1
|
Shang P, Stepicheva N, Teel K, McCauley A, Fitting CS, Hose S, Grebe R, Yazdankhah M, Ghosh S, Liu H, Strizhakova A, Weiss J, Bhutto IA, Lutty GA, Jayagopal A, Qian J, Sahel JA, Samuel Zigler J, Handa JT, Sergeev Y, Rajala RVS, Watkins S, Sinha D. βA3/A1-crystallin regulates apical polarity and EGFR endocytosis in retinal pigmented epithelial cells. Commun Biol 2021; 4:850. [PMID: 34239035 PMCID: PMC8266859 DOI: 10.1038/s42003-021-02386-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
The retinal pigmented epithelium (RPE) is a monolayer of multifunctional cells located at the back of the eye. High membrane turnover and polarization, including formation of actin-based apical microvilli, are essential for RPE function and retinal health. Herein, we demonstrate an important role for βA3/A1-crystallin in RPE. βA3/A1-crystallin deficiency leads to clathrin-mediated epidermal growth factor receptor (EGFR) endocytosis abnormalities and actin network disruption at the apical side that result in RPE polarity disruption and degeneration. We found that βA3/A1-crystallin binds to phosphatidylinositol transfer protein (PITPβ) and that βA3/A1-crystallin deficiency diminishes phosphatidylinositol 4,5-biphosphate (PI(4,5)P2), thus probably decreasing ezrin phosphorylation, EGFR activation, internalization, and degradation. We propose that βA3/A1-crystallin acquired its RPE function before evolving as a structural element in the lens, and that in the RPE, it modulates the PI(4,5)P2 pool through PITPβ/PLC signaling axis, coordinates EGFR activation, regulates ezrin phosphorylation and ultimately the cell polarity.
Collapse
Affiliation(s)
- Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadezda Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth Teel
- Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Austin McCauley
- Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | | | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rhonda Grebe
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anastasia Strizhakova
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Weiss
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Imran A Bhutto
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard A Lutty
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jiang Qian
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - J Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James T Handa
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuri Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raju V S Rajala
- Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Simon Watkins
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Kwon H, Jang D, Choi M, Lee J, Jeong K, Pak Y. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2169-2182. [PMID: 29604334 DOI: 10.1016/j.bbadis.2018.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/08/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
Abstract
Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI.
Collapse
Affiliation(s)
- Hayeong Kwon
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Donghwan Jang
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaewoong Lee
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyuho Jeong
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
3
|
Zhuo RG, Peng P, Liu XY, Zhang SZ, Xu JP, Zheng JQ, Wei XL, Ma XY. The isoforms generated by alternative translation initiation adopt similar conformation in the selectivity filter in TREK-2. J Physiol Biochem 2015; 71:601-10. [PMID: 26271386 DOI: 10.1007/s13105-015-0422-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/03/2015] [Indexed: 12/19/2022]
Abstract
TREK-2 (TWIK-related K(+) channel-2), a member of two-pore domain potassium (K2P) channel family, tunes cellular excitability via conducting leak or background currents. In TREK-2, the isoforms generated by alternative translation initiation (ATI) mechanism exhibit large divergence in unitary conductance, but similar in selectivity to K(+). Up to now, the structural basis for this similarity in ion selectivity is unknown. Here, we report that externally applied Ba(2+) inhibits the currents of TREK-2 in a concentration- and time-dependent manner. The blocking effect is blunted by elevated extracellular K(+) or mutation of S4 K(+) binding site, which suggests that the inhibitory mechanism of Ba(2+) is due to its competitive docking properties within the selectivity filter (SF). Next, we demonstrate that all the ATI isoforms exhibit analogous behaviors upon the application of Ba(2+) and alteration of extracellular pH (pHo), which acts on the outer position of the SF. These results strongly support the notion that all the ATI isoforms of TREK-2 possess resembled SF conformation in S4 site and the position defined by pHo, which implicates that neither the role of N-terminus (Nt) nor the unitary conductance is associated with SF conformation. Our findings might help to understand the detail gating mechanism of TREK-2 and K2P channels.
