1
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Abstract
Most of the synthetic chemical transformation reactions involve the use of different organic solvents. Unfortunately, some of these toxic solvents are used in chemical laboratory, industry and have been considered a very serious problem for the health, safety of workers and environmental damage through pollution. The purpose of green chemistry is to provide a path that reduces or eliminates the use of such hazardous toxic solvents. Therefore, the key factor of the green synthetic approach is to utilize renewable materials, nontoxic chemical and to perform the reactions under solvent-free conditions. In this review, we have discussed most recent literature survey on applications of solvent-free techniques in organic synthesis which would offer a new opportunity to a researcher to overcome the problem of using environmental harmful solvents.
Collapse
Affiliation(s)
- Sainath Zangade
- Department of Chemistry Madhavrao Patil ACS College Palam Dist. Parbhani-431720 (M S), India
| | - Pravinkumar Patil
- Research Laboratory in Organic Synthesis, Department of Chemistry, N.E.S. Science College, Nanded-431605(M S), India
| |
Collapse
|
3
|
Brás NF, Fernandes PA, Ramos MJ. Understanding the Rate‐Limiting Step of Glycogenolysis by Using QM/MM Calculations on Human Glycogen Phosphorylase. ChemMedChem 2018; 13:1608-1616. [DOI: 10.1002/cmdc.201800218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/02/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Natércia F. Brás
- REQUIMTE/UCIBIO, Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - Pedro A. Fernandes
- REQUIMTE/UCIBIO, Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - Maria J. Ramos
- REQUIMTE/UCIBIO, Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
| |
Collapse
|
4
|
Sudhakar K, Thirupathi G, Balakishan A, Narsima chary S, Ravi S. Facile synthesis of novel (1-Aryl/alkyl-1H-1,2,3-triazol- 4-yl)methyl-2-bromo-4-methylthiazole-5-carboxylates by Cu(I) catalyzed click reaction. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216070306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem Rev 2016; 116:3086-240. [PMID: 26796328 DOI: 10.1021/acs.chemrev.5b00408] [Citation(s) in RCA: 540] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Xi Chen
- Department of Chemistry, One Shields Avenue, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
6
|
Albuquerque HMT, Santos CMM, Cavaleiro JAS, Silva AMS. (E)-2-(4-Arylbut-1-en-3-yn-1-yl)chromones as Synthons for the Synthesis of Xanthone-1,2,3-triazole Dyads. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Kim TW, Yong Y, Shin SY, Jung H, Park KH, Lee YH, Lim Y, Jung KY. Synthesis and biological evaluation of phenyl-1H-1,2,3-triazole derivatives as anti-inflammatory agents. Bioorg Chem 2015; 59:1-11. [PMID: 25658192 DOI: 10.1016/j.bioorg.2015.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 11/25/2022]
Abstract
Rapid and efficient synthesis of a phenyl-1H-1,2,3-triazole library enabled cost-effective biological testing of a range of novel non-steroidal anti-inflammatory drugs with potential for improved drug efficacy and toxicity profiles. Anti-inflammatory activities of the phenyl-1H-1,2,3-triazole analogs synthesized in this report were assessed using the xylene-induced ear edema model in mice. At least four analogs, 2a, 2b, 2c, and 4a, showed more potent effects than the reference anti-inflammatory drug diclofenac at the same dose of 25 mg/kg. To explore relationships between the structural properties of phenyl-1H-1,2,3-triazole analogs and their anti-inflammatory activities in xylene-induced ear edema, comparative molecular field analysis was performed, and pharmacophores showing good anti-inflammatory activities were identified based on an analysis of contour maps obtained from comparative molecular field analysis. The anti-inflammatory effect on the molecular level was tested by the expression of tumor necrosis factor-alpha induced COX-2 using Western blots. Because the addition of the analog 2c caused the expression change of TNF-α induced COX-2, the molecular binding mode between 2c and COX-2 was elucidated using in silico docking.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biochemical Engineering, Gangneung-Wonju National University, Gangwon 210-702, Republic of Korea
| | - Yeonjoong Yong
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyeryoung Jung
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kwan Ha Park
- Department of Aquatic Life Medicine, Kunsan National University, Kunsan 573-701, Republic of Korea
| | - Young Han Lee
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Kang-Yeoun Jung
- Department of Biochemical Engineering, Gangneung-Wonju National University, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
8
|
Eid S, Saleh N, Zalewski A, Vedani A. Exploring the free-energy landscape of carbohydrate-protein complexes: development and validation of scoring functions considering the binding-site topology. J Comput Aided Mol Des 2014; 28:1191-204. [PMID: 25205292 DOI: 10.1007/s10822-014-9794-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/04/2014] [Indexed: 11/30/2022]
Abstract
Carbohydrates play a key role in a variety of physiological and pathological processes and, hence, represent a rich source for the development of novel therapeutic agents. Being able to predict binding mode and binding affinity is an essential, yet lacking, aspect of the structure-based design of carbohydrate-based ligands. We assembled a diverse data set comprising 273 carbohydrate-protein crystal structures with known binding affinity and evaluated the prediction accuracy of a large collection of well-established scoring and free-energy functions, as well as combinations thereof. Unfortunately, the tested functions were not capable of reproducing binding affinities in the studied complexes. To simplify the complex free-energy surface of carbohydrate-protein systems, we classified the studied proteins according to the topology and solvent exposure of the carbohydrate-binding site into five distinct categories. A free-energy model based on the proposed classification scheme reproduced binding affinities in the carbohydrate data set with an r(2) of 0.71 and root-mean-squared-error of 1.25 kcal/mol (N = 236). The improvement in model performance underlines the significance of the differences in the local micro-environments of carbohydrate-binding sites and demonstrates the usefulness of calibrating free-energy functions individually according to binding-site topology and solvent exposure.
