1
|
Abstract
Proteins guide the flows of information, energy, and matter that make life possible by accelerating transport and chemical reactions, by allosterically modulating these reactions, and by forming dynamic supramolecular assemblies. In these roles, conformational change underlies functional transitions. Time-resolved X-ray diffraction methods characterize these transitions either by directly triggering sequences of functionally important motions or, more broadly, by capturing the motions of which proteins are capable. To date, most successful have been experiments in which conformational change is triggered in light-dependent proteins. In this review, I emphasize emerging techniques that probe the dynamic basis of function in proteins lacking natively light-dependent transitions and speculate about extensions and further possibilities. In addition, I review how the weaker and more distributed signals in these data push the limits of the capabilities of analytical methods. Taken together, these new methods are beginning to establish a powerful paradigm for the study of the physics of protein function.
Collapse
Affiliation(s)
- Doeke R Hekstra
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
2
|
Bai F, Puk KM, Liu J, Zhou H, Tao P, Zhou W, Wang S. Sparse group selection and analysis of function-related residue for protein-state recognition. J Comput Chem 2022; 43:1342-1354. [PMID: 35656889 PMCID: PMC9248267 DOI: 10.1002/jcc.26937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/08/2022] [Indexed: 11/08/2022]
Abstract
Machine learning methods have helped to advance wide range of scientific and technological field in recent years, including computational chemistry. As the chemical systems could become complex with high dimension, feature selection could be critical but challenging to develop reliable machine learning based prediction models, especially for proteins as bio-macromolecules. In this study, we applied sparse group lasso (SGL) method as a general feature selection method to develop classification model for an allosteric protein in different functional states. This results into a much improved model with comparable accuracy (Acc) and only 28 selected features comparing to 289 selected features from a previous study. The Acc achieves 91.50% with 1936 selected feature, which is far higher than that of baseline methods. In addition, grouping protein amino acids into secondary structures provides additional interpretability of the selected features. The selected features are verified as associated with key allosteric residues through comparison with both experimental and computational works about the model protein, and demonstrate the effectiveness and necessity of applying rigorous feature selection and evaluation methods on complex chemical systems.
Collapse
Affiliation(s)
- Fangyun Bai
- Department of Management Science and Engineering, Tongji University. Fangyun Bai and Kin Ming Puk contributed equally to this work
| | | | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center
| | - Hongyu Zhou
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University
| | - Peng Tao
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University
| | - Wenyong Zhou
- Department of Management Science and Engineering, Tongji University
| | - Shouyi Wang
- Corresponding author: Shouyi Wang, Department of Industrial, Manufacturing and Systems Engineering, University of Texas at Arlington.
| |
Collapse
|
3
|
Araujo-Arcos LE, Montaño S, Bello-Rios C, Garibay-Cerdenares OL, Leyva-Vázquez MA, Illades-Aguiar B. Molecular insights into the interaction of HPV-16 E6 variants against MAGI-1 PDZ1 domain. Sci Rep 2022; 12:1898. [PMID: 35115618 PMCID: PMC8814009 DOI: 10.1038/s41598-022-05995-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Oncogenic protein E6 from Human Papilloma Virus 16 (HPV-16) mediates the degradation of Membrane-associated guanylate kinase with inverted domain structure-1 (MAGI-1), throughout the interaction of its protein binding motif (PBM) with the Discs-large homologous regions 1 (PDZ1) domain of MAG1-1. Generic variation in the E6 gene that translates to changes in the protein’s amino acidic sequence modifies the interaction of E6 with the cellular protein MAGI-1. MAGI-1 is a scaffolding protein found at tight junctions of epithelial cells, where it interacts with a variety of proteins regulating signaling pathways. MAGI-1 is a multidomain protein containing two WW (rsp-domain-9), one guanylate kinase-like, and six PDZ domains. PDZ domains played an important role in the function of MAGI-1 and served as targets for several viral proteins including the HPV-16 E6. The aim of this work was to evaluate, with an in silico approach, employing molecular dynamics simulation and protein–protein docking, the interaction of the intragenic variants E-G350 (L83V), E-C188/G350 (E29Q/L83V), E-A176/G350 (D25N/L83V), E6-AAa (Q14H/H78Y/83V) y E6-AAc (Q14H/I27RH78Y/L83V) and E6-reference of HPV-16 with MAGI-1. We found that variants E-G350, E-C188/G350, E-A176/G350, AAa and AAc increase their affinity to our two models of MAGI-1 compared to E6-reference.
Collapse
Affiliation(s)
- Lilian Esmeralda Araujo-Arcos
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, 80030, Culiacán Sinaloa, CP, México.
| | - Ciresthel Bello-Rios
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México
| | - Olga Lilia Garibay-Cerdenares
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México.,CONACyT-Universidad Autónoma de Guerrero, 39087, Chilpancingo, CP, México
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México.
| |
Collapse
|
4
|
Civera M, Moroni E, Sorrentino L, Vasile F, Sattin S. Chemical and Biophysical Approaches to Allosteric Modulation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Civera
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche Giulio Natta, SCITEC Via Mario Bianco 9 20131 Milan Italy
| | - Luca Sorrentino
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Francesca Vasile
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
5
|
Villani G. A Time-Dependent Quantum Approach to Allostery and a Comparison With Light-Harvesting in Photosynthetic Phenomenon. Front Mol Biosci 2020; 7:156. [PMID: 33005625 PMCID: PMC7483663 DOI: 10.3389/fmolb.2020.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 11/26/2022] Open
Abstract
The allosteric effect is one of the most important processes in regulating the function of proteins, and the elucidation of this phenomenon plays a significant role in understanding emergent behaviors in biological regulation. In this process, a perturbation, generated by a ligand in a part of the macromolecule (the allosteric site), moves along this system and reaches a specific (active) site, dozens of Ångströms away, with a great efficiency. The dynamics of this perturbation in the macromolecule can model precisely the allosteric process. In this article, we will be studying the general characteristics of allostery, using a time-dependent quantum approach to obtain rules that apply to this kind of process. Considering the perturbation as a wave that moves within the molecular system, we will characterize the allosteric process with three of the properties of this wave in the active site: (1) ta, the characteristic time for reaching that site, (2) Aa, the amplitude of the wave in this site, and (3) Ba, its corresponding spectral broadening. These three parameters, together with the process mechanism and the perturbation efficiency in the process, can describe the phenomenon. One of the main purposes of this paper is to link the parameters ta, Aa, and Ba and the perturbation efficiency to the characteristics of the system. There is another fundamental process for life that has some characteristics similar to allostery: the light-harvesting (LH) process in photosynthesis. Here, as in allostery, two distant macromolecular sites are involved—two sites dozens of Ångströms away. In both processes, it is particularly important that the perturbation is distributed efficiently without dissipating in the infinite degrees of freedom within the macromolecule. The importance of considering quantum effects in the LH process is well documented in literature, and the quantum coherences are experimentally proven by time-dependent spectroscopic techniques. Given the existing similarities between these two processes in macromolecules, in this work, we suggest using Quantum Mechanics (QM) to study allostery.