Collapse
Affiliation(s)
- Ren-Gong Zhuo
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Peng Peng
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.,Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Xiao-Yan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Shu-Zhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Jiang-Ping Xu
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Southern Medical University, No.1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Jian-Quan Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Xiao-Li Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| | - Xiao-Yun Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
4
|
Van Damme P, Gawron D, Van Criekinge W, Menschaert G. N-terminal proteomics and ribosome profiling provide a comprehensive view of the alternative translation initiation landscape in mice and men. Mol Cell Proteomics 2014; 13:1245-61. [PMID: 24623590 DOI: 10.1074/mcp.m113.036442] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Usage of presumed 5'UTR or downstream in-frame AUG codons, next to non-AUG codons as translation start codons contributes to the diversity of a proteome as protein isoforms harboring different N-terminal extensions or truncations can serve different functions. Recent ribosome profiling data revealed a highly underestimated occurrence of database nonannotated, and thus alternative translation initiation sites (aTIS), at the mRNA level. N-terminomics data in addition showed that in higher eukaryotes around 20% of all identified protein N termini point to such aTIS, to incorrect assignments of the translation start codon, translation initiation at near-cognate start codons, or to alternative splicing. We here report on more than 1700 unique alternative protein N termini identified at the proteome level in human and murine cellular proteomes. Customized databases, created using the translation initiation mapping obtained from ribosome profiling data, additionally demonstrate the use of initiator methionine decoded near-cognate start codons besides the existence of N-terminal extended protein variants at the level of the proteome. Various newly identified aTIS were confirmed by mutagenesis, and meta-analyses demonstrated that aTIS reside in strong Kozak-like motifs and are conserved among eukaryotes, hinting to a possible biological impact. Finally, TargetP analysis predicted that the usage of aTIS often results in altered subcellular localization patterns, providing a mechanism for functional diversification.
Collapse
Affiliation(s)
- Petra Van Damme
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
5
|
Lorca RA, Stamnes SJ, Pillai MK, Hsiao JJ, Wright ME, England SK. N-terminal isoforms of the large-conductance Ca²⁺-activated K⁺ channel are differentially modulated by the auxiliary β1-subunit. J Biol Chem 2014; 289:10095-103. [PMID: 24569989 DOI: 10.1074/jbc.m113.521526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel is essential for maintaining the membrane in a hyperpolarized state, thereby regulating neuronal excitability, smooth muscle contraction, and secretion. The BK(Ca) α-subunit has three predicted initiation codons that generate proteins with N-terminal ends starting with the amino acid sequences MANG, MSSN, or MDAL. Because the N-terminal region and first transmembrane domain of the α-subunit are required for modulation by auxiliary β1-subunits, we examined whether β1 differentially modulates the N-terminal BK(Ca) α-subunit isoforms. In the absence of β1, all isoforms had similar single-channel conductances and voltage-dependent activation. However, whereas β1 did not modulate the voltage-activation curve of MSSN, β1 induced a significant leftward shift of the voltage activation curves of both the MDAL and MANG isoforms. These shifts, of which the MDAL was larger, occurred at both 10 μM and 100 μM Ca(2+). The β1-subunit increased the open dwell times of all three isoforms and decreased the closed dwell times of MANG and MDAL but increased the closed dwell times of MSSN. The distinct modulation of voltage activation by the β1-subunit may be due to the differential effect of β1 on burst duration and interburst intervals observed among these isoforms. Additionally, we observed that the related β2-subunit induced comparable leftward shifts in the voltage-activation curves of all three isoforms, indicating that the differential modulation of these isoforms was specific to β1. These findings suggest that the relative expression of the N-terminal isoforms can fine-tune BK(Ca) channel activity in cells, highlighting a novel mechanism of BK(Ca) channel regulation.
Collapse
Affiliation(s)
- Ramón A Lorca
- From the Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110 and
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Cotranslational protein N-terminal modifications, including proteolytic maturation such as initiator methionine excision by methionine aminopeptidases and N-terminal blocking, occur universally. Protein alpha-N-acetylation, or the transfer of the acetyl moiety of acetyl-coenzyme A to nascent protein N-termini, catalysed by multisubunit N-terminal acetyltransferase complexes, generally takes place during protein translation. Nearly all protein modifications are known to influence different protein aspects such as folding, stability, activity and localization, and several studies have indicated similar functions for protein alpha-N-acetylation. However, until recently, protein alpha-N-acetylation remained poorly explored, mainly due to the absence of targeted proteomics technologies. The recent emergence of N-terminomics technologies that allow isolation of protein N-terminal peptides, together with proteogenomics efforts combining experimental and informational content have greatly boosted the field of alpha-N-acetylation. In this review, we report on such emerging technologies as well as on breakthroughs in our understanding of protein N-terminal biology.
