1
|
Dalvit C, Vulpetti A. Ligand-Based Fluorine NMR Screening: Principles and Applications in Drug Discovery Projects. J Med Chem 2018; 62:2218-2244. [DOI: 10.1021/acs.jmedchem.8b01210] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
2
|
Rühmann E, Betz M, Heine A, Klebe G. Fragment Binding Can Be Either More Enthalpy-Driven or Entropy-Driven: Crystal Structures and Residual Hydration Patterns Suggest Why. J Med Chem 2015; 58:6960-71. [PMID: 26270568 DOI: 10.1021/acs.jmedchem.5b00812] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In lead optimization, small, enthalpically advantaged fragments have been suggested to be superior, as an entropic component will be added inevitably during late-stage optimization. Determination of thermodynamic signatures of weak-binding fragments is essential to support the decision-making process, to decide which fragment to take to further optimization. High-resolution crystal structures of six fragments binding to the S1 pocket of thrombin were determined and analyzed with respect to their thermodynamic profile. The two most potent fragments exhibiting an amidine-type scaffold are not the most enthalpic binders; instead a chloro-thiophene fragment binds more enthalpically. Two chemically very similar chloro-aromatic fragments differ strongly in their potency (430 μM vs 10 mM); their binding modes are related, but the surrounding residual water network differs. The more potent one recruits a water molecule and involves Glu192 in binding, thus succeeding in firmly capping the S1 pocket. Fragments exhibiting a rather perfect solvation pattern in their binding mode also experience the highest potency.
Collapse
Affiliation(s)
- Eggert Rühmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35037 Marburg, Germany
| | - Michael Betz
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35037 Marburg, Germany
| | - Andreas Heine
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35037 Marburg, Germany
| | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35037 Marburg, Germany
| |
Collapse
|
3
|
Thermodynamic signatures of fragment binding: Validation of direct versus displacement ITC titrations. Biochim Biophys Acta Gen Subj 2015; 1850:647-56. [DOI: 10.1016/j.bbagen.2014.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/20/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022]
|
4
|
Vulpetti A, Dalvit C. Design and generation of highly diverse fluorinated fragment libraries and their efficient screening with improved (19) F NMR methodology. ChemMedChem 2013; 8:2057-69. [PMID: 24127294 DOI: 10.1002/cmdc.201300351] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Indexed: 12/11/2022]
Abstract
Fragment screening performed with (19) F NMR spectroscopy is becoming increasingly popular in drug discovery projects. With this approach, libraries of fluorinated fragments are first screened using the direct-mode format of the assay. The choice of fluorinated motifs present in the library is fundamental in order to ensure a large coverage of chemical space and local environment of fluorine (LEF). Mono- and poly-fluorinated fragments to be included in the libraries for screening are selected from both in-house and commercial collections, and those that are ad hoc designed and synthesized. Additional fluorinated motifs to be included in the libraries derive from the fragmentation of compounds in development and launched on the market, and compounds contained in other databases (such as Integrity, PDB and ChEMBL). Complex mixtures of highly diverse fluorine motifs can be rapidly screened and deconvoluted in the same NMR tube with a novel on the fly combined procedure for the identification of the active molecule(s). Issues and problems encountered in the design, generation and screening of diverse fragment libraries of fluorinated compounds with (19) F NMR spectroscopy are analyzed and technical solutions are provided to overcome them. The versatile screening methodology described here can be efficiently applied in laboratories with limited NMR setup and could potentially lead to the increasing role of (19) F NMR in the hit identification and lead optimization phases of drug discovery projects.