Collapse
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti OrganoMetallici (UOS Pisa) - CNR, Area della Ricerca di Pisa, Pisa, Italy
| |
Collapse
|
6
|
Harder-Viddal C, Roshko RM, Stetefeld J. Energy flow and intersubunit signalling in GSAM: A non-equilibrium molecular dynamics study. Comput Struct Biotechnol J 2020; 18:1651-1663. [PMID: 32670505 PMCID: PMC7338781 DOI: 10.1016/j.csbj.2020.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Non-equilibrium molecular dynamics simulations of vibrational energy flow induced by the imposition of a thermal gradient have been performed on the μ2-dimeric enzyme glutamate-1-semialdehyde aminomutase (GSAM), the key enzyme in the biosynthesis of chlorophyll, in order to identify energy transport pathways and to elucidate their role as potential allosteric communication networks for coordinating functional dynamics, specifically the negative cooperativity observed in the motion of the two active site gating loops. Fully atomistic MD simulations of thermal diffusion were executed with a GROMACS simulation package on a fully solvated GSAM enzyme by heating various active site target ligands (initially, catalytic intermediates and cofactors) to 300K while holding the remainder of the protein and the solvent bath at 10K and monitoring the temperature T(t) of all the enzyme residues as a function of time over a 1ns observation window. Energy is observed to be deposited in a relatively small number of discrete chains of residues most of which contribute to specific structural or biochemical functionality. Thermal linkages between all thermally active chains were established by isolating a specific pair of chains and performing a thermal diffusion simulation on the pair, one held at 300K and the other at 10K, with the rest of the protein frozen in its initial atomic configuration and thus thermally unresponsive. Proceeding in this way, it was possible to map out multiple pathways of vibrational energy flow leading from one of the active sites through a network of contiguous residues, many of which were evolutionarily conserved and linked by hydrogen bonds, into the other active site and ultimately to the other gating loop.
Collapse
Affiliation(s)
- C Harder-Viddal
- Department of Chemistry and Physics, Canadian Mennonite University, 500 Shaftesbury Blvd, Winnipeg, Manitoba, Canada
| | - R M Roshko
- Department of Physics and Astronomy, University of Manitoba, 30A Sifton Rd, Winnipeg, Manitoba, Canada
| | - J Stetefeld
- Department of Chemistry, University of Manitoba, 144 Dysart Rd, Winnipeg, Manitoba, Canada.,Center for Oil and Gas Research and Development (COGRAD), Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, Canada
| |
Collapse
|
7
|
Lakhani B, Thayer KM, Black E, Beveridge DL. Spectral analysis of molecular dynamics simulations on PDZ: MD sectors. J Biomol Struct Dyn 2020; 38:781-790. [PMID: 31262238 PMCID: PMC7307555 DOI: 10.1080/07391102.2019.1588169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
The idea of protein "sectors" posits that sparse subsets of amino acid residues form cooperative networks that are key elements of protein stability, ligand binding, and allosterism. To date, protein sectors have been calculated by the statistical coupling analysis (SCA) method of Ranganathan and co-workers via the spectral analysis of conservation-weighted evolutionary covariance matrices obtained from a multiple sequence alignments of homologous families of proteins. SCA sectors, a knowledge-based protocol, have been indentified with functional properties and allosterism for a number of systems. In this study, we investigate the utility of the sector idea for the analysis of physics-based molecular dynamics (MD) trajectories of proteins. Our test case for this procedure is PSD95- PDZ3, one of the smallest proteins for which allosterism has been observed. It has served previously as a model system for a number of prediction algorithms, and is well characterized by X-ray crystallography, NMR spectroscopy and site specific mutagenisis. All-atom MD simulations were performed for a total of 500 nanoseconds using AMBER, and MD-calculated covariance matrices for the fluctuations of residue displacements and non-bonded interaction energies were subjected to spectral analysis in a manner analogous to that of SCA. The composition of MD sectors was compared with results from SCA, site specific mutagenesis, and allosterism. The concordance indicates that MD sectors are a viable protocol for analyzing MD trajectories and provide insight into the physical origin of the phenomenon.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharat Lakhani
- Program in Molecular Biophysics, Wesleyan University, Middletown CT 06459, USA
- Department of Molecular Biology & Biochemistry, Wesleyan University, Middletown CT 06459, USA
| | - Kelly M. Thayer
- Program in Molecular Biophysics, Wesleyan University, Middletown CT 06459, USA
- Chemistry Department, Wesleyan University, Middletown CT 06459, USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown CT 06459, USA
| | - Emily Black
- Program in Molecular Biophysics, Wesleyan University, Middletown CT 06459, USA
| | - David L. Beveridge
- Program in Molecular Biophysics, Wesleyan University, Middletown CT 06459, USA
- Chemistry Department, Wesleyan University, Middletown CT 06459, USA
| |
Collapse
|
8
|
Huang BC, Yang LW. Molecular dynamics simulations and linear response theories jointly describe biphasic responses of myoglobin relaxation and reveal evolutionarily conserved frequent communicators. Biophys Physicobiol 2020; 16:473-484. [PMID: 31984199 PMCID: PMC6975898 DOI: 10.2142/biophysico.16.0_473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/20/2019] [Indexed: 12/01/2022] Open
Abstract
In this study, we provide a time-dependent mechanical model, taking advantage of molecular dynamics simulations, quasiharmonic analysis of molecular dynamics trajectories, and time-dependent linear response theories to describe vibrational energy redistribution within the protein matrix. The theoretical description explained the observed biphasic responses of specific residues in myoglobin to CO-photolysis and photoexcitation on heme. The fast responses were found to be triggered by impulsive forces and propagated mainly by principal modes <40 cm−1. The predicted fast responses for individual atoms were then used to study signal propagation within the protein matrix and signals were found to propagate ~8 times faster across helices (4076 m/s) than within the helices, suggesting the importance of tertiary packing in the sensitivity of proteins to external perturbations. We further developed a method to integrate multiple intramolecular signal pathways and discover frequent “communicators”. These communicators were found to be evolutionarily conserved including those distant from the heme.