Collapse
Affiliation(s)
- Petra Van Damme
- Department of Medical Protein Research, VIB, Ghent, Belgium.
| | | | | |
Collapse
|
7
|
Staudacher K, Baldea I, Kisselbach J, Staudacher I, Rahm AK, Schweizer PA, Becker R, Katus HA, Thomas D. Alternative splicing determines mRNA translation initiation and function of human K(2P)10.1 K+ channels. J Physiol 2011; 589:3709-20. [PMID: 21669980 DOI: 10.1113/jphysiol.2011.210666] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Potassium-selective ion channels regulate cardiac and neuronal excitability by stabilizing the resting membrane potential and by modulating shape and frequency of action potentials. The delicate control of membrane voltage requires structural and functional diversity of K+ channel subunits expressed in a given cell. Here we reveal a previously unrecognized biological mechanism. Tissue-specific mRNA splicing regulates alternative translation initiation (ATI) of human K(2P)10.1 K+ background channels via recombination of 5 nucleotide motifs. ATI-dependent expression of full-length protein or truncated subunits initiated from two downstream start codons determines macroscopic current amplitudes and biophysical properties of hK(2P)10.1 channels. The interaction between hK(2P)10.1 mRNA splicing, translation and function increases K+ channel complexity and is expected to contribute to electrophysiological plasticity of excitable cells.
Collapse
Affiliation(s)
- Kathrin Staudacher
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang X, Dai J. Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells 2010; 28:885-93. [PMID: 20333750 PMCID: PMC2962909 DOI: 10.1002/stem.419] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human OCT4 gene can generate at least three transcripts (OCT4A, OCT4B, and OCT4B1) and four protein isoforms (OCT4A, OCT4B-190, OCT4B-265, and OCT4B-164) by alternative splicing and alternative translation initiation. OCT4A is a transcription factor responsible for the pluripotency properties of embryonic stem (ES) cells. While OCT4B cannot sustain ES cell self-renewal, it may respond to cell stresses. Yet, the function of OCT4B1 is still unclear. Lack of distinction of OCT4 isoforms could lead to confusions and controversies on OCT4 in various tissues and cells. One important issue we emphasize in this review article is that alternatively spliced transcripts and alternative translation products of OCT4 exhibit diverse expression patterns and functions. Furthermore, simple approaches and methods to detect and distinguish OCT4 isoforms are discussed. This article underscores the importance of identifying and discriminating the expression and functions of OCT4 isoforms in stem cell research.
Collapse
Affiliation(s)
- Xia Wang
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | | |
Collapse
|
9
|
Bailey LM, Wallace JC, Polyak SW. Holocarboxylase synthetase: correlation of protein localisation with biological function. Arch Biochem Biophys 2010; 496:45-52. [PMID: 20153287 DOI: 10.1016/j.abb.2010.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
Abstract
Holocarboxylase synthetase (HCS) governs the cellular fate of the essential micronutrient biotin (Vitamin H or B7). HCS is responsible for attaching biotin onto the biotin-dependent enzymes that reside in the cytoplasm and mitochondria. Evidence for an alternative role, viz the regulation of gene expression, has also been reported. Recent immunohistochemical studies reported HCS is primarily nuclear, inconsistent with the location of HCS activity. Improved understanding of biotin biology demands greater knowledge about HCS. Here, we investigated the localisation of HCS and its isoforms. Three variants were observed that differ at the N-terminus. All HCS isoforms were predominantly non-nuclear, consistent with the distribution of biotin protein ligase activity. Unlike the longer constructs, the Met(58) isoform was also detected in the nucleus--a novel observation suggesting shuttling activity between nucleus and cytoplasm. We resolved that the previous controversies in the literature are due to specificity and detection limitations that arise when using partially purified antibodies.
Collapse
Affiliation(s)
- L M Bailey
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | |
Collapse
|
10
|
Kochetov AV. Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays 2008; 30:683-91. [PMID: 18536038 DOI: 10.1002/bies.20771] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is widely suggested that a eukaryotic mRNA typically contains one translation start site and encodes a single functional protein product. However, according to current points of view on translation initiation mechanisms, eukaryotic ribosomes can recognize several alternative translation start sites and the number of experimentally verified examples of alternative translation is growing rapidly. Also, the frequent occurrence of alternative translation events and their functional significance are supported by the results of computational evaluations. The functional role of alternative translation and its contribution to eukaryotic proteome complexity are discussed.
