1
|
Mizuguchi M, Obita T, Yamada S, Nabeshima Y. Trypsin-induced aggregation of transthyretin Valine 30 variants associated with hereditary amyloidosis. FEBS J 2024; 291:1732-1743. [PMID: 38273457 DOI: 10.1111/febs.17070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Amyloid fibrils of transthyretin (TTR) consist of full-length TTR and C-terminal fragments starting near residue 50. However, the molecular mechanism underlying the production of the C-terminal fragment remains unclear. Here, we investigated trypsin-induced aggregation and urea-induced unfolding of TTR variants associated with hereditary amyloidosis. Trypsin strongly induced aggregation of variants V30G and V30A, in each of which Val30 in the hydrophobic core of the monomer was mutated to less-bulky amino acids. Variants V30L and V30M, in each of which Val30 was mutated to bulky amino acids, also exhibited trypsin-induced aggregation. On the other hand, pathogenic variant I68L as well as the nonpathogenic V30I did not exhibit trypsin-induced aggregation. The V30G variant was extremely unstable compared with the other variants. The V30G mutation caused the formation of a cavity and the rearrangement of Leu55 in the hydrophobic core of the monomer. These results suggest that highly destabilized transthyretin variants are more susceptible to trypsin digestion.
Collapse
Affiliation(s)
| | - Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Seiya Yamada
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| |
Collapse
|
2
|
Morgan GJ. Transient disorder along pathways to amyloid. Biophys Chem 2021; 281:106711. [PMID: 34839162 DOI: 10.1016/j.bpc.2021.106711] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023]
Abstract
High-resolution structures of amyloid fibrils formed from normally-folded proteins have revealed non-native conformations of the polypeptide chains. Attaining these conformations apparently requires transition from the native state via a highly disordered conformation, in contrast to earlier models that posited a role for assembly of partially folded proteins. Modifications or interactions that extend the lifetime or constrain the conformations of these disordered states could act to enhance or suppress amyloid formation. Understanding how the properties of both the folded and transiently disordered structural ensembles influence the process of amyloid formation is a substantial challenge, but research into the properties of intrinsically disordered proteins will deliver important insights.
Collapse
Affiliation(s)
- Gareth J Morgan
- The Amyloidosis Center and Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
3
|
Lee S, Ju S, Kim SJ, Choi JO, Kim K, Kim D, Jeon ES, Lee C. tipNrich: A Tip-Based N-Terminal Proteome Enrichment Method. Anal Chem 2021; 93:14088-14098. [PMID: 34615347 DOI: 10.1021/acs.analchem.1c01722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mass spectrometry-based analysis of protein post-translational modifications requires large amounts of sample, complicating the analysis of samples with limited amounts of proteins such as clinical biopsies. Here, we present a tip-based N-terminal analysis method, tipNrich. The entire procedure is processed in a single pipette tip to minimize sample loss, which is so highly optimized to analyze small amounts of proteins, even femtomole-scale of a single protein. With tipNrich, we investigated various single proteins purified from different organisms using a low-resolution mass spectrometer and identified several N-terminal peptides with different Nt-modifications such as ragged N-termini. Furthermore, we applied matrix-assisted laser desorption ionization time-of-flight mass spectrometry to our method for shortening the analysis time. Moreover, we showed that our method could be utilized in disease diagnosis as exemplified by the characterization of wild-type transthyretin amyloidosis patients compared to the healthy individuals based on N-terminome profiling. In summary, tipNrich will satisfy the need of identifying N-terminal peptides even with highly scarce amounts of proteins and of having faster processing time to check the quality of protein products or to characterize N-terminal proteoform-related diseases.
Collapse
Affiliation(s)
- Seonjeong Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Shinyeong Ju
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seok Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 02792, Korea.,Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Jin-Oh Choi
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Kihyun Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Darae Kim
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 02792, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Mintoo M, Chakravarty A, Tilvawala R. N-Terminomics Strategies for Protease Substrates Profiling. Molecules 2021; 26:molecules26154699. [PMID: 34361849 PMCID: PMC8348681 DOI: 10.3390/molecules26154699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/02/2023] Open
Abstract
Proteases play a central role in various biochemical pathways catalyzing and regulating key biological events. Proteases catalyze an irreversible post-translational modification called proteolysis by hydrolyzing peptide bonds in proteins. Given the destructive potential of proteolysis, protease activity is tightly regulated. Dysregulation of protease activity has been reported in numerous disease conditions, including cancers, neurodegenerative diseases, inflammatory conditions, cardiovascular diseases, and viral infections. The proteolytic profile of a cell, tissue, or organ is governed by protease activation, activity, and substrate specificity. Thus, identifying protease substrates and proteolytic events under physiological conditions can provide crucial information about how the change in protease regulation can alter the cellular proteolytic landscape. In recent years, mass spectrometry-based techniques called N-terminomics have become instrumental in identifying protease substrates from complex biological mixtures. N-terminomics employs the labeling and enrichment of native and neo-N-termini peptides, generated upon proteolysis followed by mass spectrometry analysis allowing protease substrate profiling directly from biological samples. In this review, we provide a brief overview of N-terminomics techniques, focusing on their strengths, weaknesses, limitations, and providing specific examples where they were successfully employed to identify protease substrates in vivo and under physiological conditions. In addition, we explore the current trends in the protease field and the potential for future developments.