Collapse
Affiliation(s)
- Bang-Chieh Huang
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Sciences, Academia Sinica, Taipei 11529, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.,Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan
| |
Collapse
|
9
|
Zhang W, Xie J, Lai L. Correlation Between Allosteric and Orthosteric Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:89-105. [PMID: 31707701 DOI: 10.1007/978-981-13-8719-7_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Correlation between an allosteric site and its orthosteric site refers to the phenomenon that perturbations like ligand binding, mutation, or posttranslational modifications at the allosteric site leverage variation in the orthosteric site. Understanding this kind of correlation not only helps to disclose how information is transmitted in allosteric regulation but also provides clues for allosteric drug discovery. This chapter starts with an overview of correlation studies on allosteric and orthosteric sites and then introduces recent progress in evolutionary and simulation-based dynamic studies. Discussions and perspectives on future directions are also given.
Collapse
Affiliation(s)
- Weilin Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Center for Quantitative Biology, AAIS, Peking University, Beijing, China
| | - Juan Xie
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Center for Quantitative Biology, AAIS, Peking University, Beijing, China
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Center for Quantitative Biology, AAIS, Peking University, Beijing, China.
| |
Collapse
|
10
|
Leitner DM, Yamato T. MAPPING ENERGY TRANSPORT NETWORKS IN PROTEINS. REVIEWS IN COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1002/9781119518068.ch2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Wang WB, Liang Y, Zhang J, Wu YD, Du JJ, Li QM, Zhu JZ, Su JG. Energy transport pathway in proteins: Insights from non-equilibrium molecular dynamics with elastic network model. Sci Rep 2018; 8:9487. [PMID: 29934573 PMCID: PMC6015066 DOI: 10.1038/s41598-018-27745-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/08/2018] [Indexed: 11/28/2022] Open
Abstract
Intra-molecular energy transport between distant functional sites plays important roles in allosterically regulating the biochemical activity of proteins. How to identify the specific intra-molecular signaling pathway from protein tertiary structure remains a challenging problem. In the present work, a non-equilibrium dynamics method based on the elastic network model (ENM) was proposed to simulate the energy propagation process and identify the specific signaling pathways within proteins. In this method, a given residue was perturbed and the propagation of energy was simulated by non-equilibrium dynamics in the normal modes space of ENM. After that, the simulation results were transformed from the normal modes space to the Cartesian coordinate space to identify the intra-protein energy transduction pathways. The proposed method was applied to myosin and the third PDZ domain (PDZ3) of PSD-95 as case studies. For myosin, two signaling pathways were identified, which mediate the energy transductions form the nucleotide binding site to the 50 kDa cleft and the converter subdomain, respectively. For PDZ3, one specific signaling pathway was identified, through which the intra-protein energy was transduced from ligand binding site to the distant opposite side of the protein. It is also found that comparing with the commonly used cross-correlation analysis method, the proposed method can identify the anisotropic energy transduction pathways more effectively.
Collapse
Affiliation(s)
- Wei Bu Wang
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Yu Liang
- Beijing Institute of Biological Products Co., Ltd, Beijing, 101111, China
| | - Jing Zhang
- Beijing Institute of Biological Products Co., Ltd, Beijing, 101111, China
| | - Yi Dong Wu
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Jian Jun Du
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, Beijing, 100097, China
| | - Qi Ming Li
- Beijing Institute of Biological Products Co., Ltd, Beijing, 101111, China
| | - Jian Zhuo Zhu
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao, 066004, China.
| | - Ji Guo Su
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
12
|
Bozkurt Varolgunes Y, Demir A. ProteinAC: a frequency domain technique for analyzing protein dynamics. Phys Biol 2018; 15:026009. [DOI: 10.1088/1478-3975/aa9de2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Stucki-Buchli B, Johnson PJM, Bozovic O, Zanobini C, Koziol KL, Hamm P, Gulzar A, Wolf S, Buchenberg S, Stock G. 2D-IR Spectroscopy of an AHA Labeled Photoswitchable PDZ2 Domain. J Phys Chem A 2017; 121:9435-9445. [DOI: 10.1021/acs.jpca.7b09675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brigitte Stucki-Buchli
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Philip J. M. Johnson
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Olga Bozovic
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Claudio Zanobini
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Klemens L. Koziol
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Peter Hamm
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Adnan Gulzar
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Steffen Wolf
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Sebastian Buchenberg
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Gerhard Stock
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| |
Collapse
|
14
|
Csermely P. The Wisdom of Networks: A General Adaptation and Learning Mechanism of Complex Systems: The Network Core Triggers Fast Responses to Known Stimuli; Innovations Require the Slow Network Periphery and Are Encoded by Core-Remodeling. Bioessays 2017; 40. [PMID: 29168203 DOI: 10.1002/bies.201700150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/12/2017] [Indexed: 12/30/2022]
Abstract
I hypothesize that re-occurring prior experience of complex systems mobilizes a fast response, whose attractor is encoded by their strongly connected network core. In contrast, responses to novel stimuli are often slow and require the weakly connected network periphery. Upon repeated stimulus, peripheral network nodes remodel the network core that encodes the attractor of the new response. This "core-periphery learning" theory reviews and generalizes the heretofore fragmented knowledge on attractor formation by neural networks, periphery-driven innovation, and a number of recent reports on the adaptation of protein, neuronal, and social networks. The core-periphery learning theory may increase our understanding of signaling, memory formation, information encoding and decision-making processes. Moreover, the power of network periphery-related "wisdom of crowds" inventing creative, novel responses indicates that deliberative democracy is a slow yet efficient learning strategy developed as the success of a billion-year evolution. Also see the video abstract here: https://youtu.be/IIjP7zWGjVE.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L, van Keulen SC, Bhattacharyya S, Chergui M, Hamm P, Rothlisberger U, Wolf JP, Meuwly M. Implications of short time scale dynamics on long time processes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061507. [PMID: 29308419 PMCID: PMC5741438 DOI: 10.1063/1.4996448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 05/02/2023]
Abstract
This review provides a comprehensive overview of the structural dynamics in topical gas- and condensed-phase systems on multiple length and time scales. Starting from vibrationally induced dissociation of small molecules in the gas phase, the question of vibrational and internal energy redistribution through conformational dynamics is further developed by considering coupled electron/proton transfer in a model peptide over many orders of magnitude. The influence of the surrounding solvent is probed for electron transfer to the solvent in hydrated I-. Next, the dynamics of a modified PDZ domain over many time scales is analyzed following activation of a photoswitch. The hydration dynamics around halogenated amino acid side chains and their structural dynamics in proteins are relevant for iodinated TyrB26 insulin. Binding of nitric oxide to myoglobin is a process for which experimental and computational analyses have converged to a common view which connects rebinding time scales and the underlying dynamics. Finally, rhodopsin is a paradigmatic system for multiple length- and time-scale processes for which experimental and computational methods provide valuable insights into the functional dynamics. The systems discussed here highlight that for a comprehensive understanding of how structure, flexibility, energetics, and dynamics contribute to functional dynamics, experimental studies in multiple wavelength regions and computational studies including quantum, classical, and more coarse grained levels are required.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sylvain Hermelin
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Geoffrey Gaulier
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Cédric Schmidt
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Luigi Bonacina
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Siri C van Keulen
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | | | - Majed Chergui
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Jean-Pierre Wolf
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
16
|
Lv D, Gong W, Zhang Y, Liu Y, Li C. A coarse-grained method to predict the open-to-closed behavior of glutamine binding protein. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Abstract
Allosteric effect implies ligand binding at one site leading to structural and/or dynamical changes at a distant site. PDZ domains are classic examples of dynamic allostery without conformational changes, where distal side-chain dynamics is modulated on ligand binding and the origin has been attributed to entropic effects. In this work, we unearth the energetic basis of the observed dynamic allostery in a PDZ3 domain protein using molecular dynamics simulations. We demonstrate that electrostatic interaction provides a highly sensitive yardstick to probe the allosteric modulation in contrast to the traditionally used structure-based parameters. There is a significant population shift in the hydrogen-bonded network and salt bridges involving side chains on ligand binding. The ligand creates a local energetic perturbation that propagates in the form of dominolike changes in interresidue interaction pattern. There are significant changes in the nature of specific interactions (nonpolar/polar) between interresidue contacts and accompanied side-chain reorientations that drive the major redistribution of energy. Interestingly, this internal redistribution and rewiring of side-chain interactions led to large cancellations resulting in small change in the overall enthalpy of the protein, thus making it difficult to detect experimentally. In contrast to the prevailing focus on the entropic or dynamic effects, we show that the internal redistribution and population shift in specific electrostatic interactions drive the allosteric modulation in the PDZ3 domain protein.