Collapse
Affiliation(s)
- Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel (Switzerland).
| | | |
Collapse
|
5
|
Honarparvar B, Govender T, Maguire GEM, Soliman MES, Kruger HG. Integrated Approach to Structure-Based Enzymatic Drug Design: Molecular Modeling, Spectroscopy, and Experimental Bioactivity. Chem Rev 2013; 114:493-537. [DOI: 10.1021/cr300314q] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bahareh Honarparvar
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Glenn E. M. Maguire
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mahmoud E. S. Soliman
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Hendrik G. Kruger
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| |
Collapse
|
6
|
Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery. Proc Natl Acad Sci U S A 2013; 110:12984-9. [PMID: 23872845 DOI: 10.1073/pnas.1304045110] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In fragment-based drug discovery, the weak affinities exhibited by fragments pose significant challenges for screening. Biophysical techniques are used to address this challenge, but there is no clear consensus on which cascade of methods is best suited to identify fragment hits that ultimately translate into bound X-ray structures and provide bona fide starting points for synthesis. We have benchmarked an integrated biophysical approach for fragment screening and validation against Mycobacterium tuberculosis pantothenate synthetase. A primary screen of 1,250 fragments library was performed by thermal shift, followed by secondary screen using one-dimensional NMR spectroscopy (water ligand observed gradient spectroscopy and saturation transfer difference binding experiments) and ultimate hit validation by isothermal titration calorimetry and X-ray crystallography. Our multibiophysical approach identified three distinct binding sites for fragments and laid a solid foundation for successful structure-based elaboration into potent inhibitors.
Collapse
|
7
|
Chen H, Viel S, Ziarelli F, Peng L. 19F NMR: a valuable tool for studying biological events. Chem Soc Rev 2013; 42:7971-82. [DOI: 10.1039/c3cs60129c] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery. Q Rev Biophys 2012; 45:383-426. [PMID: 22971516 DOI: 10.1017/s0033583512000108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug discovery has classically targeted the active sites of enzymes or ligand-binding sites of receptors and ion channels. In an attempt to improve selectivity of drug candidates, modulation of protein-protein interfaces (PPIs) of multiprotein complexes that mediate conformation or colocation of components of cell-regulatory pathways has become a focus of interest. However, PPIs in multiprotein systems continue to pose significant challenges, as they are generally large, flat and poor in distinguishing features, making the design of small molecule antagonists a difficult task. Nevertheless, encouragement has come from the recognition that a few amino acids - so-called hotspots - may contribute the majority of interaction-free energy. The challenges posed by protein-protein interactions have led to a wellspring of creative approaches, including proteomimetics, stapled α-helical peptides and a plethora of antibody inspired molecular designs. Here, we review a more generic approach: fragment-based drug discovery. Fragments allow novel areas of chemical space to be explored more efficiently, but the initial hits have low affinity. This means that they will not normally disrupt PPIs, unless they are tethered, an approach that has been pioneered by Wells and co-workers. An alternative fragment-based approach is to stabilise the uncomplexed components of the multiprotein system in solution and employ conventional fragment-based screening. Here, we describe the current knowledge of the structures and properties of protein-protein interactions and the small molecules that can modulate them. We then describe the use of sensitive biophysical methods - nuclear magnetic resonance, X-ray crystallography, surface plasmon resonance, differential scanning fluorimetry or isothermal calorimetry - to screen and validate fragment binding. Fragment hits can subsequently be evolved into larger molecules with higher affinity and potency. These may provide new leads for drug candidates that target protein-protein interactions and have therapeutic value.
Collapse
|
9
|
Taboureau O, Baell JB, Fernández-Recio J, Villoutreix BO. Established and emerging trends in computational drug discovery in the structural genomics era. ACTA ACUST UNITED AC 2012; 19:29-41. [PMID: 22284352 DOI: 10.1016/j.chembiol.2011.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 12/01/2022]
Abstract
Bioinformatics and chemoinformatics approaches contribute to hit discovery, hit-to-lead optimization, safety profiling, and target identification and enhance our overall understanding of the health and disease states. A vast repertoire of computational methods has been reported and increasingly combined in order to address more and more challenging targets or complex molecular mechanisms in the context of large-scale integration of structure and bioactivity data produced by private and public drug research. This review explores some key computational methods directly linked to drug discovery and chemical biology with a special emphasis on compound collection preparation, virtual screening, protein docking, and systems pharmacology. A list of generally freely available software packages and online resources is provided, and examples of successful applications are briefly commented upon.