Collapse
|
5
|
Tau Is Truncated in Five Regions of the Normal Adult Human Brain. Int J Mol Sci 2021; 22:ijms22073521. [PMID: 33805376 PMCID: PMC8036332 DOI: 10.3390/ijms22073521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
The truncation of Tau is thought to be important in promoting aggregation, with this feature characterising the pathology of dementias such as Alzheimer disease. Antibodies to the C-terminal and N-terminal regions of Tau were employed to examine Tau cleavage in five human brain regions: the entorhinal cortex, prefrontal cortex, motor cortex, hippocampus, and cerebellum. These were obtained from normal subjects ranging in age from 18 to 104 years. Tau fragments of approximately 40 kDa and 45 kDa with an intact N-terminus retained were found in soluble and insoluble brain fractions. In addition, smaller C-terminal Tau fragments ranging in mass from 17 kDa to 25 kDa were also detected. These findings are consistent with significant Tau cleavage taking place in brain regions from 18 years onwards. It appears that site-specific cleavage of Tau is widespread in the normal human brain, and that large Tau fragments that contain the N-terminus, as well as shorter C-terminal Tau fragments, are present in brain cells across the age range.
Collapse
|
6
|
Dasari AKR, Arreola J, Michael B, Griffin RG, Kelly JW, Lim KH. Disruption of the CD Loop by Enzymatic Cleavage Promotes the Formation of Toxic Transthyretin Oligomers through a Common Transthyretin Misfolding Pathway. Biochemistry 2020; 59:2319-2327. [PMID: 32500705 DOI: 10.1021/acs.biochem.0c00079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyloid formation of full-length TTR involves dissociation of the native tetramers into misfolded monomers that self-assemble into amyloid. In addition to the full-length TTR, C-terminal fragments including residues 49-127 were also observed in vivo, implying the presence of additional misfolding pathways. It was previously proposed that a proteolytic cleavage might lead to the formation of the C-terminal fragment TTR amyloid. Here, we report mechanistic studies of misfolding and aggregation of a TTR variant (G53A) in the absence and presence of a serine protease. A proteolytic cleavage of G53A in the CD loop (K48 and T49) with agitation promoted TTR misfolding and aggregation, suggesting that the proteolytic cleavage may lead to the aggregation of the C-terminal fragment (residues 49-127). To gain more detailed insights into TTR misfolding promoted by proteolytic cleavage, we investigated structural changes in G53A TTR in the presence and absence of trypsin. Our combined biophysical analyses revealed that the proteolytic cleavage accelerated the formation of spherical small oligomers, which exhibited cytotoxic activities. However, the truncated TTR appeared to maintain native-like structures, rather than the C-terminal fragment (residues 49-127) being released and unfolded from the native state. In addition, our solid-state nuclear magnetic resonance and Fourier transform infrared structural studies showed that the two aggregates derived from the full-length and cleaved TTR exhibited nearly identical molecular structural features, suggesting that the proteolytic cleavage in the CD loop destabilizes the native tetrameric structure and accelerates oligomer formation through a common TTR misfolding and aggregation mechanism rather than through a distinct molecular mechanism.