Collapse
|
18
|
Srivastava A, Tracka MB, Uddin S, Casas-Finet J, Livesay DR, Jacobs DJ. Mutations in Antibody Fragments Modulate Allosteric Response Via Hydrogen-Bond Network Fluctuations. Biophys J 2017; 110:1933-42. [PMID: 27166802 DOI: 10.1016/j.bpj.2016.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 11/28/2022] Open
Abstract
A mechanical perturbation method that locally restricts conformational entropy along the protein backbone is used to identify putative allosteric sites in a series of antibody fragments. The method is based on a distance constraint model that integrates mechanical and thermodynamic viewpoints of protein structure wherein mechanical clamps that mimic substrate or cosolute binding are introduced. Across a set of six single chain-Fv fragments of the anti-lymphotoxin-β receptor antibody, statistically significant responses are obtained by averaging over 10 representative structures sampled from a molecular dynamics simulation. As expected, the introduced clamps locally rigidify the protein, but long-ranged increases in both rigidity and flexibility are also frequently observed. Expanding our analysis to every molecular dynamics frame demonstrates that the allosteric responses are modulated by fluctuations within the hydrogen-bond network where the native ensemble is comprised of conformations that both are, and are not, affected by the perturbation in question. Population shifts induced by the mutations alter the allosteric response by adjusting which hydrogen-bond networks are the most probable. These effects are compared using response maps that track changes across each single chain-Fv fragment, thus providing valuable insight into how sensitive allosteric mechanisms are to mutations.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | | | - Shahid Uddin
- Formulation Sciences, MedImmune Ltd., Cambridge, UK
| | - Jose Casas-Finet
- Analytical Biochemistry Department, MedImmune LLC, Gaithersburg, Maryland
| | - Dennis R Livesay
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina.
| | - Donald J Jacobs
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina.
| |
Collapse
|
19
|
Diamantis P, Unke OT, Meuwly M. Migration of small ligands in globins: Xe diffusion in truncated hemoglobin N. PLoS Comput Biol 2017; 13:e1005450. [PMID: 28358830 PMCID: PMC5391117 DOI: 10.1371/journal.pcbi.1005450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/13/2017] [Accepted: 03/13/2017] [Indexed: 11/18/2022] Open
Abstract
In heme proteins, the efficient transport of ligands such as NO or O2 to the binding site is achieved via ligand migration networks. A quantitative assessment of ligand diffusion in these networks is thus essential for a better understanding of the function of these proteins. For this, Xe migration in truncated hemoglobin N (trHbN) of Mycobacterium Tuberculosis was studied using molecular dynamics simulations. Transitions between pockets of the migration network and intra-pocket relaxation occur on similar time scales (10 ps and 20 ps), consistent with low free energy barriers (1-2 kcal/mol). Depending on the pocket from where Xe enters a particular transition, the conformation of the side chains lining the transition region differs which highlights the coupling between ligand and protein degrees of freedom. Furthermore, comparison of transition probabilities shows that Xe migration in trHbN is a non-Markovian process. Memory effects arise due to protein rearrangements and coupled dynamics as Xe moves through it. Binding and transport of ligands in proteins is essential, in particular in globular proteins which often exhibit internal cavities. In truncated Hemoglobin N (trHbN) these cavities are arranged as a network with particular connectivities. The present work supports the notion that ligand diffusion in trHbN is an active process and coupled to the protein dynamics. Furthermore, transition probabilities between neighboring pockets depend on the location from where the ligand entered the transition, which is typical for non-Markovian processes. Hence, ligand migration in trHbN exhibits memory effects due to dynamical coupling between the protein and ligand motion.
Collapse
Affiliation(s)
| | - Oliver T. Unke
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Lv D, Wang C, Li C, Tan J, Zhang X. An efficient perturbation method to predict the functionally key sites of glutamine binding protein. Comput Biol Chem 2016; 67:62-68. [PMID: 28061385 DOI: 10.1016/j.compbiolchem.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/09/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022]
Abstract
Glutamine-Binding Protein (GlnBP) of Escherichia coli, an important member of the periplasmic binding protein family, is responsible for the first step in the active transport of glutamine across the cytoplasmic membrane. In this work, the functionally key regulation sites of GlnBP were identified by utilizing a perturbation method proposed by our group, in which the residues whose perturbations markedly change the binding free energy between GlnBP and glutamine are considered to be functionally key residues. The results show that besides the substrate binding sites, some other residues distant from the binding pocket, including the ones in the hinge regions between the two domains, the front- and back- door channels and the exposed region, are important for the function of glutamine binding and transport. The predicted results are well consistent with the theoretical and experimental data, which indicates that our method is an effective approach to identify the key residues important for both ligand binding and long-range allosteric signal transmission. This work can provide some insights into the function performance of GlnBP and the physical mechanism of its allosteric regulation.