Collapse
Affiliation(s)
- Sameh Eid
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland,
| | | | | | | |
Collapse
|
9
|
SnCl4/Sn catalyzed chemoselective reduction of glycopyranosyl azides for the synthesis of diversely functionalized glycopyranosyl chloroacetamides. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.07.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Srivastava A, Loganathan D. Synthesis of guanidino sugar conjugates as GlcβArg analogs. Glycoconj J 2013; 30:769-80. [DOI: 10.1007/s10719-013-9480-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/05/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
11
|
Thirumurugan P, Matosiuk D, Jozwiak K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem Rev 2013; 113:4905-79. [DOI: 10.1021/cr200409f] [Citation(s) in RCA: 1309] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Prakasam Thirumurugan
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Dariusz Matosiuk
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Krzysztof Jozwiak
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| |
Collapse
|
12
|
Synthesis of heterocyclic N-(β-d-glucopyranosyl)carboxamides for inhibition of glycogen phosphorylase. Carbohydr Res 2012; 351:56-63. [DOI: 10.1016/j.carres.2012.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 01/19/2012] [Accepted: 01/22/2012] [Indexed: 11/20/2022]
|
13
|
Nagy V, Felföldi N, Kónya B, Praly JP, Docsa T, Gergely P, Chrysina ED, Tiraidis C, Kosmopoulou MN, Alexacou KM, Konstantakaki M, Leonidas DD, Zographos SE, Oikonomakos NG, Kozmon S, Tvaroška I, Somsák L. N-(4-Substituted-benzoyl)-N′-(β-d-glucopyranosyl)ureas as inhibitors of glycogen phosphorylase: Synthesis and evaluation by kinetic, crystallographic, and molecular modelling methods. Bioorg Med Chem 2012; 20:1801-16. [DOI: 10.1016/j.bmc.2011.12.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 11/15/2022]
|
14
|
|
15
|
Hayes JM, Skamnaki VT, Archontis G, Lamprakis C, Sarrou J, Bischler N, Skaltsounis AL, Zographos SE, Oikonomakos NG. Kinetics, in silico docking, molecular dynamics, and MM-GBSA binding studies on prototype indirubins, KT5720, and staurosporine as phosphorylase kinase ATP-binding site inhibitors: the role of water molecules examined. Proteins 2010; 79:703-19. [PMID: 21287607 DOI: 10.1002/prot.22890] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022]
Abstract
With an aim toward glycogenolysis control in Type 2 diabetes, we have investigated via kinetic experiments and computation the potential of indirubin (IC₅₀ > 50 μM), indirubin-3'-oxime (IC₅₀ = 144 nM), KT5720 (K(i) = 18.4 nM) and staurosporine (K(i) = 0.37 nM) as phosphorylase kinase (PhKγtrnc) ATP-binding site inhibitors, with the latter two revealed as potent inhibitors in the low nM range. Because of lack of structural information, we have exploited information from homologous kinase complexes to direct in silico calculations (docking, molecular dynamics, and MMGBSA) to predict the binding characteristics of the four ligands. All inhibitors are predicted to bind in the same active site area as the ATP adenine ring, with binding dominated by hinge region hydrogen bonds to Asp104:O and Met106:O (all four ligands) and also Met106:NH (for the indirubins). The PhKγtrnc-staurosporine complex has the greatest number of receptor-ligand hydrogen bonds, while for the indirubin-3'-oxime and KT5720 complexes there is an important network of interchanging water molecules bridging inhibitor-enzyme contacts. The MM-GBSA results revealed the source of staurosporine's low nM potency to be favorable electrostatic interactions, while KT5720 has strong van der Waals contributions. KT5720 interacts with the greatest number of protein residues either by direct or 1-water bridged hydrogen bond interactions, and the potential for more selective PhK inhibition based on a KT5720 analogue has been established. Including receptor flexibility in Schrödinger induced-fit docking calculations in most cases correctly predicted the binding modes as compared with the molecular dynamics structures; the algorithm was less effective when there were key structural waters bridging receptor-ligand contacts.