Collapse
Affiliation(s)
- Anvesh K R Dasari
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Jenette Arreola
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Brian Michael
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffery W Kelly
- Department of Molecular and Experimental Medicine and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kwang Hun Lim
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
7
|
Ueda M, Okada M, Mizuguchi M, Kluve-Beckerman B, Kanenawa K, Isoguchi A, Misumi Y, Tasaki M, Ueda A, Kanai A, Sasaki R, Masuda T, Inoue Y, Nomura T, Shinriki S, Shuto T, Kai H, Yamashita T, Matsui H, Benson MD, Ando Y. A cell-based high-throughput screening method to directly examine transthyretin amyloid fibril formation at neutral pH. J Biol Chem 2019; 294:11259-11275. [PMID: 31167790 DOI: 10.1074/jbc.ra119.007851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Transthyretin (TTR) is a major amyloidogenic protein associated with hereditary (ATTRm) and nonhereditary (ATTRwt) intractable systemic transthyretin amyloidosis. The pathological mechanisms of ATTR-associated amyloid fibril formation are incompletely understood, and there is a need for identifying compounds that target ATTR. C-terminal TTR fragments are often present in amyloid-laden tissues of most patients with ATTR amyloidosis, and on the basis of in vitro studies, these fragments have been proposed to play important roles in amyloid formation. Here, we found that experimentally-formed aggregates of full-length TTR are cleaved into C-terminal fragments, which were also identified in patients' amyloid-laden tissues and in SH-SY5Y neuronal and U87MG glial cells. We observed that a 5-kDa C-terminal fragment of TTR, TTR81-127, is highly amyloidogenic in vitro, even at neutral pH. This fragment formed amyloid deposits and induced apoptosis and inflammatory gene expression also in cultured cells. Using the highly amyloidogenic TTR81-127 fragment, we developed a cell-based high-throughput screening method to discover compounds that disrupt TTR amyloid fibrils. Screening a library of 1280 off-patent drugs, we identified two candidate repositioning drugs, pyrvinium pamoate and apomorphine hydrochloride. Both drugs disrupted patient-derived TTR amyloid fibrils ex vivo, and pyrvinium pamoate also stabilized the tetrameric structure of TTR ex vivo in patient plasma. We conclude that our TTR81-127-based screening method is very useful for discovering therapeutic drugs that directly disrupt amyloid fibrils. We propose that repositioning pyrvinium pamoate and apomorphine hydrochloride as TTR amyloid-disrupting agents may enable evaluation of their clinical utility for managing ATTR amyloidosis.
Collapse
Affiliation(s)
- Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Masamitsu Okada
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mineyuki Mizuguchi
- Laboratory of Structural Biology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Barbara Kluve-Beckerman
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Kyosuke Kanenawa
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Aito Isoguchi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Masayoshi Tasaki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.,Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| | - Akihiko Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Akinori Kanai
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ryoko Sasaki
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Teruaki Masuda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Toshiya Nomura
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Taro Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Merrill D Benson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
8
|
Banach M, Konieczny L, Roterman I. The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function. J Theor Biol 2014; 359:6-17. [PMID: 24859428 DOI: 10.1016/j.jtbi.2014.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/25/2014] [Accepted: 05/05/2014] [Indexed: 12/24/2022]
Abstract
In this paper we show that the fuzzy oil drop model represents a general framework for describing the generation of hydrophobic cores in proteins and thus provides insight into the influence of the water environment upon protein structure and stability. The model has been successfully applied in the study of a wide range of proteins, however this paper focuses specifically on domains representing immunoglobulin-like folds. Here we provide evidence that immunoglobulin-like domains, despite being structurally similar, differ with respect to their participation in the generation of hydrophobic core. It is shown that β-structural fragments in β-barrels participate in hydrophobic core formation in a highly differentiated manner. Quantitatively measured participation in core formation helps explain the variable stability of proteins and is shown to be related to their biological properties. This also includes the known tendency of immunoglobulin domains to form amyloids, as shown using transthyretin to reveal the clear relation between amyloidogenic properties and structural characteristics based on the fuzzy oil drop model.
Collapse
Affiliation(s)
- Mateusz Banach
- Department of Bioinformatics and Telemedicine - Jagiellonian University - Medical College, Krakow, Poland; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Leszek Konieczny
- Chair of Medical Chemistry - Jagiellonian University - Medical College, Krakow, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine - Jagiellonian University - Medical College, Krakow, Poland.
