1
|
Roland BP, Richards KR, Hrizo SL, Eicher S, Barile ZJ, Chang TC, Savon G, Bianchi P, Fermo E, Ricerca BM, Tortorolo L, Vockley J, VanDemark AP, Palladino MJ. Missense variant in TPI1 (Arg189Gln) causes neurologic deficits through structural changes in the triosephosphate isomerase catalytic site and reduced enzyme levels in vivo. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2257-2266. [PMID: 31075491 DOI: 10.1016/j.bbadis.2019.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/27/2022]
Abstract
Mutations in the gene triosephosphate isomerase (TPI) lead to a severe multisystem condition that is characterized by hemolytic anemia, a weakened immune system, and significant neurologic symptoms such as seizures, distal neuropathy, and intellectual disability. No effective therapy is available. Here we report a compound heterozygous patient with a novel TPI pathogenic variant (NM_000365.5:c.569G>A:p.(Arg189Gln)) in combination with the common (NM_000365.5:c.315G>C:p.(Glu104Asp)) allele. We characterized the novel variant by mutating the homologous Arg in Drosophila using a genomic engineering system, demonstrating that missense mutations at this position cause a strong loss of function. Compound heterozygote animals were generated and exhibit motor behavioural deficits and markedly reduced protein levels. Furthermore, examinations of the TPIArg189Gln/TPIGlu104Asp patient fibroblasts confirmed the reduction of TPI levels, suggesting that Arg189Gln may also affect the stability of the protein. The Arg189 residue participates in two salt bridges on the backside of the TPI enzyme dimer, and we reveal that a mutation at this position alters the coordination of the substrate-binding site and important catalytic residues. Collectively, these data reveal a new human pathogenic variant associated with TPI deficiency, identify the Arg189 salt bridge as critical for organizing the catalytic site of the TPI enzyme, and demonstrates that reduced TPI levels are associated with human TPI deficiency. These findings advance our understanding of the molecular pathogenesis of the disease, and suggest new therapeutic avenues for pre-clinical trials.
Collapse
Affiliation(s)
- Bartholomew P Roland
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristen R Richards
- Biological Sciences and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stacy L Hrizo
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Biology, Slippery Rock University, Slippery Rock, PA 16057, USA
| | - Samantha Eicher
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Zackery J Barile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Tien-Chien Chang
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Grace Savon
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Paola Bianchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOC Ematologia, UOS Fisiopatologia delle Anemie, Via F Sforza, 35, 20122 Milan, Italy
| | - Elisa Fermo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOC Ematologia, UOS Fisiopatologia delle Anemie, Via F Sforza, 35, 20122 Milan, Italy
| | - Bianca Maria Ricerca
- Hematology Institute, Universitary Hospital A. Gemelli, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Luca Tortorolo
- Pediatric Intensive Care Unit, Universitary Hospital A. Gemelli, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Jerry Vockley
- Department of Pediatrics and Human Genetics, University of Pittsburgh Schools of Medicine and Public health, Pittsburgh, PA 15261, USA
| | - Andrew P VanDemark
- Biological Sciences and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
2
|
Schulte‐Sasse M, Pardo‐Ávila F, Pulido‐Mayoral NO, Vázquez‐Lobo A, Costas M, García‐Hernández E, Rodríguez‐Romero A, Fernández‐Velasco DA. Structural, thermodynamic and catalytic characterization of an ancestral triosephosphate isomerase reveal early evolutionary coupling between monomer association and function. FEBS J 2019; 286:882-900. [DOI: 10.1111/febs.14741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/01/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mariana Schulte‐Sasse
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Fátima Pardo‐Ávila
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Nancy O. Pulido‐Mayoral
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Alejandra Vázquez‐Lobo
- Centro de Investigación en Biodiversidad y Conservación Universidad Autónoma del Estado de Morelos Cuernavaca Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica Departamento de Fisicoquímica Facultad de Química Universidad Nacional Autónoma de México Mexico
| | | | | | - Daniel Alejandro Fernández‐Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| |
Collapse
|
3
|
