1
|
Abstract
Interactions between protein and RNA play a key role in many biological processes in the gene expression pathway. Those interactions are mediated through a variety of RNA-binding protein domains, among them the highly abundant RNA recognition motif (RRM). Here we studied protein-RNA complexes from different RNA binding domain families solved by NMR and x-ray crystallography. Characterizing the structural properties of the RNA at the binding interfaces revealed an unexpected number of nucleotides with unusual RNA conformations, specifically found in RNA-RRM complexes. Moreover, we observed that the RNA nucleotides that are directly involved in interactions with the RRM domains, via hydrogen bonds and hydrophobic contacts, are significantly enriched with unique RNA conformations. Further examination of the sequences binding the RRM domain showed a preference for G nucleotides in syn conformation to precede or to follow U nucleotides in the anti-conformation, and U nucleotides in C2' endo conformation to precede U and G nucleotides possessing the more common C3' endo conformation. These findings imply a possible mode of RNA recognition by the RRM domains which enables the recognition of a wide variety of different RNA sequences and shapes. Overall, this study suggests an additional way by which the RRM domain recognizes its RNA target, involving a conformational readout.
Collapse
Affiliation(s)
- Efrat Kligun
- a Department of Biology; Technion - Israel Institute of Technology ; Haifa , Israel
| | | |
Collapse
|
2
|
Pérez-Cano L, Fernández-Recio J. Dissection and prediction of RNA-binding sites on proteins. Biomol Concepts 2015; 1:345-55. [PMID: 25962008 DOI: 10.1515/bmc.2010.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
RNA-binding proteins are involved in many important regulatory processes in cells and their study is essential for a complete understanding of living organisms. They show a large variability from both structural and functional points of view. However, several recent studies performed on protein-RNA crystal structures have revealed interesting common properties. RNA-binding sites usually constitute patches of positively charged or polar residues that make most of the specific and non-specific contacts with RNA. Negatively charged or aliphatic residues are less frequent at protein-RNA interfaces, although they can also be found either forming aliphatic and positive-negative pairs in protein RNA-binding sites or contacting RNA through their main chains. Aromatic residues found within these interfaces are usually involved in specific base recognition at RNA single-strand regions. This specific recognition, in combination with structural complementarity, represents the key source for specificity in protein-RNA association. From all this knowledge, a variety of computational methods for prediction of RNA-binding sites have been developed based either on protein sequence or on protein structure. Some reported methods are really successful in the identification of RNA-binding proteins or the prediction of RNA-binding sites. Given the growing interest in the field, all these studies and prediction methods will undoubtedly contribute to the identification and comprehension of protein-RNA interactions.
Collapse
|
3
|
Barik A, C N, Pilla SP, Bahadur RP. Molecular architecture of protein-RNA recognition sites. J Biomol Struct Dyn 2015; 33:2738-51. [PMID: 25562181 DOI: 10.1080/07391102.2015.1004652] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The molecular architecture of protein-RNA interfaces are analyzed using a non-redundant dataset of 152 protein-RNA complexes. We find that an average protein-RNA interface is smaller than an average protein-DNA interface but larger than an average protein-protein interface. Among the different classes of protein-RNA complexes, interfaces with tRNA are the largest, while the interfaces with the single-stranded RNA are the smallest. Significantly, RNA contributes more to the interface area than its partner protein. Moreover, unlike protein-protein interfaces where the side chain contributes less to the interface area compared to the main chain, the main chain and side chain contributions flipped in protein-RNA interfaces. We find that the protein surface in contact with the RNA in protein-RNA complexes is better packed than that in contact with the DNA in protein-DNA complexes, but loosely packed than that in contact with the protein in protein-protein complexes. Shape complementarity and electrostatic potential are the two major factors that determine the specificity of the protein-RNA interaction. We find that the H-bond density at the protein-RNA interfaces is similar with that of protein-DNA interfaces but higher than the protein-protein interfaces. Unlike protein-DNA interfaces where the deoxyribose has little role in intermolecular H-bonds, due to the presence of an oxygen atom at the 2' position, the ribose in RNA plays significant role in protein-RNA H-bonds. We find that besides H-bonds, salt bridges and stacking interactions also play significant role in stabilizing protein-nucleic acids interfaces; however, their contribution at the protein-protein interfaces is insignificant.