Collapse
Affiliation(s)
- Dashuai Lv
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Cunxin Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Jianjun Tan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyi Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
21
|
Lu C, Stock G, Knecht V. Mechanisms for allosteric activation of protease DegS by ligand binding and oligomerization as revealed from molecular dynamics simulations. Proteins 2016; 84:1690-1705. [PMID: 27556733 DOI: 10.1002/prot.25154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
A local perturbation of a protein may lead to functional changes at some distal site, a phenomenon denoted as allostery. Here, we study the allosteric control of a protease using molecular dynamics simulations. The system considered is the bacterial protein DegS which includes a protease domain activated on ligand binding to an adjacent PDZ domain. Starting from crystallographic structures of DegS homo-trimers, we perform simulations of the ligand-free and -bound state of DegS at equilibrium. Considering a single protomer only, the trimeric state was mimicked by applying restraints on the residues in contact with other protomers in the DegS trimer. In addition, the bound state was also simulated without any restraints to mimic the monomer. Our results suggest that not only ligand release but also disassembly of a DegS trimer inhibits proteolytic activity. Considering various observables for structural changes, we infer allosteric pathways from the interface with other protomers to the active site. Moreover, we study how ligand release leads to (i) catalytically relevant changes involving residues 199-201 and (ii) a transition from a stretched to a bent conformation for residues 217-219 (which prohibits proper substrate binding). Finally, based on ligand-induced Cα shifts we identify residues in contact with other protomers in the DegS trimer that likely transduce the perturbation from ligand release from a given protomer to adjacent protomers. These residues likely play a key role in the experimentally known effect of ligand release from a protomer on the proteolytic activity of the other protomers. Proteins 2016; 84:1690-1705. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheng Lu
- Biomolecular Dynamics Group, Institute of Physics, Albert Ludwigs University, Hermann-Herder-Str. 3, Freiburg, 79104, Germany
| | - Gerhard Stock
- Biomolecular Dynamics Group, Institute of Physics, Albert Ludwigs University, Hermann-Herder-Str. 3, Freiburg, 79104, Germany
| | - Volker Knecht
- Biomolecular Dynamics Group, Institute of Physics, Albert Ludwigs University, Hermann-Herder-Str. 3, Freiburg, 79104, Germany.
| |
Collapse
|
22
|
O'Rourke KF, Gorman SD, Boehr DD. Biophysical and computational methods to analyze amino acid interaction networks in proteins. Comput Struct Biotechnol J 2016; 14:245-51. [PMID: 27441044 PMCID: PMC4939391 DOI: 10.1016/j.csbj.2016.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Globular proteins are held together by interacting networks of amino acid residues. A number of different structural and computational methods have been developed to interrogate these amino acid networks. In this review, we describe some of these methods, including analyses of X-ray crystallographic data and structures, computer simulations, NMR data, and covariation among protein sequences, and indicate the critical insights that such methods provide into protein function. This information can be leveraged towards the design of new allosteric drugs, and the engineering of new protein function and protein regulation strategies.
Collapse
Affiliation(s)
- Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott D Gorman
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
23
|
Abstract
Molecular dynamics (MD) simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.
Collapse
|
24
|
Kalescky R, Zhou H, Liu J, Tao P. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery. PLoS Comput Biol 2016; 12:e1004893. [PMID: 27115535 PMCID: PMC4846164 DOI: 10.1371/journal.pcbi.1004893] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/01/2016] [Indexed: 12/22/2022] Open
Abstract
Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.
Collapse
Affiliation(s)
- Robert Kalescky
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas, United States of America
| | - Hongyu Zhou
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas, United States of America
| | - Jin Liu
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas, United States of America
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail: (JL); (PT)
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas, United States of America
- * E-mail: (JL); (PT)
| |
Collapse
|
25
|
Abstract
The functions of many proteins are regulated through allostery, whereby effector binding at a distal site changes the functional activity (e.g., substrate binding affinity or catalytic efficiency) at the active site. Most allosteric studies have focused on thermodynamic properties, in particular, substrate binding affinity. Changes in substrate binding affinity by allosteric effectors have generally been thought to be mediated by conformational transitions of the proteins or, alternatively, by changes in the broadness of the free energy basin of the protein conformational state without shifting the basin minimum position. When effector binding changes the free energy landscape of a protein in conformational space, the change affects not only thermodynamic properties but also dynamic properties, including the amplitudes of motions on different time scales and rates of conformational transitions. Here we assess the roles of conformational dynamics in allosteric regulation. Two cases are highlighted where NMR spectroscopy and molecular dynamics simulation have been used as complementary approaches to identify residues possibly involved in allosteric communication. Perspectives on contentious issues, for example, the relationship between picosecond-nanosecond local and microsecond-millisecond conformational exchange dynamics, are presented.
Collapse
Affiliation(s)
- Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, People's Republic of China
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
26
|
Affiliation(s)
- Andre A. S. T. Ribeiro
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Vanessa Ortiz
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
27
|
Lu C, Knecht V, Stock G. Long-Range Conformational Response of a PDZ Domain to Ligand Binding and Release: A Molecular Dynamics Study. J Chem Theory Comput 2016; 12:870-8. [PMID: 26683494 DOI: 10.1021/acs.jctc.5b01009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The binding of a ligand to a protein may induce long-range structural or dynamical changes in the biomacromolecule even at sites physically well separated from the binding pocket. A system for which such behavior has been widely discussed is the PDZ2 domain of human tyrosine phosphatase 1E. Here, we present results from equilibrium trajectories of the PDZ2 domain in the free and ligand-bound state, as well as nonequilibrium simulations of the relaxation of PDZ2 after removal of its peptide ligand. The study reveals changes in inter-residue contacts, backbone dihedral angles, and C(α) positions upon ligand release. Our findings show a long-range conformational response of the PDZ2 domain to ligand release in the form of a collective shift of the secondary structure elements α2, β2, β3, α1-β4, and the C terminal loop relative to the rest of the protein away from the N-terminus, and a shift of the loops β2-β3 and β1-β2 in the opposite direction. The shifts lead to conformational changes in the backbone, especially in the β2-β3 loop but also in the β5-α2 and the α2-β6 loop, and are accompanied by changes of inter-residue contacts mainly within the β2-β3 loop as well as between the α2 helix and other segments. The residues showing substantial changes of inter-residue contacts, backbone conformations, or C(α) positions are considered "key residues" for the long-range conformational response of PDZ2. By comparing these residues with various sets of residues highlighted by previous studies of PDZ2, we investigate the statistical correlation of the various approaches. Interestingly, we find a considerable correlation of our findings with several works considering structural changes but no significant correlations with approaches considering energy flow or networks based on inter-residue energies.