Olivares-Illana V, Riveros-Rosas H, Cabrera N, Tuena de Gómez-Puyou M, Pérez-Montfort R, Costas M, Gómez-Puyou A. A guide to the effects of a large portion of the residues of triosephosphate isomerase on catalysis, stability, druggability, and human disease. Proteins 2017; 85:1190-1211. [PMID: 28378917 DOI: 10.1002/prot.25299] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
Triosephosphate isomerase (TIM) is a ubiquitous enzyme, which appeared early in evolution. TIM is responsible for obtaining net ATP from glycolysis and producing an extra pyruvate molecule for each glucose molecule, under aerobic and anaerobic conditions. It is placed in a metabolic crossroad that allows a quick balance of the triose phosphate aldolase produced by glycolysis, and is also linked to lipid metabolism through the alternation of glycerol-3-phosphate and the pentose cycle. TIM is one of the most studied enzymes with more than 199 structures deposited in the PDB. The interest for this enzyme stems from the fact that it is involved in glycolysis, but also in aging, human diseases and metabolism. TIM has been a target in the search for chemical compounds against infectious diseases and is a model to study catalytic features. Until February 2017, 62% of all residues of the protein have been studied by mutagenesis and/or using other approaches. Here, we present a detailed and comprehensive recompilation of the reported effects on TIM catalysis, stability, druggability and human disease produced by each of the amino acids studied, contributing to a better understanding of the properties of this fundamental protein. The information reviewed here shows that the role of the noncatalytic residues depend on their molecular context, the delicate balance between the short and long-range interactions in concerted action determining the properties of the protein. Each protein should be regarded as a unique entity that has evolved to be functional in the organism to which it belongs. Proteins 2017; 85:1190-1211. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cáncer. Instituto de Física, Universidad Autónoma de San Luis Potosí, SLP, 78290, México
| | - Hector Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Marietta Tuena de Gómez-Puyou
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Armando Gómez-Puyou
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| |
Collapse
|
4
|
Labastida-Polito A, Garza-Ramos G, Camarillo-Cadena M, Zubillaga RA, Hernández-Arana A. Complex kinetics and residual structure in the thermal unfolding of yeast triosephosphate isomerase. BMC BIOCHEMISTRY 2015; 16:20. [PMID: 26334568 PMCID: PMC4558838 DOI: 10.1186/s12858-015-0049-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/19/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Saccharomyces cerevisiae triosephosphate isomerase (yTIM) is a dimeric protein that shows noncoincident unfolding and refolding transitions (hysteresis) in temperature scans, a phenomenon indicative of the slow forward and backward reactions of the native-unfolded process. Thermal unfolding scans suggest that no stable intermediates appear in the unfolding of yTIM. However, reported evidence points to the presence of residual structure in the denatured monomer at high temperature. RESULTS Thermally denatured yTIM showed a clear trend towards the formation of aggregation-prone, β-strand-like residual structure when pH decreased from 8.0 to 6.0, even though thermal unfolding profiles retained a simple monophasic appearance regardless of pH. However, kinetic studies performed over a relatively wide temperature range revealed a complex unfolding mechanism comprising up to three observable phases, with largely different time constants, each accompanied by changes in secondary structure. Besides, a simple sequential mechanism is unlikely to explain the observed variation of amplitudes and rate constants with temperature. This kinetic complexity is, however, not linked to the appearance of residual structure. Furthermore, the rate constant for the main unfolding phase shows small, rather unvarying values in the pH region where denatured yTIM gradually acquires a β-strand-like conformation. It appears, therefore, that the residual structure has no influence on the kinetic stability of the native protein. However, the presence of residual structure is clearly associated with increased irreversibility. CONCLUSIONS The slow temperature-induced unfolding of yeast TIM shows three kinetic phases. Rather than a simple sequential pathway, a complex mechanism involving off-pathway intermediates or even parallel pathways may be operating. β-strand-type residual structure, which appears below pH 8.0, is likely to be associated with increased irreversible aggregation of the unfolded protein. However, this denatured form apparently accelerates the refolding process.