Collapse
Affiliation(s)
- Olivier Taboureau
- Center for Biological Sequences Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | | |
Collapse
|
10
|
Yanamala N, Dutta A, Beck B, van Vliet B, van Fleet B, Hay K, Yazbak A, Ishima R, Doemling A, Klein-Seetharaman J. NMR-based screening of membrane protein ligands. Chem Biol Drug Des 2011; 75:237-56. [PMID: 20331645 DOI: 10.1111/j.1747-0285.2009.00940.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with ligands non-specifically, overlap with protein signals, modulate protein dynamics and conformational exchange and compromise sensitivity by adding highly intense background signals. In this article, we discuss the special considerations arising from these problems when conducting NMR-based ligand-binding studies with membrane proteins. While the use of (13)C and (15)N isotopes is becoming increasingly feasible, (19)F and (1)H NMR-based approaches are currently the most widely explored. By using suitable NMR parameter selection schemes independent of or exploiting the presence of detergent, (1)H-based approaches require least effort in sample preparation because of the high sensitivity and natural abundance of (1)H in both, ligand and protein. On the other hand, the (19)F nucleus provides an ideal NMR probe because of its similarly high sensitivity to that of (1)H and the lack of natural (19)F background in biologic systems. Despite its potential, the use of NMR spectroscopy is highly underdeveloped in the area of drug discovery for membrane proteins.
Collapse
Affiliation(s)
- Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ladbury JE, Arold ST. Energetics of Src homology domain interactions in receptor tyrosine kinase-mediated signaling. Methods Enzymol 2011; 488:147-83. [PMID: 21195228 DOI: 10.1016/b978-0-12-381268-1.00007-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracellular signaling from receptor tyrosine kinases (RTK) on extracellular stimulation is fundamental to all cellular processes. The protein-protein interactions which form the basis of this signaling are mediated through a limited number of polypeptide domains. For signal transduction without corruption, based on a model where signaling pathways are considered as linear bimolecular relays, these interactions have to be highly specific. This is particularly the case when one considers that any cell may have copies of similar binding domains found in numerous proteins. In this work, an overview of the thermodynamics of binding of two of the most common of these domains (SH2 and SH3 domains) is given. This, coupled with insight from high-resolution structural detail, provides a comprehensive survey of how recognition of cognate binding sites for these domains occurs. Based on the data presented, we conclude that specificity offered by these interactions of SH2 and SH3 domains is limited and not sufficient to enforce mutual exclusivity in RTK-mediated signaling. This may explain the current lack of success in pharmaceutical intervention to inhibit the interactions of these domains when they are responsible for aberrant signaling and the resulting disease states such as cancer.
Collapse
Affiliation(s)
- John E Ladbury
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
12
|
Torres FE, Recht MI, Coyle JE, Bruce RH, Williams G. Higher throughput calorimetry: opportunities, approaches and challenges. Curr Opin Struct Biol 2010; 20:598-605. [PMID: 20888754 DOI: 10.1016/j.sbi.2010.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
Higher throughput thermodynamic measurements can provide value in structure-based drug discovery during fragment screening, hit validation, and lead optimization. Enthalpy can be used to detect and characterize ligand binding, and changes that affect the interaction of protein and ligand can sometimes be detected more readily from changes in the enthalpy of binding than from the corresponding free-energy changes or from protein-ligand structures. Newer, higher throughput calorimeters are being incorporated into the drug discovery process. Improvements in titration calorimeters come from extensions of a mature technology and face limitations in scaling. Conversely, array calorimetry, an emerging technology, shows promise for substantial improvements in throughput and material utilization, but improved sensitivity is needed.