| |
Collapse
|
9
|
Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis. Proc Natl Acad Sci U S A 2014; 111:1539-44. [PMID: 24474780 DOI: 10.1073/pnas.1317488111] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ser52Pro variant of transthyretin (TTR) produces aggressive, highly penetrant, autosomal-dominant systemic amyloidosis in persons heterozygous for the causative mutation. Together with a minor quantity of full-length wild-type and variant TTR, the main component of the ex vivo fibrils was the residue 49-127 fragment of the TTR variant, the portion of the TTR sequence that previously has been reported to be the principal constituent of type A, cardiac amyloid fibrils formed from wild-type TTR and other TTR variants [Bergstrom J, et al. (2005) J Pathol 206(2):224-232]. This specific truncation of Ser52Pro TTR was generated readily in vitro by limited proteolysis. In physiological conditions and under agitation the residue 49-127 proteolytic fragment rapidly and completely self-aggregates into typical amyloid fibrils. The remarkable susceptibility to such cleavage is likely caused by localized destabilization of the β-turn linking strands C and D caused by loss of the wild-type hydrogen-bonding network between the side chains of residues Ser52, Glu54, Ser50, and a water molecule, as revealed by the high-resolution crystallographic structure of Ser52Pro TTR. We thus provide a structural basis for the recently hypothesized, crucial pathogenic role of proteolytic cleavage in TTR amyloid fibrillogenesis. Binding of the natural ligands thyroxine or retinol-binding protein (RBP) by Ser52Pro variant TTR stabilizes the native tetrameric assembly, but neither protected the variant from proteolysis. However, binding of RBP, but not thyroxine, inhibited subsequent fibrillogenesis.
Collapse
|
10
|
Takinami Y, Yoshimatsu S, Uchiumi T, Toyosaki-Maeda T, Morita A, Ishihara T, Yamane S, Fukuda I, Okamoto H, Numata Y, Fukui N. Identification of potential prognostic markers for knee osteoarthritis by serum proteomic analysis. Biomark Insights 2013; 8:85-95. [PMID: 23935359 PMCID: PMC3735238 DOI: 10.4137/bmi.s11966] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND As osteoarthritis (OA) is a highly heterogeneous disease in terms of progression, establishment of prognostic biomarkers would be highly beneficial for treatment. The present study was performed to identify novel biomarkers capable of predicting the progression of knee OA. METHODS A total of 69 plasma samples (OA patients undergoing radiographic progression, n = 25; nonprogression, n = 33; healthy donors, n = 11) were analyzed by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS), and ion peaks of interest were identified by liquid chromatography and matrix-assisted laser desorption/ionization (MALDI)-TOF MS. The identities of these proteins were further validated by immunoprecipitation combined with SELDI-TOF MS analysis. RESULTS SELDI-TOF MS analysis indicated that the intensities of 3 ion peaks differed significantly between progressors and nonprogressors. Subsequent analyses indicated that these peaks corresponded to apolipoprotein C-I, C-III, and an N-terminal truncated form of transthyretin, respectively. The identities of these proteins were confirmed by the loss of ion peaks in SELDI-TOF MS spectra by immunoprecipitation using specific antibodies for the respective proteins. CONCLUSIONS Three potential biomarkers were identified whose serum levels differed significantly between OA progressors and nonprogressors. These biomarkers are expected to be prognostic biomarkers for knee OA and to facilitate the development of novel disease-modifying treatments for OA.
Collapse
Affiliation(s)
- Yoshihiko Takinami
- Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mizuguchi M, Takeuchi M, Ohki S, Nabeshima Y, Kouno T, Aizawa T, Demura M, Kawano K, Yutani K. Structural characterization of a trapped folding intermediate of pyrrolidone carboxyl peptidase from a hyperthermophile. Biochemistry 2012; 51:6089-96. [PMID: 22799522 DOI: 10.1021/bi300608e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The refolding of cysteine-free pyrrolidone carboxyl peptidase (PCP-0SH) from a hyperthermophile is unusually slow. PCP-0SH is trapped in the denatured (D1) state at 4 °C and pH 2.3, which is different from the highly denatured state in the presence of concentrated denaturant. In order to elucidate the mechanism of the unusually slow folding, we investigated the structure of the D1 state using NMR techniques with amino acid selectively labeled PCP-0SH. The HSQC spectrum of the D1 state showed that most of the resonances arising from the 114-208 residues are broadened, indicating that conformations of the 114-208 residues are in intermediate exchange on the microsecond to millisecond time scale. Paramagnetic relaxation enhancement data indicated the lack of long-range interactions between the 1-113 and the 114-208 segments in the D1 state. Furthermore, proline scanning mutagenesis showed that the 114-208 segment in the D1 state forms a loosely packed hydrophobic core composed of α4- and α6-helices. From these findings, we conclude that the 114-208 segment of PCP-0SH folds into a stable compact structure with non-native helix-helix association in the D1 state. Therefore, in the folding process from the D1 state to the native state, the α4- and α6-helices become separated and the central β-sheet is folded between these helices. That is, the non-native interaction between the α4- and α6-helices may be responsible for the unusually slow folding of PCP-0SH.