Collapse
Affiliation(s)
- Cheng Lu
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University , 79104 Freiburg, Germany
| | - Volker Knecht
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University , 79104 Freiburg, Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University , 79104 Freiburg, Germany
| |
Collapse
|
28
|
Anisotropic energy flow and allosteric ligand binding in albumin. Nat Commun 2015; 5:3100. [PMID: 24445265 DOI: 10.1038/ncomms4100] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/12/2013] [Indexed: 11/08/2022] Open
Abstract
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Collapse
|
29
|
Aubailly S, Piazza F. Cutoff lensing: predicting catalytic sites in enzymes. Sci Rep 2015; 5:14874. [PMID: 26445900 PMCID: PMC4597221 DOI: 10.1038/srep14874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/10/2015] [Indexed: 01/12/2023] Open
Abstract
Predicting function-related amino acids in proteins with unknown function or unknown allosteric binding sites in drug-targeted proteins is a task of paramount importance in molecular biomedicine. In this paper we introduce a simple, light and computationally inexpensive structure-based method to identify catalytic sites in enzymes. Our method, termed cutoff lensing, is a general procedure consisting in letting the cutoff used to build an elastic network model increase to large values. A validation of our method against a large database of annotated enzymes shows that optimal values of the cutoff exist such that three different structure-based indicators allow one to recover a maximum of the known catalytic sites. Interestingly, we find that the larger the structures the greater the predictive power afforded by our method. Possible ways to combine the three indicators into a single figure of merit and into a specific sequential analysis are suggested and discussed with reference to the classic case of HIV-protease. Our method could be used as a complement to other sequence- and/or structure-based methods to narrow the results of large-scale screenings.
Collapse
Affiliation(s)
- Simon Aubailly
- Université d'Orléans, Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, 45071, Orléans, France
| | - Francesco Piazza
- Université d'Orléans, Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, 45071, Orléans, France
| |
Collapse
|
30
|
Ribeiro AAST, Ortiz V. MDN: A Web Portal for Network Analysis of Molecular Dynamics Simulations. Biophys J 2015; 109:1110-6. [PMID: 26143656 DOI: 10.1016/j.bpj.2015.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/08/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023] Open
Abstract
We introduce a web portal that employs network theory for the analysis of trajectories from molecular dynamics simulations. Users can create protein energy networks following methodology previously introduced by our group, and can identify residues that are important for signal propagation, as well as measure the efficiency of signal propagation by calculating the network coupling. This tool, called MDN, was used to characterize signal propagation in Escherichia coli heat-shock protein 70-kDa. Two variants of this protein experimentally shown to be allosterically active exhibit higher network coupling relative to that of two inactive variants. In addition, calculations of partial coupling suggest that this quantity could be used as part of the criteria to determine pocket druggability in drug discovery studies.
Collapse
Affiliation(s)
| | - Vanessa Ortiz
- Department of Chemical Engineering, Columbia University, New York, New York.
| |
Collapse
|
31
|
Grosso M, Kalstein A, Parisi G, Roitberg AE, Fernandez-Alberti S. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein. J Chem Phys 2015; 142:245101. [DOI: 10.1063/1.4922925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Marcos Grosso
- Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Adrian Kalstein
- Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Gustavo Parisi
- Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Adrian E. Roitberg
- Departments of Physics and Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
32
|
Miño-Galaz GA. Allosteric communication pathways and thermal rectification in PDZ-2 protein: a computational study. J Phys Chem B 2015; 119:6179-89. [PMID: 25933631 DOI: 10.1021/acs.jpcb.5b02228] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Allosteric communication in proteins is a fundamental and yet unresolved problem of structural biochemistry. Previous findings, from computational biology ( Ota, N.; Agard, D. A. J. Mol. Biol. 2005 , 351 , 345 - 354 ), have proposed that heat diffuses in a protein through cognate protein allosteric pathways. This work studied heat diffusion in the well-known PDZ-2 protein, and confirmed that this protein has two cognate allosteric pathways and that heat flows preferentially through these. Also, a new property was also observed for protein structures: heat diffuses asymmetrically through the structures. The underling structure of this asymmetrical heat flow was a normal length hydrogen bond (∼2.85 Å) that acted as a thermal rectifier. In contrast, thermal rectification was compromised in short hydrogen bonds (∼2.60 Å), giving rise to symmetrical thermal diffusion. Asymmetrical heat diffusion was due, on a higher scale, to the local, structural organization of residues that, in turn, was also mediated by hydrogen bonds. This asymmetrical/symmetrical energy flow may be relevant for allosteric signal communication directionality in proteins and for the control of heat flow in materials science.
Collapse
Affiliation(s)
- Germán A Miño-Galaz
- †Group of Nanomaterials, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.,‡Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,§Universidad Andres Bello Center for Bioinformatics and Integrative Biology (CBIB), Facultad en Ciencias Biologicas, Santiago, Chile
| |
Collapse
|
33
|
Leitner DM, Buchenberg S, Brettel P, Stock G. Vibrational energy flow in the villin headpiece subdomain: Master equation simulations. J Chem Phys 2015; 142:075101. [DOI: 10.1063/1.4907881] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- David M. Leitner
- Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557, USA
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Sebastian Buchenberg
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Paul Brettel
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Gerhard Stock
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Ligand-induced protein responses and mechanical signal propagation described by linear response theories. Biophys J 2015; 107:1415-25. [PMID: 25229149 DOI: 10.1016/j.bpj.2014.07.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/18/2014] [Accepted: 07/15/2014] [Indexed: 02/04/2023] Open
Abstract
In this study, a general linear response theory (LRT) is formulated to describe time-dependent and -independent protein conformational changes upon CO binding with myoglobin. Using the theory, we are able to monitor protein relaxation in two stages. The slower relaxation is found to occur from 4.4 to 81.2 picoseconds and the time constants characterized for a couple of aromatic residues agree with those observed by UV Resonance Raman (UVRR) spectrometry and time resolved x-ray crystallography. The faster "early responses", triggered as early as 400 femtoseconds, can be best described by the theory when impulse forces are used. The newly formulated theory describes the mechanical propagation following ligand-binding as a function of time, space and types of the perturbation forces. The "disseminators", defined as the residues that propagate signals throughout the molecule the fastest among all the residues in protein when perturbed, are found evolutionarily conserved and the mutations of which have been shown to largely change the CO rebinding kinetics in myoglobin.