Collapse
Affiliation(s)
- Ariana Labastida-Polito
- Área de Biofisicoquímica, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Iztapalapa, D.F. 09340, Mexico.
| | - Georgina Garza-Ramos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, D.F. 04510, Mexico.
| | - Menandro Camarillo-Cadena
- Área de Biofisicoquímica, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Iztapalapa, D.F. 09340, Mexico.
| | - Rafael A Zubillaga
- Área de Biofisicoquímica, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Iztapalapa, D.F. 09340, Mexico.
| | - Andrés Hernández-Arana
- Área de Biofisicoquímica, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Iztapalapa, D.F. 09340, Mexico.
| |
Collapse
|
5
|
Williamson MP, Hounslow AM, Ford J, Fowler K, Hebditch M, Hansen PE. Detection of salt bridges to lysines in solution in barnase. Chem Commun (Camb) 2013; 49:9824-6. [DOI: 10.1039/c3cc45602a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Lara-González S, Estrella-Hernández P, Ochoa-Leyva A, Del Carmen Portillo-Téllez M, Caro-Gómez LA, Figueroa-Angulo EE, Salgado-Lugo H, Miranda Ozuna JFT, Ortega-López J, Arroyo R, Brieba LG, Benítez-Cardoza CG. Structural and thermodynamic folding characterization of triosephosphate isomerases from Trichomonas vaginalis reveals the role of destabilizing mutations following gene duplication. Proteins 2013; 82:22-33. [PMID: 23733417 DOI: 10.1002/prot.24333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 11/07/2022]
Abstract
We report the structures and thermodynamic analysis of the unfolding of two triosephosphate isomerases (TvTIM1 and TvTIM2) from Trichomonas vaginalis. Both isoforms differ by the character of four amino acids: E/Q 18, I/V 24, I/V 45, and P/A 239. Despite the high sequence and structural similarities between both isoforms, they display substantial differences in their stabilities. TvTIM1 (E18, I24, I45, and P239) is more stable and less dissociable than TvTIM2 (Q18, V24, V45, and A239). We postulate that the identities of residues 24 and 45 are responsible for the differences in monomer stability and dimer dissociability, respectively. The structural difference between both amino acids is one methyl group. In TvTIMs, residue 24 is involved in packing α-helix 1 against α-helix 2 of each monomer and residue 45 is located at the center of the dimer interface forming a "ball and socket" interplay with a hydrophobic cavity. The mutation of valine at position 45 for an alanine in TvTIM2 produces a protein that migrates as a monomer by gel filtration. A comparison with known TIM structures indicates that this kind of interplay is a conserved feature that stabilizes dimeric TIM structures. In addition, TvTIMs are located in the cytoplasm and in the membrane. As TvTIM2 is an easily dissociable dimer, the dual localization of TvTIMs may be related to the acquisition of a moonlighting activity of monomeric TvTIM2. To our knowledge, this is the simplest example of how a single amino acid substitution can provide alternative function to a TIM barrel protein.
Collapse
Affiliation(s)
- Samuel Lara-González
- IPICYT, División de Biología Molecular, Camino a la Presa San José 2055, San Luis Potosí, San Luis Potosí, México, CP 78216
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tellez LA, Blancas-Mejia LM, Carrillo-Nava E, Mendoza-Hernández G, Cisneros DA, Fernández-Velasco DA. Thermal Unfolding of Triosephosphate Isomerase from Entamoeba histolytica: Dimer Dissociation Leads to Extensive Unfolding. Biochemistry 2008; 47:11665-73. [DOI: 10.1021/bi801360k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luis A. Tellez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, and Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF
| | - Luis M. Blancas-Mejia
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, and Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF
| | - Ernesto Carrillo-Nava
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, and Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF
| | - Guillermo Mendoza-Hernández
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, and Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF
| | - David A. Cisneros
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, and Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF
| | - D. Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, and Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF
| |
Collapse
|