Collapse
Affiliation(s)
- Amita Barik
- a Computational Structural Biology Laboratory, Department of Biotechnology , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Nithin C
- a Computational Structural Biology Laboratory, Department of Biotechnology , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Smita P Pilla
- a Computational Structural Biology Laboratory, Department of Biotechnology , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Ranjit Prasad Bahadur
- a Computational Structural Biology Laboratory, Department of Biotechnology , Indian Institute of Technology Kharagpur , Kharagpur , India
| |
Collapse
|
4
|
Feklistov A, Darst SA. Crystallographic analysis of an RNA polymerase σ-subunit fragment complexed with -10 promoter element ssDNA: quadruplex formation as a possible tool for engineering crystal contacts in protein-ssDNA complexes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:950-5. [PMID: 23989139 PMCID: PMC3758139 DOI: 10.1107/s1744309113020368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022]
Abstract
Structural studies of -10 promoter element recognition by domain 2 of the RNA polymerase σ subunit [Feklistov & Darst (2011), Cell, 147, 1257-1269] reveal an unusual crystal-packing arrangement dominated by G-quartets. The 3'-terminal GGG motif of the oligonucleotide used in crystallization participates in G-quadruplex formation with GGG motifs from symmetry-related complexes. Stacking between neighboring G-quadruplexes results in the formation of pseudo-continuous four-stranded columns running throughout the length of the crystal (G-columns). Here, a new crystal form is presented with a different arrangement of G-columns and it is proposed that the fortuitous finding of G-quartet packing could be useful in engineering crystal contacts in protein-ssDNA complexes.
Collapse
Affiliation(s)
- Andrey Feklistov
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
5
|
Zhou P, Tian F, Ren Y, Shang Z. Systematic classification and analysis of themes in protein-DNA recognition. J Chem Inf Model 2010; 50:1476-88. [PMID: 20726602 DOI: 10.1021/ci100145d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein-DNA recognition plays a central role in the regulation of gene expression. With the rapidly increasing number of protein-DNA complex structures available at atomic resolution in recent years, a systematic, complete, and intuitive framework to clarify the intrinsic relationship between the global binding modes of these complexes is needed. In this work, we modified, extended, and applied previously defined RNA-recognition themes to describe protein-DNA recognition and used a protocol that incorporates automatic methods into manual inspection to plant a comprehensive classification tree for currently available high-quality protein-DNA structures. Further, a nonredundant (representative) data set consisting of 200 thematically diverse complexes was extracted from the leaves of the classification tree by using a locally sensitive interface comparison algorithm. On the basis of the representative data set, various physical and chemical properties associated with protein-DNA interactions were analyzed using empirical or semiempirical methods. We also examined the individual energetic components involved in protein-DNA interactions and highlighted the importance of conformational entropy, which has been almost completely ignored in previous studies of protein-DNA binding energy.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | | | | | | |
Collapse
|
6
|
Zhou P, Zou J, Tian F, Shang Z. Geometric similarity between protein-RNA interfaces. J Comput Chem 2010; 30:2738-51. [PMID: 19399760 DOI: 10.1002/jcc.21300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new method is described to measure the geometric similarity between protein-RNA interfaces quantitatively. The method is based on a procedure that dissects the interface geometry in terms of the spatial relationships between individual amino acid nucleotide pairs. Using this technique, we performed an all-on-all comparison of 586 protein-RNA interfaces deposited in the current Protein Data Bank, as the result, an interface-interface similarity score matrix was obtained. Based upon this matrix, hierarchical clustering was carried out which yielded a complete clustering tree for the 586 protein-RNA interfaces. By investigating the organizing behavior of the clustering tree and the SCOP