Collapse
Affiliation(s)
- Joseph M Hayes
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tsirkone VG, Tsoukala E, Lamprakis C, Manta S, Hayes JM, Skamnaki VT, Drakou C, Zographos SE, Komiotis D, Leonidas DD. 1-(3-Deoxy-3-fluoro-β-d-glucopyranosyl) pyrimidine derivatives as inhibitors of glycogen phosphorylase b: Kinetic, crystallographic and modelling studies. Bioorg Med Chem 2010; 18:3413-25. [DOI: 10.1016/j.bmc.2010.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/26/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
|
17
|
Singh N, Pandey SK, Tripathi RP. Regioselective [3+2] cycloaddition of chalcones with a sugar azide: easy access to 1-(5-deoxy-D-xylofuranos-5-yl)-4,5-disubstituted-1H-1,2,3-triazoles. Carbohydr Res 2010; 345:1641-8. [PMID: 20579636 DOI: 10.1016/j.carres.2010.04.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 04/15/2010] [Accepted: 04/21/2010] [Indexed: 11/18/2022]
Abstract
[3+2] Cycloaddition of 5-azido-5-deoxy-1,2-O-isopropylidene-alpha-d-xylofuranose with 1,3-diphenyl-prop-3-enones, followed by oxidation of the intermediate triazolines in a tandem manner, led to the regioselective formation of 4-benzoyl-1-(5-deoxy-1,2-O-isopropylidene-alpha-d-xylofuranos-5-yl)-5-phenyl-1H-1,2,3-triazoles in moderate to good yields.
Collapse
Affiliation(s)
- Nimisha Singh
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow 226 001, CSIR, India
| | | | | |
Collapse
|
18
|
Agostino M, Jene C, Boyle T, Ramsland PA, Yuriev E. Molecular docking of carbohydrate ligands to antibodies: structural validation against crystal structures. J Chem Inf Model 2010; 49:2749-60. [PMID: 19994843 DOI: 10.1021/ci900388a] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell surface glycoproteins play vital roles in cellular homeostasis and disease. Antibody recognition of glycosylation on different cells and pathogens is critically important for immune surveillance. Conversely, adverse immune reactions resulting from antibody-carbohydrate interactions have been implicated in the development of autoimmune diseases and impact areas such as xenotransplantation and cancer treatment. Understanding the nature of antibody-carbohydrate interactions and the method by which saccharides fit into antibody binding sites is important in understanding the recognition process. In silico techniques offer attractive alternatives to experimental methods (X-ray crystallography and NMR) for the study of antibody-carbohydrate complexes. In particular, molecular docking provides information about protein-ligand interactions in systems that are difficult to study with experimental techniques. Before molecular docking can be used to investigate antibody-carbohydrate complexes, validation of an appropriate docking method is required. In this study, four popular docking programs, Glide, AutoDock, GOLD, and FlexX, were assessed for their ability to accurately dock carbohydrates to antibodies. Comparison of top ranking poses with crystal structures highlighted the strengths and weaknesses of these programs. Rigid docking, in which the protein conformation remains static, and flexible docking, where both the protein and ligand are treated as flexible, were compared. This study has revealed that generally molecular docking of carbohydrates to antibodies has been performed best by Glide.
Collapse
Affiliation(s)
- Mark Agostino
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | | | | | | | | |
Collapse
|
19
|
Synthesis of 1-(d-glucopyranosyl)-1,2,3-triazoles and their evaluation as glycogen phosphorylase inhibitors. Bioorg Med Chem 2010; 18:1171-80. [DOI: 10.1016/j.bmc.2009.12.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/09/2009] [Accepted: 12/15/2009] [Indexed: 11/23/2022]
|
20
|
Cheng K, Liu J, Sun H, Bokor É, Czifrák K, Kónya B, Tóth M, Docsa T, Gergely P, Somsák L. Tethered derivatives of d-glucose and pentacyclic triterpenes for homo/heterobivalent inhibition of glycogen phosphorylase. NEW J CHEM 2010. [DOI: 10.1039/b9nj00602h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Glucose-based spiro-isoxazolines: A new family of potent glycogen phosphorylase inhibitors. Bioorg Med Chem 2009; 17:7368-80. [DOI: 10.1016/j.bmc.2009.08.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/06/2009] [Accepted: 08/11/2009] [Indexed: 11/19/2022]
|