Collapse
Affiliation(s)
- Francisco E Torres
- Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
13
|
Murray CW, Blundell TL. Structural biology in fragment-based drug design. Curr Opin Struct Biol 2010; 20:497-507. [DOI: 10.1016/j.sbi.2010.04.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/26/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
14
|
Calorimetry as a tool for understanding biomolecular interactions and an aid to drug design. Biochem Soc Trans 2010; 38:888-93. [DOI: 10.1042/bst0380888] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The binding of two biomolecules viewed from the atomic level is highly complex. It involves the formation or removal of many individual non-covalent bonds both between the interacting molecules as well as with solvent. Currently, our understanding of the thermodynamic quantification of biomolecular interactions is somewhat naïve. ITC (isothermal titration calorimetry) provides a rapid route to a full thermodynamic characterization of a biomolecular interaction. Armed with these data, what are we really able to understand about complex formation and can any of this information provide a useful tool to aid drug development? Correlations between thermodynamic data and structural detail have been investigated, allowing insight into ways in which these can be used to understand protein–ligand interactions and provide input into the decision-making process in drug development.
Collapse
|
15
|
Edink E, Jansen C, Leurs R, de Esch IJ. The heat is on: thermodynamic analysis in fragment-based drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2010; 7:e147-e202. [PMID: 24103770 DOI: 10.1016/j.ddtec.2010.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
16
|
Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov 2009; 9:23-7. [DOI: 10.1038/nrd3054] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Frearson JA, Collie IT. HTS and hit finding in academia--from chemical genomics to drug discovery. Drug Discov Today 2009; 14:1150-8. [PMID: 19793546 PMCID: PMC2814004 DOI: 10.1016/j.drudis.2009.09.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 11/19/2022]
Abstract
The liaison between academia and the pharmaceutical industry was originally served primarily through the scientific literature and limited, specific industry-academia partnerships. Some of these partnerships have resulted in drugs on the market, such as Vorinostat (Memorial Sloan-Kettering Cancer Centre and Merck) and Tenofovir (University of Leuven; Institute of Organic Chemistry and Biochemistry, Czech Republic; and GlaxoSmithKline), but the timescales from concept to clinic have, in most cases, taken many decades. We now find ourselves in a world in which the edges between these sectors are more blurred and the establishment and acceptance of high-throughput screening alongside the wider concept of 'hit discovery' in academia provides one of the key platforms required to enable this sector to contribute directly to addressing unmet medical need.
Collapse
|
18
|
Abstract
High throughput screening and other techniques commonly used to identify lead candidates for drug development usually yield compounds with binding affinities to their intended targets in the mid-micromolar range. The affinity of these molecules needs to be improved by several orders of magnitude before they become viable drug candidates. Traditionally, this task has been accomplished by establishing structure activity relationships to guide chemical modifications and improve the binding affinity of the compounds. As the binding affinity is a function of two quantities, the binding enthalpy and the binding entropy, it is evident that a more efficient optimization would be accomplished if both quantities were considered and improved simultaneously. Here, an optimization algorithm based upon enthalpic and entropic information generated by Isothermal Titration Calorimetry is presented.
Collapse
Affiliation(s)
- Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
19
|
The multiple roles of computational chemistry in fragment-based drug design. J Comput Aided Mol Des 2009; 23:459-73. [PMID: 19533374 DOI: 10.1007/s10822-009-9284-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
Abstract
Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.
Collapse
|
20
|
Grosdidier S, Fernández-Recio J. Docking and scoring: applications to drug discovery in the interactomics era. Expert Opin Drug Discov 2009; 4:673-86. [DOI: 10.1517/17460440903002067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Abstract
In the past decade, the potential of harnessing the ability of nuclear magnetic resonance (NMR) spectroscopy to monitor intermolecular interactions as a tool for drug discovery has been increasingly appreciated in academia and industry. In this Perspective, we highlight some of the major applications of NMR in drug discovery, focusing on hit and lead generation, and provide a critical analysis of its current and potential utility.