Collapse
|
35
|
Ribeiro AAST, Ortiz V. Energy Propagation and Network Energetic Coupling in Proteins. J Phys Chem B 2015; 119:1835-46. [DOI: 10.1021/jp509906m] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andre A. S. T. Ribeiro
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Vanessa Ortiz
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
36
|
Nussinov R, Tsai CJ, Liu J. Principles of allosteric interactions in cell signaling. J Am Chem Soc 2014; 136:17692-701. [PMID: 25474128 PMCID: PMC4291754 DOI: 10.1021/ja510028c] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Indexed: 02/07/2023]
Abstract
Linking cell signaling events to the fundamental physicochemical basis of the conformational behavior of single molecules and ultimately to cellular function is a key challenge facing the life sciences. Here we outline the emerging principles of allosteric interactions in cell signaling, with emphasis on the following points. (1) Allosteric efficacy is not a function of the chemical composition of the allosteric pocket but reflects the extent of the population shift between the inactive and active states. That is, the allosteric effect is determined by the extent of preferred binding, not by the overall binding affinity. (2) Coupling between the allosteric and active sites does not decide the allosteric effect; however, it does define the propagation pathways, the allosteric binding sites, and key on-path residues. (3) Atoms of allosteric effectors can act as "driver" or "anchor" and create attractive "pulling" or repulsive "pushing" interactions. Deciphering, quantifying, and integrating the multiple co-occurring events present daunting challenges to our scientific community.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer
and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research,
National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler
Institute of Molecular Medicine, Department of Human Genetics and
Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chung-Jung Tsai
- Cancer
and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research,
National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jin Liu
- Department
of Biophysics, University of Texas Southwestern
Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United
States
- Department
of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4),
and Center for Scientific Computation, Southern
Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275, United
States
| |
Collapse
|
37
|
Kalescky R, Liu J, Tao P. Identifying key residues for protein allostery through rigid residue scan. J Phys Chem A 2014; 119:1689-700. [PMID: 25437403 DOI: 10.1021/jp5083455] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allostery is a ubiquitous process for protein regulatory activity in which a binding event can change a protein's function carried out at a distal site. Despite intensive theoretical and experimental investigation of protein allostery in the past five decades, effective methods have yet to be developed that can systematically identify key residues involved in allosteric mechanisms. In this study, we propose the rigid residue scan as a systematic approach to identify important allosteric residues. The third PDZ domain (PDZ3) in the postsynaptic density 95 protein (PSD-95) is used as a model system, and each amino acid residue is treated as a single rigid body during independent molecular dynamics simulations. Various indices based on cross-correlation matrices are used, which allow for two groups of residues with different functions to be identified. The first group is proposed as "switches" that are needed to "turn on" the binding effect of protein allostery. The second group is proposed as "wire residues" that are needed to propagate energy or information from the binding site to distal locations within the same protein. Among the nine residues suggested as important for PDZ3 intramolecular communication in this study, eight have been reported as critical for allostery in PDZ3. Therefore, the rigid residue scan approach is demonstrated to be an effective method for systemically identifying key residues in protein intramolecular communication and allosteric mechanisms.
Collapse
Affiliation(s)
- Robert Kalescky
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and Center for Scientific Computation, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275, United States
| | | | | |
Collapse
|
38
|
|
39
|
Buchenberg S, Knecht V, Walser R, Hamm P, Stock G. Long-range conformational transition of a photoswitchable allosteric protein: molecular dynamics simulation study. J Phys Chem B 2014; 118:13468-76. [PMID: 25365469 DOI: 10.1021/jp506873y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A local perturbation of a protein may lead to functional changes at some distal site. An example is the PDZ2 domain of human tyrosine phosphatase 1E, which shows an allosteric transition upon binding to a peptide ligand. Recently Buchli et al. presented a time-resolved study of this transition by covalently linking an azobenzene photoswitch across the binding groove and using a femtosecond laser pulse that triggers the cis-trans photoisomerization of azobenzene. To aid the interpretation of these experiments, in this work seven microsecond runs of all-atom molecular dynamics simulations each for the wild-type PDZ2 in the ligand-bound and -free state, as well as the photoswitchable protein (PDZ2S) in the cis and trans states of the photoswitch, in explicit water were conducted. First the theoretical model is validated by recalculating the available NMR data from the simulations. By comparing the results for PDZ2 and PDZ2S, it is analyzed to what extent the photoswitch indeed mimics the free-bound transition. A detailed description of the conformational rearrangement following the cis-trans photoisomerization of PDZ2S reveals a series of photoinduced structural changes that propagate from the anchor residues of the photoswitch via intermediate secondary structure segments to the C-terminus of PDZ2S. The changes of the conformational distribution of the C-terminal region is considered as the distal response of the isolated allosteric protein.
Collapse
Affiliation(s)
- Sebastian Buchenberg
- Biomolecular Dynamics, Institute of Physics, University of Freiburg , 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Miño G, Barriga R, Gutierrez G. Hydrogen Bonds and Heat Diffusion in α-Helices: A Computational Study. J Phys Chem B 2014; 118:10025-34. [DOI: 10.1021/jp503420e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- German Miño
- Group
of NanoMaterials, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
- Centro
Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Facultad
de Ciencias Biologicas, Centro de Bioinformatica y Biologia Integrativa, Universidad Andres Bello, Av.Republica 239, Santiago, Chile
| | - Raul Barriga
- Group
of NanoMaterials, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Gonzalo Gutierrez
- Group
of NanoMaterials, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| |
Collapse
|
41
|
Su JG, Qi LS, Li CH, Zhu YY, Du HJ, Hou YX, Hao R, Wang JH. Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022719. [PMID: 25215770 DOI: 10.1103/physreve.90.022719] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Indexed: 06/03/2023]
Abstract
Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.
Collapse
Affiliation(s)
- Ji Guo Su
- College of Science, Yanshan University, Qinhuangdao 066004, China
| | - Li Sheng Qi
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Chun Hua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100022, China
| | - Yan Ying Zhu
- College of Science, Yanshan University, Qinhuangdao 066004, China
| | - Hui Jing Du
- College of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yan Xue Hou
- College of Science, Yanshan University, Qinhuangdao 066004, China
| | - Rui Hao
- College of Science, Yanshan University, Qinhuangdao 066004, China
| | - Ji Hua Wang
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
42
|
Agbo JK, Gnanasekaran R, Leitner DM. Communication Maps: Exploring Energy Transport through Proteins and Water. Isr J Chem 2014. [DOI: 10.1002/ijch.201300139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Feher VA, Durrant JD, Van Wart AT, Amaro RE. Computational approaches to mapping allosteric pathways. Curr Opin Struct Biol 2014; 25:98-103. [PMID: 24667124 DOI: 10.1016/j.sbi.2014.02.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 01/17/2023]
Abstract
Allosteric signaling occurs when chemical and/or physical changes at an allosteric site alter the activity of a primary orthosteric site often many Ångströms distant. A number of recently developed computational techniques, including dynamical network analysis, novel topological and molecular dynamics methods, and hybrids of these methods, are useful for elucidating allosteric signaling pathways at the atomistic level. No single method prevails as best to identify allosteric signal propagation path(s), rather each has particular strengths in characterizing signals that occur over specific timescale ranges and magnitudes of conformational fluctuation. With continued improvement in accuracy and predictive power, these computational techniques aim to become useful drug discovery tools that will allow researchers to identify allostery critical residues for subsequent pharmacological targeting.