Collapse
Affiliation(s)
- Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yokoyama T, Mizuguchi M, Nabeshima Y, Kusaka K, Yamada T, Hosoya T, Ohhara T, Kurihara K, Tomoyori K, Tanaka I, Niimura N. Hydrogen-bond network and pH sensitivity in transthyretin: Neutron crystal structure of human transthyretin. J Struct Biol 2012; 177:283-90. [PMID: 22248451 DOI: 10.1016/j.jsb.2011.12.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Transthyretin (TTR) is a tetrameric protein associated with human amyloidosis. In vitro, the formation of amyloid fibrils by TTR is known to be promoted by low pH. Here we show the neutron structure of TTR, focusing on the hydrogen bonds, protonation states and pH sensitivities. A large crystal was prepared at pD 7.4 for neutron protein crystallography. Neutron diffraction studies were conducted using the IBARAKI Biological Crystal Diffractometer with the time-of-flight method. The neutron structure solved at 2.0Å resolution revealed the protonation states of His88 and the detailed hydrogen-bond network depending on the protonation states of His88. This hydrogen-bond network is composed of Thr75, Trp79, His88, Ser112, Pro113, Thr118-B and four water molecules, and is involved in both monomer-monomer and dimer-dimer interactions, suggesting that the double protonation of His88 by acidification breaks the hydrogen-bond network and causes the destabilization of the TTR tetramer. In addition, the comparison with X-ray structure at pH 4.0 indicated that the protonation occurred to Asp74, His88 and Glu89 at pH 4.0. Our neutron model provides insights into the molecular stability of TTR related to the hydrogen-bond network, the pH sensitivity and the CH···O weak hydrogen bond.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cyclodextrin, a novel therapeutic tool for suppressing amyloidogenic transthyretin misfolding in transthyretin-related amyloidosis. Biochem J 2011; 437:35-42. [PMID: 21668413 DOI: 10.1042/bj20110041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
TTR (transthyretin), a β-sheet-rich protein, is the precursor protein of familial amyloidotic polyneuropathy and senile systemic amyloidosis. Although it has been widely accepted that protein misfolding of the monomeric form of TTR is a rate-limiting step for amyloid formation, no effective therapy targeting this misfolding step is available. In the present study, we focused on CyDs (cyclodextrins), cyclic oligosaccharides composed of glucose units, and reported the inhibitory effect of CyDs on TTR amyloid formation. Of various branched β-CyDs, GUG-β-CyD [6-O-α-(4-O-α-D-glucuronyl)-D-glucosyl-β-CyD] showed potent inhibition of TTR amyloid formation. Far-UV CD spectra analysis showed that GUG-β-CyD reduced the conformational change of TTR in the process of amyloid formation. In addition, tryptophan fluorescence and 1H-NMR spectroscopy analyses indicated that GUG-β-CyD stabilized the TTR conformation via interaction with the hydrophobic amino acids of TTR, especially tryptophan. Moreover, GUG-β-CyD exerted its inhibitory effect by reducing TTR deposition in transgenic rats possessing a human variant TTR gene in vivo. Collectively, these results indicate that GUG-β-CyD may inhibit TTR misfolding by stabilizing its conformation, which, in turn, suppresses TTR amyloid formation.
Collapse
|
14
|
Abstract
The proteomes of blood plasma and serum represent a potential gold mine of biological and diagnostic information, but challenges such as dynamic range of protein concentration have hampered efforts to unlock this resource. Here we present a method to label and isolate N-terminal peptides from human plasma and serum. This process dramatically reduces the complexity of the sample by eliminating internal peptides. We identify 772 unique N-terminal peptides in 222 proteins, ranging over six orders of magnitude in abundance. This approach is highly suited for studying natural proteolysis in plasma and serum. We find internal cleavages in plasma proteins created by endo- and exopeptidases, providing information about the activities of proteolytic enzymes in blood, which may be correlated with disease states. We also find signatures of signal peptide cleavage, coagulation and complement activation, and other known proteolytic processes, in addition to a large number of cleavages that have not been reported previously, including over 200 cleavages of blood proteins by aminopeptidases. Finally, we can identify substrates from specific proteases by exogenous addition of the protease combined with N-terminal isolation and quantitative mass spectrometry. In this way we identified proteins cleaved in human plasma by membrane-type serine protease 1, an enzyme linked to cancer progression. These studies demonstrate the utility of direct N-terminal labeling by subtiligase to identify and characterize endogenous and exogenous proteolysis in human plasma and serum.
Collapse
|