Collapse
|
11
|
Thomas D, Plant LD, Wilkens CM, McCrossan ZA, Goldstein SAN. Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium. Neuron 2008; 58:859-70. [PMID: 18579077 DOI: 10.1016/j.neuron.2008.04.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 02/29/2008] [Accepted: 04/17/2008] [Indexed: 12/29/2022]
Abstract
K(2P) channels mediate potassium background currents essential to central nervous system function, controlling excitability by stabilizing membrane potential below firing threshold and expediting repolarization. Here, we show that alternative translation initiation (ATI) regulates function of K(2P)2.1 (TREK-1) via an unexpected strategy. Full-length K(2P)2.1 and an isoform lacking the first 56 residues of the intracellular N terminus (K(2P)2.1Delta1-56) are produced differentially in a regional and developmental manner in the rat central nervous system, the latter passing sodium under physiological conditions leading to membrane depolarization. Control of ion selectivity via ATI is proposed to be a natural, epigenetic mechanism for spatial and temporal regulation of neuronal excitability.
Collapse
Affiliation(s)
- Dierk Thomas
- Department of Pediatrics and Institute for Molecular Pediatric Sciences, Pritzker School of Medicine, University of Chicago, 5721 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
12
|
Pino P, Foth BJ, Kwok LY, Sheiner L, Schepers R, Soldati T, Soldati-Favre D. Dual targeting of antioxidant and metabolic enzymes to the mitochondrion and the apicoplast of Toxoplasma gondii. PLoS Pathog 2007; 3:e115. [PMID: 17784785 PMCID: PMC1959373 DOI: 10.1371/journal.ppat.0030115] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/27/2007] [Indexed: 01/05/2023] Open
Abstract
Toxoplasma gondii is an aerobic protozoan parasite that possesses mitochondrial antioxidant enzymes to safely dispose of oxygen radicals generated by cellular respiration and metabolism. As with most Apicomplexans, it also harbors a chloroplast-like organelle, the apicoplast, which hosts various biosynthetic pathways and requires antioxidant protection. Most apicoplast-resident proteins are encoded in the nuclear genome and are targeted to the organelle via a bipartite N-terminal targeting sequence. We show here that two antioxidant enzymes—a superoxide dismutase (TgSOD2) and a thioredoxin-dependent peroxidase (TgTPX1/2)—and an aconitase are dually targeted to both the apicoplast and the mitochondrion of T. gondii. In the case of TgSOD2, our results indicate that a single gene product is bimodally targeted due to an inconspicuous variation within the putative signal peptide of the organellar protein, which significantly alters its subcellular localization. Dual organellar targeting of proteins might occur frequently in Apicomplexans to serve important biological functions such as antioxidant protection and carbon metabolism. Toxoplasma gondii is a human and animal pathogen representative of the large group of Apicomplexa. Most members of this phylum contain, in addition to a tubular mitochondrion, a second endosymbiotic organelle indispensable for parasite survival, called the apicoplast. This non-photosynthetic plastid is the site of several anabolic pathways, including the biosynthesis of fatty acids, isoprenoids, iron-sulphur cluster, and heme. Virtually all enzymes active inside the apicoplast are encoded by the nuclear genome and targeted to the organelle via the endoplasmic reticulum courtesy of a bipartite amino terminal recognition sequence. The metabolic activities of the apicoplast impose a high demand for antioxidant protection. We show here that T. gondii possesses a superoxide dismutase and a peroxidase that are shared between the two organelles by an unusual mechanism of bimodal targeting whereby the nature of the signal peptide influences the destination of the protein to both organelles. Dual targeting also extends to other classical metabolic enzymes such as aconitase, uncovering unexpected metabolic pathways occurring in these organelles. In consequence, the bioinformatic predictions for plastidic or mitochondrial targeting on the basis of the characteristics of N-terminal presequences are insufficient in the absence of an experimental confirmation.
Collapse
Affiliation(s)
- Paco Pino
- Department of Microbiology and Molecular Medicine, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
| | - Bernardo Javier Foth
- Department of Microbiology and Molecular Medicine, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
| | - Lai-Yu Kwok
- Department of Microbiology and Molecular Medicine, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
| | - Lilach Sheiner
- Department of Microbiology and Molecular Medicine, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
| | - Rebecca Schepers
- Department of Biological Sciences, Imperial College London, London, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Sciences II, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|