems to assist in this assembly/disassembly process. Using an unproteolyzed construct of CA, we show that binding of CypA induces a large-scale conformational change in CA that is independent of its cis-trans prolyl isomerase activity. This change appears to be mediated by Cys-198 of CA since mutation to Ala renders CypA unable to induce this change and alters the kinetics and stability of protein cores that may ultimately result in inefficient disassembly of viral cores. Alternately, mutation of the second CA Cys (C218A) allows for CypA-induced conformational changes but alters the kinetics and morphology of the protein cores that may ultimately result in inefficient assembly of viral cores. These studies show the importance of the CA Cys residues in mediating the contacts needed for viral assembly and disassembly.
Collapse
Affiliation(s)
- Marjorie Bon Homme
- Department of Physiology and Biophysics, State University of New York at Stony Brook, New York, USA
| | | | | |
Collapse
|