Collapse
Affiliation(s)
- Victoria A Feher
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jacob D Durrant
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Adam T Van Wart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
Xu Y, Leitner DM. Communication maps of vibrational energy transport through Photoactive Yellow Protein. J Phys Chem A 2014; 118:7280-7. [PMID: 24552496 DOI: 10.1021/jp411281y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We calculate communication maps for Photoactive Yellow Protein (PYP) from the purple phototropic eubacterium Halorhodospira halophile and use them to elucidate energy transfer pathways from the chromophore through the rest of the protein in the ground and excited state. The calculations reveal that in PYP excess energy from the chromophore flows mainly to regions of the surrounding residues that hydrogen bond to the chromophore. In addition, quantum mechanics/molecular mechanics and molecular dynamics (MD) simulations of the dielectric response of the protein and solvent environment due to charge rearrangement on the chromophore following photoexcitation are also presented, with both approaches yielding similar time constants for the response. Results of MD simulations indicate that the residues hydrogen bonding to the chromophore make the largest contribution to the response.
Collapse
Affiliation(s)
- Yao Xu
- Department of Chemistry and Chemical Physics Program, University of Nevada , Reno, Nevada 89557, United States
| | | |
Collapse
|
45
|
Xu Y, Leitner DM. Vibrational Energy Flow through the Green Fluorescent Protein–Water Interface: Communication Maps and Thermal Boundary Conductance. J Phys Chem B 2014; 118:7818-26. [DOI: 10.1021/jp412141z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yao Xu
- Department
of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557, United States
- Physikalische
Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - David M. Leitner
- Department
of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
46
|
Hultqvist G, Haq SR, Punekar AS, Chi CN, Engström Å, Bach A, Strømgaard K, Selmer M, Gianni S, Jemth P. Energetic pathway sampling in a protein interaction domain. Structure 2014; 21:1193-1202. [PMID: 23810696 DOI: 10.1016/j.str.2013.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 01/10/2023]
Abstract
The affinity and specificity of protein-ligand interactions are influenced by energetic crosstalk within the protein domain. However, the molecular details of such intradomain allostery are still unclear. Here, we have experimentally detected and computationally predicted interaction pathways in the postsynaptic density 95/discs large/zonula occludens 1 (PDZ)-peptide ligand model system using wild-type and circularly permuted PDZ proteins. The circular permutant introduced small perturbations in the tertiary structure and a concomitant rewiring of allosteric pathways, allowing us to describe how subtle changes may reshape energetic signaling. The results were analyzed in the context of other members of the PDZ family, which were found to contain distinct interaction pathways for different peptide ligands. The data reveal a fascinating scenario whereby several energetic pathways are sampled within one single domain and distinct pathways are activated by specific protein ligands.
Collapse
Affiliation(s)
- Greta Hultqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Matsunaga Y, Baba A, Li CB, Straub JE, Toda M, Komatsuzaki T, Berry RS. Spatio-temporal hierarchy in the dynamics of a minimalist protein model. J Chem Phys 2013; 139:215101. [DOI: 10.1063/1.4834415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
48
|
Emerging computational approaches for the study of protein allostery. Arch Biochem Biophys 2013; 538:6-15. [DOI: 10.1016/j.abb.2013.07.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 12/12/2022]
|
49
|
Eren D, Alakent B. Frequency response of a protein to local conformational perturbations. PLoS Comput Biol 2013; 9:e1003238. [PMID: 24086121 PMCID: PMC3784495 DOI: 10.1371/journal.pcbi.1003238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/11/2013] [Indexed: 11/18/2022] Open
Abstract
Signals created by local perturbations are known to propagate long distances through proteins via backbone connectivity and nonbonded interactions. In the current study, signal propagation from the flexible ligand binding loop to the rest of Protein Tyrosine Phosphatase 1B (PTP1B) was investigated using frequency response techniques. Using restrained Targeted Molecular Dynamics (TMD) potential on WPD and R loops, PTP1B was driven between its crystal structure conformations at different frequencies. Propagation of the local perturbation signal was manifested via peaks at the fundamental frequency and upper harmonics of 1/f distributed spectral density of atomic variables, such as Cα atoms, dihedral angles, or polar interaction distances. Frequency of perturbation was adjusted high enough (simulation length >∼10×period of a perturbation cycle) not to be clouded by random diffusional fluctuations, and low enough (<∼0.8 ns(-1)) not to attenuate the propagating signal and enhance the contribution of the side-chains to the dissipation of the signals. Employing Discrete Fourier Transform (DFT) to TMD simulation trajectories of 16 cycles of conformational transitions at periods of 1.2 to 5 ns yielded Cα displacements consistent with those obtained from crystal structures. Identification of the perturbed atomic variables by statistical t-tests on log-log scale spectral densities revealed the extent of signal propagation in PTP1B, while phase angles of the filtered trajectories at the fundamental frequency were used to cluster collectively fluctuating elements. Hydrophobic interactions were found to have a higher contribution to signal transduction between side-chains compared to the role of polar interactions. Most of in-phase fluctuating residues on the signaling pathway were found to have high identity among PTP domains, and located over a wide region of PTP1B including the allosteric site. Due to its simplicity and efficiency, the suggested technique may find wide applications in identification of signaling pathways of different proteins.
Collapse
Affiliation(s)
- Dilek Eren
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
| | - Burak Alakent
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
50
|
Abstract
By covalently linking an azobenzene photoswitch across the binding groove of a PDZ domain, a conformational transition, similar to the one occurring upon ligand binding to the unmodified domain, can be initiated on a picosecond timescale by a laser pulse. The protein structures have been characterized in the two photoswitch states through NMR spectroscopy and the transition between them through ultrafast IR spectroscopy and molecular dynamics simulations. The binding groove opens on a 100-ns timescale in a highly nonexponential manner, and the molecular dynamics simulations suggest that the process is governed by the rearrangement of the water network on the protein surface. We propose this rearrangement of the water network to be another possible mechanism of allostery.
Collapse
|