Collapse
|
22
|
Taylor JD, Ababou A, Fawaz RR, Hobbs CJ, Williams MA, Ladbury JE. Structure, dynamics, and binding thermodynamics of the v-Src SH2 domain: implications for drug design. Proteins 2008; 73:929-40. [PMID: 18536014 DOI: 10.1002/prot.22119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SH2 domains provide fundamental recognition sites in tyrosine kinase-mediated signaling pathways which, when aberrant, give rise to disease states such as cancer, diabetes, and immune deficiency. Designing specific inhibitors that target the SH2 domain-binding site, however, have presented a major challenge. Despite well over a decade of intensive research, clinically useful SH2 domain inhibitors have yet to become available. A better understanding of the structural, dynamic, and thermodynamic contributions to ligand binding of individual SH2 domains will provide some insight as to whether inhibitor development is possible. We report the first high resolution solution structure of the apo-v-Src SH2 domain. This is accompanied by the analysis of backbone dynamics and pK(a) values within the apo- and peptide-bound states. Our results indicate that the phosphotyrosine (pY) pocket is tightly structured and hence not adaptable to exogenous ligands. On the other hand, the pocket which accommodates residues proximal and C-terminal of the pY (pY + 3) or so-called specificity determining region, is a large dynamic-binding surface. This appears to allow a high level of promiscuity in binding. Binding of a series of synthetic, phosphotyrosyl, peptidomimetic compounds designed to explore interactions in the pY + 3 pocket further demonstrates the ability of the SH2 domain to accommodate diverse ligands. The thermodynamic parameters of these interactions show dramatic enthalpy/entropy compensation. These data suggest that the v-Src SH2 domain does not have a highly specific secondary-binding site, which clearly presents a major hurdle to design selective inhibitors.
Collapse
Affiliation(s)
- Jonathan D Taylor
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
23
|
Bjelić S, Jelesarov I. A survey of the year 2007 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:289-312. [PMID: 18729242 DOI: 10.1002/jmr.909] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elucidation of the energetic principles of binding affinity and specificity is a central task in many branches of current sciences: biology, medicine, pharmacology, chemistry, material sciences, etc. In biomedical research, integral approaches combining structural information with in-solution biophysical data have proved to be a powerful way toward understanding the physical basis of vital cellular phenomena. Isothermal titration calorimetry (ITC) is a valuable experimental tool facilitating quantification of the thermodynamic parameters that characterize recognition processes involving biomacromolecules. The method provides access to all relevant thermodynamic information by performing a few experiments. In particular, ITC experiments allow to by-pass tedious and (rarely precise) procedures aimed at determining the changes in enthalpy and entropy upon binding by van't Hoff analysis. Notwithstanding limitations, ITC has now the reputation of being the "gold standard" and ITC data are widely used to validate theoretical predictions of thermodynamic parameters, as well as to benchmark the results of novel binding assays. In this paper, we discuss several publications from 2007 reporting ITC results. The focus is on applications in biologically oriented fields. We do not intend a comprehensive coverage of all newly accumulated information. Rather, we emphasize work which has captured our attention with originality and far-reaching analysis, or else has provided ideas for expanding the potential of the method.
Collapse
Affiliation(s)
- Sasa Bjelić
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | | |
Collapse
|
24
|
Ciulli A, Abell C. Fragment-based approaches to enzyme inhibition. Curr Opin Biotechnol 2007; 18:489-96. [PMID: 17959370 DOI: 10.1016/j.copbio.2007.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 01/28/2023]
Abstract
Fragment-based approaches have provided a new paradigm for small-molecule drug discovery. The methodology is complementary to high-throughput screening approaches, starting from fragments of low molecular complexity and high ligand efficiency, and building up to more potent inhibitors. The approach, which depends heavily on a number of biophysical techniques, is now being taken up by more groups in both industry and academia. This article describes key aspects of the process and highlights recent developments and applications.
Collapse
Affiliation(s)
- Alessio Ciulli
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| | | |
Collapse
|