classification of protein partners in complexes, a geometrically nonredundant, diverse data set (representative data set) consisting of 45 distinct protein-RNA interfaces was extracted for the purpose of studying protein-RNA interactions, RNA regulations, and drug design. We classified protein-RNA interfaces into three types. In type I, the families and interface structural classes of the protein partners, as well as the interface geometries are all similar. In type II, the interface geometries and the interface structural classes are similar, whereas the protein families are different. In type III, only the interface geometries are similar but the protein families and the interface structural classes are distinct. Furthermore, we also show two new RNA recognition themes derived from the representative data set.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Molecular Design and Molecular Thermodynamics, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | | | | |
Collapse
|
7
|
Sutch BT, Chambers EJ, Bayramyan MZ, Gallaher TK, Haworth IS. Similarity of Protein-RNA Interfaces Based on Motif Analysis. J Chem Inf Model 2009; 49:2139-46. [DOI: 10.1021/ci900154a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Brian T. Sutch
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089-9121
| | - Eric J. Chambers
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089-9121
| | - Melina Z. Bayramyan
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089-9121
| | - Timothy K. Gallaher
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089-9121
| | - Ian S. Haworth
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
8
|
Pérez-Cano L, Fernández-Recio J. Optimal protein-RNA area, OPRA: A propensity-based method to identify RNA-binding sites on proteins. Proteins 2009; 78:25-35. [DOI: 10.1002/prot.22527] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Abstract
We analyze the protein–RNA interfaces in 81 transient binary complexes taken from the Protein Data Bank. Those with tRNA or duplex RNA are larger than with single-stranded RNA, and comparable in size to protein–DNA interfaces. The protein side bears a strong positive electrostatic potential and resembles protein–DNA interfaces in its amino acid composition. On the RNA side, the phosphate contributes less, and the sugar much more, to the interaction than in protein–DNA complexes. On average, protein–RNA interfaces contain 20 hydrogen bonds, 7 that involve the phosphates, 5 the sugar 2′OH, and 6 the bases, and 32 water molecules. The average H-bond density per unit buried surface area is less with tRNA or single-stranded RNA than with duplex RNA. The atomic packing is also less compact in interfaces with tRNA. On the protein side, the main chain NH and Arg/Lys side chains account for nearly half of all H-bonds to RNA; the main chain CO and side chain acceptor groups, for a quarter. The 2′OH is a major player in protein–RNA recognition, and shape complementarity an important determinant, whereas electrostatics and direct base–protein interactions play a lesser part than in protein–DNA recognition.
Collapse
Affiliation(s)
- Ranjit Prasad Bahadur
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | | | | |
Collapse
|
10
|
Protein folding by domain V of Escherichia coli 23S rRNA: specificity of RNA-protein interactions. J Bacteriol 2008; 190:3344-52. [PMID: 18310328 DOI: 10.1128/jb.01800-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peptidyl transferase center, present in domain V of 23S rRNA of eubacteria and large rRNA of plants and animals, can act as a general protein folding modulator. Here we show that a few specific nucleotides in Escherichia coli domain V RNA bind to unfolded proteins and, as shown previously, bring the trapped proteins to a folding-competent state before releasing them. These nucleotides are the same for the proteins studied so far: bovine carbonic anhydrase, lactate dehydrogenase, malate dehydrogenase, and chicken egg white lysozyme. The amino acids that interact with these nucleotides are also found to be specific in the two cases tested: bovine carbonic anhydrase and lysozyme. They are either neutral or positively charged and are present in random coils on the surface of the crystal structure of both the proteins. In fact, two of these amino acid-nucleotide pairs are identical in the two cases. How these features might help the process of protein folding is discussed.
Collapse
|